ON A PROBLEM OF G. GOLOMB.

P. ERDÖS

(received 3 August 1960)

In his paper on sets of primes with intermediate density Golomb ${ }^{1}$ proved the following theorem:

Let $2<P_{1}<P_{2}<\cdots$ be any sequence of primes for which

$$
\begin{equation*}
P_{j} \not \equiv 1\left(\bmod P_{i}\right) \tag{1}
\end{equation*}
$$

for every i and j. Denote by $A(x)$ the number of P 's not exceeding x. Then

$$
\begin{equation*}
\liminf _{x=\infty}^{\operatorname{lin}} A(x) / x=0 . \tag{2}
\end{equation*}
$$

It is not difficult to see that in some sense (2) is best possible since it is easy to construct a sequence of primes satisfying (1) for which

$$
\limsup _{x=\infty} A(x) / x>0,
$$

and in fact the lim sup can be as close to 1 as we wish. Golomb pointed out that in some ways the most natural sequence satisfying (1) can be obtained as follows: $q_{1}=3, q_{2}=5, q_{3}=17, \cdots q_{k}$ is the smallest prime greater than q_{k-1} for which

$$
q_{k} \not \equiv 1\left(\bmod q_{i}\right), \quad 1 \leqq i<k
$$

Henceforth we will only consider this special sequence satisfying (1). We shall prove the following (as before $A(x)$ denotes the number of $q_{i} \leqq x$).

Theorem.

$$
A(x)=(1+o(1)) \frac{x}{\log x \log \log x} .
$$

$\log _{k} x$ will denote the k times iterated logarithm, c_{1}, c_{2}, \cdots will denote positive absolute constants.

Our method will be similar to the one used in our recent joint paper with Jabotinsky ${ }^{2}$, but we will also need Brun's method and the results on primes in short arithmetic progressions.

1 S. Golomb, Math. Scand. 3 (1955), $264-74$.
${ }^{2}$ P. Erdoss and E. Jabotinsky, Indig. Math. 20 (1958), 115-128.

Lemma 1. Denote by $\pi(x, k, l)$ the number of primes $p \leqq x, p \equiv l(\bmod k)$, $(l, k)=1$. Then $\left(\exp z=e^{z}\right)$

$$
\begin{equation*}
\pi(x, k, l)=\frac{x}{\varphi(k) \log x}\left(1+O\left(\frac{1}{\log x}\right)\right) \tag{3}
\end{equation*}
$$

uniformly for all $k<\exp \left(c_{1} \log x / \log \log x\right)$, except possibly for the multiples of a certain $k^{*}=k^{*}(x)$ where $k^{*}>(\log x)^{A}(A$ is an arbitrary constant, but the constant in $O(1 / \log x)$ depends on $A)$.

Lemma 1 is well known ${ }^{3}$.
Lemma 2. Let $2=p_{1}<p_{2}<\cdots$ be the sequence of consecutive primes, and let r be a fixed integer, $0 \leqq r_{i}<r$. Denote by $N_{k}(x)$ the number of integers $1 \leqq z \leqq x$ for which $z \equiv l(\bmod k),(l, k)=1$ and

$$
z \not \equiv a_{i}^{(j)}\left(\bmod p_{i}\right), \quad 1 \leqq j \leqq r_{i}
$$

where the $a_{i}^{(j)}$ are arbitrary residues and $p_{i} \leqq x$. Then

$$
N_{k}(x)<c_{2} \frac{x}{k} \prod_{p_{i} \leq x / k}\left(1-r_{i} / p_{i}\right)
$$

The proof follows immediately from Brun's method ${ }^{4}$.
Lemma 3. There exists a constant c_{3} so that

$$
\begin{equation*}
\log _{3} x-c_{3}<\sum_{a_{i} \leq x} 1 / q_{i}<\log _{3} x+c_{3} \tag{4}
\end{equation*}
$$

First we prove the upper bound. If the upper estimation in (4) would not hold then for every c there would be arbitrarily large values of x so that for every $z<x$

$$
\begin{equation*}
\sum_{a_{i} \equiv x} \frac{1}{q_{i}}-\log _{3} x>\sum_{a_{i} \equiv s} \frac{1}{q_{i}}-\log _{3} z \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{q_{i} \leqq x} \frac{1}{q_{i}}>\log _{3} x+c \tag{6}
\end{equation*}
$$

