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ABSTRACT 

Outgoing asymptotic orbits at a collinear Equilibrium point of the 
elliptic restricted three-body problem are constructed analytically and 
numerically and those which intersect perpendicularly the axis of 
symmetry are selected by means of a numerical procedure of differential 
corrections. Due to the symmetry properties of the problem, the latter 
orbits terminate asymptotically back to the equilibrium point and 
therefore provide a kind of "asymptotic trapping" at the unstable 
equilibrium, a trapping mechanism based on "long duration of passage" 
rather than stability of motion. 

1. LINEARIZED EQUATIONS 

The linearized equations of motion of the elliptic planar restricted 
threes-body problem, valid for infinitesimal motion near a collinear 
equilibrium point, are 

Ax , (1) 

with 

(X., X_, X-, X 4 ' (€, n ,C, n)' (2) 

£, n, being the coordinates of the third particle with respect to the 
equilibrium. The "time"-dependent coefficient matrix A is given by 
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1 + e cost, (4) 

A* = 1-Q* - xQ0* - y(l-vi)R*, 

B* = 1-Q* , 

26 
l-y 

'10 

(5) 

'20 

Q* 

R * = - 3 

V R^ , 

10 

1 
3 

IT 
10 

(a-l) r 
20-

x 0 + y 

10 
r20 = I™-1'' 

We use as "time" t, the independent variable cp (true anomaly) while, 
in the above abbreviations, e is the eccentricity of the binary orbit 
and x is the position of the equilibrium on the x-axis. 

2. ANALYTICAL DETERMINATION OF THE OUTGOING EIGENVECTOR 

The coefficient matrix A is expanded in the form 

2 
A(t) 

0 
e A cost + e 

2 
A cos t (6) 

where: 

V 
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(7) 

and 

0 
0 
A* 
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0 
B" 
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0 
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0 

(8) 

The eigen-values of A are 

xi = xo 
X2 _ "V V !S, -is„ (9) 
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w i t h 

V w i + V w l - w 2 

V - w i + V? 
( 1 0 ) 

a n d 

w = (A- + B * - 4 ) / 2 , w = A- B - ( 1 1 ) 

The corresponding eigenvectors are: 

* i = (1' Yo' V YoV 

y2
 = ( 1 ' - v _Ao' Vo1' 

y 3 (1' i 6o' i s o' -6oso} ' 

(12) 

*4 
(1, -i6Q, -is0, -6Qs0) , 

with 
A2 - A * 
0 

2A„ 

sQ + A-

2A. 

B* -\' 

2s, 

2s 
0 

B» + s 
0 

(13) 

In the present case the eigenvalues are single and the eigenvectors are 
linearly independent, thus 

T0 = (Il' 12 ' 13' l4) ' (14) 

is non-singular and A- is diagonalized by: 

T o' Ao To 0 ' 
(15) 

with 

xo 
0 

0 

0 

0 

-Ao 
0 

0 

0 

0 

i sn 
0 

0 

0 

0 

- i s 
0-

(16) 
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We now put 

B = T"1 A 1 T Q (17) 

and consider a fundamental solution matrix $(t,t ) of the system, with 
$(t ; t ) = I. Then, we shall have, 

$(t; t.) = P(t) exp Rt-t )L~I (18) 
u *— o —' 

with 

P(t + T-) = P(t), P(t ) = I, T* = 2n , (19) 

L being a constant matrix, whose eigen-values are the characteristic 
exponents of the problem. Let T be a constant matrix such that 

T _ 1 L T = A (20) 

where A is diagonal, and let 

*(t; tQ) = *(t; tQ) T. (21) 

From (18) and (21) we obtain 

<?(t; tQ) = P(t) T exp D
t_to)AIl ' (22) 

while (21) gives 

<F(t; tQ) = $(t; tQ) T = A(t)*(t; tQ)T= A(t)m ; tQ) , 

(23) 

i.e. f(t; tn) is a fundamental solution matrix of system (1). 