Let $x^{1 / 2}<q_{i} \leqq x$. Clearly by the definition of the $q^{\prime} s q_{i} \neq 0(\bmod p)$ for all $p<x^{1 / 2}$ and $q_{i} \neq 1\left(\bmod q_{j}\right)$ for $q_{j}<x^{1 / 2}$. Thus by lemma $2(k=1)$

$$
\begin{equation*}
A(x)<x^{1 / 2}+c_{2} x \prod_{p_{i} \leq x^{1 / 2}}\left(1-r_{i} / p_{i}\right) \tag{7}
\end{equation*}
$$

where $r_{i}=2$ if p_{i} is a q and is 1 otherwise. From (7), (6) and from $\prod_{D<x^{1 / 2}}(1-1 / p)<c_{4} / \log x$

$$
\begin{equation*}
A(x)<c_{5} \frac{x}{\log x} \prod_{q_{i}<x^{1 / 2}}\left(1-\frac{1}{q_{i}}\right)<c_{B} x \exp (-c) / \log x \log _{2} x \tag{8}
\end{equation*}
$$

[^0]The last inequality in (8) follows from $\prod_{a_{i}<z}\left(1-1 / q_{i}\right)<c_{7} \exp$ ($-\sum_{a_{i}<s} 1 / q_{i}$) and from (using (6))

$$
\sum_{q_{i}<x^{1 / 2}} \frac{1}{q_{i}}>\sum_{q_{i} \leq x} \frac{1}{q_{i}}-\sum_{x^{1 / 2} \leq p \leq x} \frac{1}{p}>\log _{3} x+c-c_{8} .
$$

From (8) we have

$$
\begin{equation*}
\sum_{x / 2<a_{i} \leq x} \frac{1}{q_{i}}<\frac{2 A(x)}{x}<2 c_{6} \exp (-c) ; \log x \log \log x . \tag{9}
\end{equation*}
$$

But from (5) we have for $z=x / 2$

$$
\sum_{x / 2<q_{i} \leq x} \frac{1}{q_{i}}>\log _{3} x-\log _{3} \frac{x}{2}>c_{9} / \log x \log _{2} x,
$$

which contradicts (9) for sufficiently large c. Thus the upper bound in (4) is proved.

The proof of the lower bound will be more complicated. Put $y=$ $\exp \left(\log x /(\log \log x)^{10}\right)$ and denote by $A_{\nu}(x)$ the number of primes $p \leqq x$ satisfying

$$
\begin{equation*}
p \neq 1\left(\bmod q_{i}\right), \quad 3 \leqq q_{i} \leqq y . \tag{10}
\end{equation*}
$$

We evidently have

$$
\begin{equation*}
A_{y}(x)-\sum_{y<a_{j}<x} B\left(x, q_{j}\right)<A(x)<A_{\nu}(x)+y \tag{11}
\end{equation*}
$$

where $B\left(x, q_{j}\right)$ denotes the number of primes $p \leqq x$ satisfying

$$
p \equiv 1\left(\bmod q_{j}\right), \quad p \not \equiv 1\left(\bmod q_{i}\right), \quad 3 \leqq q_{i} \leqq y
$$

Now we estimate $A_{\nu}(x)$ by Brun's method.
Lemma 4.

$$
A_{v}(x)=(1+o(1)) \frac{x}{\log x} \prod_{a_{i} \leq y}\left(1-\frac{1}{q_{i}-1}\right) .
$$

By the sieve of Eratosthenes we have

$$
A_{v}(x)=\pi(x)-\sum \pi\left(x, q_{i}, 1\right)+\sum \pi\left(x, q_{i_{1}} q_{i_{2}}, 1\right)-\cdots
$$

where $3 \leqq q_{i} \leqq y$ and i 's are distinct. By the well known idea of Brun ${ }^{5}$ we have ($\sum_{r}=\sum \pi\left(x, q_{i_{1}} \cdot q_{i_{r}} \cdots q_{i_{r}}, 1\right)$).
(12) $\pi(x)-\Sigma_{1}+\Sigma_{2}-\Sigma_{3}+\cdots-\Sigma_{2 k-1}<A_{v}(x)<\pi(x)-\Sigma_{1}+\Sigma_{2}-\cdots+\Sigma_{2 k}$.

We now choose $k=\left[10 \log _{2} x\right]$. We distinguish two cases. In the first case none of the numbers $q_{i_{1}} \cdots q_{i_{2}}, \mathbf{l} \leqq r \leqq 2 k$ are exceptional from the point

[^1]of view of Lemma 1 . In this case we can estimate Σ_{r} by Lemma 1 and following say Landau's treatment of Brun's method ${ }^{5}$ we obtain from (12) by a simple computation
\[

$$
\begin{equation*}
A_{v}(x)=\frac{x}{\log x_{3 \leq q_{i} \leq v}} \prod_{1}\left(1-\frac{1}{q_{i}-1}\right)+o\left(\frac{x}{(\log x)^{2}}\right) \prod_{3 \leq q_{i} \leq v}\left(1+\frac{1}{q_{i}-1}\right)+o\left(\frac{x}{(\log x)^{2}}\right) . \tag{13}
\end{equation*}
$$

\]

By the upper bound of (4) we have

$$
\prod_{q_{i} \leq v}\left(1+\frac{1}{q_{i}-1}\right)<c_{10} \log _{2} x \text { and } \prod_{q_{i} \leq v}\left(1-\frac{1}{q_{i}-1}\right)>c_{10} / \log _{2} x
$$

thus from (13) we obtain Lemma 4 in the first case.
In the second case let $d=q_{i_{1}} \cdot q_{i_{2}} \cdots q_{i_{\mathrm{r}}}$ be the smallest exceptional number (i.e. for which Lemma 1 does not hold). By Lemma 1 we can assume that $d>(\log x)^{4}$. We estimate $\pi(x, t d, 1)$ from below by 0 and from above by $x / t d$. Since

$$
\sum_{t<x} \frac{x}{t d}=O\left(\frac{x \log x}{d}\right)=o\left(\frac{x}{(\log x)^{2}}\right)
$$

we can neglect this exceptional d and the proof of Lemma 4 is complete.
Now we complete the proof of Lemma 3. Assume that the lower bound in (4) is false. Then for every c_{3} there are infinitely many integers x satisfying for every $z \leqq x$

$$
\begin{equation*}
\sum_{q_{i} \leq x} \frac{1}{q_{i}}-\log _{3} x<\sum_{a_{i} \leq x} \frac{1}{q_{i}}-\log _{3} z \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{a_{i} \leq x} \frac{1}{q_{i}}=\log _{3} x-c_{m}, \quad c_{x}>c_{3} \tag{15}
\end{equation*}
$$

From (14) we have

$$
\begin{equation*}
\sum_{x<a_{i}<x} \frac{1}{q_{i}}<\log _{3} x-\log _{3} z \tag{16}
\end{equation*}
$$

By Lemma 4 and (16) (since $\log _{3} x-\log _{3} y=o(1)$)

$$
\begin{equation*}
A_{v}(x)-A_{v}\left(\frac{x}{2}\right)=(1+o(1)) \frac{x}{2 \log x} \prod_{a_{i} \leq v}\left(1-\frac{1}{q_{i}-1}\right)>c_{11} \frac{x \exp c_{x}}{\log x \log _{2} x} . \tag{17}
\end{equation*}
$$

Thus from (11) and (17)

$$
\begin{equation*}
A(x)-A\left(\frac{x}{2}\right)>c_{11} \frac{x \exp c_{m}}{\log x \log _{2} x}-y-\sum_{y<a_{i} \leq x} B\left(x, q_{j}\right) . \tag{18}
\end{equation*}
$$

Now we estimate $\sum_{v<q_{j} \leq x} B\left(x, q_{j}\right)$. Write

[^2]\[

$$
\begin{equation*}
\sum_{y<a, \leq x} B\left(x, q_{j}\right)=\Sigma_{1}+\Sigma_{2}+\Sigma_{3} \tag{19}
\end{equation*}
$$

\]

where in $\Sigma_{1} y<q_{1} \leqq x \exp \left(-\log x /\left(\log _{2} x\right)^{1 / 2}\right)$ in $\Sigma_{2} x \exp \left(-\log x /\left(\log _{2} x\right)^{1 / 2}\right)$ $<q_{j} \leqq x \exp \left(-\log x /\left(\log _{2} x\right)^{5 / 4}\right)$ and in $\Sigma_{3} x \exp \left(-\log x /\left(\log _{2} x\right)^{5 / 4}\right)<q_{j}$ $\leqq x$. From Lemma 2 we have for the q_{j} in Σ_{1} and Σ_{2}.

$$
\begin{equation*}
B\left(x, q_{j}\right)<c_{2} \frac{x}{q_{j} \log \frac{x}{q_{j}}} \Pi^{\prime}\left(1-\frac{1}{q_{i}}\right)<c_{2} \frac{x}{q_{j} \log \frac{x}{q_{j}}} \prod_{q_{i}<y}\left(1-\frac{1}{q_{i}}\right) \tag{20}
\end{equation*}
$$

where in $\Pi^{\prime} q_{i}<\min \left(q_{j}, x / q_{j}\right)$. (20) holds since for the q_{j} in Σ_{1} and Σ_{2} $\min \left(q_{j}, x / q_{j}\right)>y$. Now from (16) $\sum_{y<a_{i} \leq x} 1 / q_{i}<\log _{3} x-\log _{3} y=o(1)$. Thus from (15)

$$
\begin{equation*}
\sum_{a_{i}<y} \frac{1}{q_{i}}=\log _{3} x-c_{x}-o(1) \tag{21}
\end{equation*}
$$

From (20) and (21) we have for the q_{j} in Σ_{1}

$$
\begin{equation*}
B\left(x, q_{j}\right)<c_{12} \frac{x \exp c_{x}}{q_{j} \log \frac{x}{q_{j}} \log _{2} x}<c_{12} \frac{x \exp c_{x}}{q_{j} \log x\left(\log _{2} x\right)^{1 / 2}} \tag{22}
\end{equation*}
$$

But from (16)

$$
\begin{equation*}
\Sigma_{1} \frac{1}{q_{j}} \leqq \sum_{v<q_{j} \leq x} \frac{1}{q_{j}}<\log _{3} x-\log _{3} y<c_{13} \log _{3} x / \log _{2} x \tag{23}
\end{equation*}
$$

Thus from (22) and (23)

$$
\begin{equation*}
\Sigma_{1}<c_{12} \frac{x \exp c_{x}}{\log x\left(\log _{2} x\right)^{1 / 2}} \Sigma_{1} \frac{1}{q_{j}}<c_{12} c_{13} \frac{x \log _{3} x \exp c_{x}}{\log x\left(\log _{2} x\right)^{3 / 2}}=o\left(\frac{x \exp c_{x}}{\log x \log _{2} x}\right) \tag{24}
\end{equation*}
$$

Again from (20), (21) and (16) we obtain as in the estimation

$$
\begin{equation*}
\Sigma_{2}<c_{14} \frac{x\left(\log _{2} x\right)^{1 / 4} \exp c_{x}}{\log x} \Sigma_{2} \frac{1}{q_{j}}<c_{14} c_{15} \frac{x \exp c_{x}}{\log x\left(\log _{2} x\right)^{5 / 4}}=o\left(\frac{x \exp c_{x}}{\log x \log _{2} x}\right) \tag{25}
\end{equation*}
$$

To estimate Σ_{3} denote by $N(a, x)$ the number of primes $p<x / a, a<x^{1 / 2}$, for which $a \cdot p+1$ is also a prime. A well known consequence of Brun's method implies that

$$
\begin{equation*}
N(a, x)<c_{1 ष} \frac{x}{(\log x)^{2}} \prod_{p / a}\left(1+\frac{1}{p}\right) \tag{26}
\end{equation*}
$$

(26) easily follows from Lemma 2. From (26) we have by interchanging the order of summation $\left(\Sigma^{\prime}\right.$ denotes that $1 \leqq a<\exp \left(\log _{x} x\left(\log _{2} x\right)^{5 / 4}\right)$)

$$
\begin{equation*}
\Sigma_{3} \leqq \Sigma^{\prime} N(a, x)<c_{16} \frac{x}{(\log x)^{2}} \Sigma^{\prime} \frac{\prod_{p / a}\left(1+\frac{1}{p}\right)}{a}<c_{17} \frac{x}{\log x\left(\log _{2} x\right)^{5 / 4}} \tag{27}
\end{equation*}
$$

The last inequality of (27) holds since it is well known that

$$
\begin{equation*}
\sum_{a=1}^{z} \frac{\prod_{p / a}\left(1+\frac{1}{p}\right)}{a}<c_{18} \log z \tag{28}
\end{equation*}
$$

((28) follows easily from the well known result $\sum_{a=1}^{x} \prod_{p / a}(1+1 / p)<$ $\sum_{a=1}^{s} \sigma(a) / a=(1+o(1)) \pi^{2} / 6 \log z$ by partial summation). From (24), (25) and (27) we obtain

$$
\begin{equation*}
\sum_{y \leq q_{j} \leq x} B\left(x, q_{j}\right)=o\left(\frac{x \exp c_{x}}{\log x \log _{2} x}\right) \tag{29}
\end{equation*}
$$

From (18) and (29) we have

$$
\begin{equation*}
A(x)-A\left(\frac{x}{2}\right)>c_{19} \frac{x \exp c_{x}}{\log x \log _{2} x} \tag{30}
\end{equation*}
$$

(30) implies that

$$
\begin{equation*}
\sum_{(x / 2)<a_{i}<x} \frac{1}{q_{i}}>c_{19} \exp c_{x} / \log x \log _{2} x \tag{31}
\end{equation*}
$$

On the other hand (16) implies that

$$
\left.\sum_{(x / 2)<a_{i}<x} \frac{1}{q_{i}}<\log _{3} x-\log _{3} \frac{x}{2}<c_{20} / \log x \log _{2} x\right)
$$

an evident contradiction for sufficiently large $c_{3}\left(c_{x}>c_{3}\right)$. Thus the upper bound of (4) is proved and the proof of Lemma 3 is complete.

From the upper bound in (4), (19), (24), (25) and (27) we immediately obtain (we now know that $c_{\infty}<c_{3}$)

$$
\begin{equation*}
\sum_{v \leq a_{j} \leq x} B\left(x, q_{j}\right)=o\left(\frac{x}{\log x \log _{2} x}\right) \tag{32}
\end{equation*}
$$

From (11), (32) and Lemmas 3 and 4 we obtain

$$
\begin{align*}
A(x) & =(1+o(1)) \frac{x}{\log x} \prod_{a_{i} \leq y}\left(1-\frac{1}{q_{i}-1}\right)+o\left(\frac{x}{\log x \log _{2} x}\right) \\
& =(1+o(1)) \frac{x}{\log x} \prod_{q_{i} \leq y}\left(1-\frac{1}{q_{i}-1}\right) \tag{33}
\end{align*}
$$

The last inequality of (33) follows, since by the lower bound in (4) $\prod_{e_{i} \leq y}\left(1-1 /\left(q_{i}-1\right)\right)>c_{21} / \log _{2} x$. From (33) and the lower bound in (4)

$$
\begin{equation*}
A(x)<c_{22} x / \log x \log _{2} x\left(\text { since } \prod_{q_{i}<y}\left(1-\frac{1}{q_{i}-1}\right)<c_{23} / \log _{2} x\right) \tag{34}
\end{equation*}
$$

Thus by a simple computation

$$
\begin{equation*}
\sum_{y \leqq q_{i} \leq x} \frac{1}{q_{i}}=o(1) \tag{35}
\end{equation*}
$$

From (33) and (35) we finally obtain

$$
\begin{equation*}
A(x)=(1+o(1)) \frac{x}{\log x} \prod_{q_{i} \leq x}\left(1-\frac{1}{q_{i}-1}\right) . \tag{36}
\end{equation*}
$$

To complete the proof of our Theorem we only have to show that

$$
\begin{equation*}
\prod_{a_{i} \leq x}\left(1-\frac{1}{q_{i}-1}\right)=\frac{1+o(1)}{\log _{2} x} \tag{37}
\end{equation*}
$$

Assume that (37) does not hold. Assume first that

$$
\begin{equation*}
\lim \sup \log _{2} x \prod_{a_{i} \leq x}\left(1-\frac{1}{q_{i}-1}\right)=c>1 \tag{38}
\end{equation*}
$$

The limit of the expression in (38) cannot exist. For if it would exist it would equal $c>1$. But then by (36)

$$
\lim \frac{A(x) \log x \log _{2} x}{x}=c, \quad \text { or } \quad \lim \frac{q_{n}}{n \log n \log _{2} n}=\frac{1}{c}<1
$$

which contradicts (38).
Since the limit in (38) does not exist it follows by a simple argument that there exists a constant $c^{\prime}, 1<c^{\prime}<c$ and two infinite sequences $x_{k}<z_{k}$ so that

$$
\begin{align*}
& \lim _{k=\infty} \log _{2} x_{k} \prod_{a_{i} \leq x_{k}}\left(1-\frac{1}{q_{i}-1}\right)=c^{\prime} \tag{39}\\
& \lim _{k=\infty} \log _{2} z_{k} \prod_{q_{i} \leq s_{k}}\left(1-\frac{1}{q_{i}-1}\right)=c \tag{40}
\end{align*}
$$

and for every $x_{k}<w<z_{k}$

$$
\begin{equation*}
\log _{2} x_{k} \prod_{q_{i} \leq x_{k}}\left(1-\frac{1}{q_{i}-1}\right)<\log _{2} w \prod_{a_{i} \leq w}\left(1-\frac{1}{q_{i}-1}\right) \tag{41}
\end{equation*}
$$

From (34) we have for every $\alpha>1$

$$
\begin{equation*}
\prod_{x<a_{i}<\alpha x}\left(1-\frac{1}{q_{i}-1}\right)=1+o(1) \tag{42}
\end{equation*}
$$

Thus from (39), (40) and (42) $z_{k} / x_{k} \rightarrow \infty$. Chon: now $w^{\prime}=(1+\eta) x_{k}<z_{k}$ where $\eta>0$ is a sufficiently small constant. Put

$$
U_{k}=A\left[(1+\eta) x_{k}\right]-A\left(x_{k}\right)
$$

From (41) we have
(43) $\frac{\log _{2} x_{k}}{\log _{2}\left[x_{k}(1+\eta)\right]}<\prod_{x_{k}<a_{i}<(1+\eta) x_{k}}\left(1-\frac{1}{q_{i}-1}\right)<\left(1-\frac{1}{(1+\eta) x_{k}}\right)^{U_{k}}$.

From (36), (39) and (42) we have
(44) $U_{k}=(1+o(1)) \frac{c^{\prime}(1+\eta) x_{k}}{\log x_{k} \cdot \log _{2} x_{k}}-(1+o(1)) \frac{c^{\prime} x_{k}}{\log x_{k} \log _{2} x_{k}}=\frac{(1+o(1)) c^{\prime} \eta x_{k}}{\log x_{k} \log _{2} x_{k}}$.

Now by a simple computation

$$
\begin{equation*}
\frac{\log _{2} x_{k}}{\log _{2}\left[x_{k}(1+\eta)\right]}=1-\frac{\log (1+\eta)}{\log x_{k} \log _{2} x_{k}}+o\left(\frac{1}{\log x_{k} \log _{2} x_{k}}\right) \tag{45}
\end{equation*}
$$

From (43), (44) and (45) we have

$$
\begin{align*}
& 1-\frac{\log (1+\eta)}{\log x_{k} \log _{2} x_{k}}+o\left(\frac{1}{\log x_{k} \log _{2} x_{k}}\right)<\left(1-\frac{1}{(1+\eta) x_{k}}\right)^{U_{k}} \tag{46}\\
& =1-\frac{c^{\prime} \eta}{(1+\eta) \log x_{k} \log _{2} x_{k}}+o\left(\frac{1}{\log x_{k} \log _{2} x_{k}}\right)
\end{align*}
$$

But (46) is false for sufficiently small η (since $c^{\prime}>1$). This contradiction shows that the $\overline{\lim }$ in (38) equals 1 . In the same way we can show that the $\underline{l} \mathrm{lim}$ of the expression in (38) is 1 . Thus (37) is proved, and (36) implies our Theorem.

I do not know whether for infinitely many i 's q_{i+1} is the least prime greater than q_{i}.

By similar arguments we can prove the following more general result:
Let $r \geqq 1, Q_{1}>r+1, Q_{1}$ prime. Q_{i+1} is the smallest prime greater than Q_{i} so that $Q_{i} \neq t\left(\bmod Q_{j}\right), 1 \leqq j \leqq i, 1 \leqq t \leqq r$.

Denote by $B_{Q_{i}, r}(x)$ the number of Q 's not exceeding x, then

$$
\begin{equation*}
B_{\mathbf{Q}_{1}, r}(x)=(1+o(1)) \frac{x}{\log x \log _{2} x \cdots \log _{r+1} x} \tag{47}
\end{equation*}
$$

For $Q_{1}=3, r=1, A(x)=B_{Q_{1} r}(x),(47)$ is thus a generalisation of our Theorem.

Technion,
Haifa.

[^0]: 2 This is Theorem 2.3 p. 230 of Prachar's book Primzahlverteilung (Springer 1957) where the literature of this question can be found.
 \& See e.g. P. Erdös, Proc. Cambridge Phil. Soc. 34 (1957), 8.

[^1]: - See e.g. E. Landau, Zahlentheorie Vol. 1.

[^2]: © See e.g. E. Landau, Zahlentheorie Vol. 1.