We now adopt formal series expansions for the above constant matrices 
L ,A, T as well as for the matrix Q(t) , where 

Q(t) = P(t)T, Q(tQ) = T . (24) 

We shall have: 

2 
L = L + eL + e L + ... 

2 
A = A + eA + e A + ... (25) 

2 
T = T + eT + e T + ... 

and 

Q(t) = QQ(t) + eQ^t) + e
2Q2(t) + ... (26) 
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w i t h 
Q i ( V = V ± = O ' 1 ' 2 ' - - -

F r o m ( 2 2 ) , ( 2 3 ) a n d ( 2 4 ) we o b t a i n 

Q ( t ) = A ( t ) Q ( t ) - Q ( t ) A , ( 2 7 ) 

and from ( 6 ), (26) and (27) we shall have the following differential 
Equations accounting for up to fourth-order terms in e: 

QQ(t) = AQ QQ(t) -QQ(t) AQ, (28a) 

Qjtt) = AQ Qx(t) -Ql(t) AQ 

- A QQ(t) cost - QQ(t) A , (28b) 

Q2(t) = AQ Q2(t) -Q2(t) AQ 

- Ax Qt(t) cost-Qjtt) Ax 

+ I (A1 + Al cos2t) 2 0
( t ) ~ Q o ( t ) A2 ' (28<=) 

Q3(t) = A0Q3(t) -Q3(t) AQ 

- A1 Q2(t) cost - Q2(t) A1 

+ \ (A1 + Al c o s 2 t ) 2i(t) " Q i ( t ) A2 

- -i- (3A cost + A1 cos3t) QQ(t)- QQ(t) A3 , (28d) 

Q4
(t) = A0 Q 4 ( t ) " Q 4 ( t ) A0 

- A Q3(t) cost - Q3(t) A 

+ 1 (A1 + Al c o s 2 t ) 22(t)" Q 2 ( t ) A2 

- -| (3A cost + A1 cos3t) Q1(t) - Q1(t) A3 

+ -| (3A + 4A cos2t + A cos4t)QQ(t) -QQ(t) A4 . 

(28e) 

We also put 

R(t) = T'1 Q(t), R(tQ) = TQ1 T (29) 

and expand formally, 
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R(t) = R (t) + eR ^ t ) + e2R2(t) + ... (30) 

with 

W = T0 1 Ti' ± = O'1'2"--
Combining now (15), (17), (26), (28), (29) and (30), we obtain, after 
some reduction,the following perturbation Equations for the first five 
terms of expansion (30): 

RQ(t) =H
A
0'

 Ro(t)H ' (31a) 

R^t) =H A
0 '

 R i ( t ) H - BRQ(t)
 c o s t " RQ(t) A , (31b) 

R2(t) = [AQ, R2(t)^[-B R ^ t ) cost - R (t) A 

+B RQ(t) ( *
 +

2
C O s 2 t ) _ Ro(t) A 2 , (31c) 

R (t) = E A o ' R 3 ( t E ~BR 2 (t) cost - R (t) A1 

+ B R l ( t) ( *
 +
 2

C°S 2 t) - R l ( t ) A 2 

- R0(t) A3 -B Ro(t) ( 3 c o s y cos3t) f (31d) 

R
4
(t) = E A

0 '
 R 4 ( t ) H - B R

3
(t) cost - K^h

1 

1 + cos2t 
+ B R2(t) ( 2 ) - R2(t) A 2 

„ /^ A ^ ~ ,^ , 3cost + cos3t, 
- R^t) A3 - B R (t) ( ) 

,̂ > » „ „ ,^s ,3 + 4cos2t + cos4t, ... , 

- RQ(t) A^ + B RQ(t) ( g ),(31e) 

where we have used the notation 

E V C
2 H =

 C1C2 "C2C1 • (32) 
The solution of the differential Equations (31) finally provides the 
matrices R(t) arid A to fourth-order terms in e: 
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R(t) = I + (C cost + S sint)e 

+ (C2Q + C 2 2 cos2t + S 2 2 sin2t)e 

3 
+ (C cost + S sint + C cos3t + S sin3t)e 

+ (C,„ + C„n cos2t + S.„ sin2t + C„„ cos4t + 40 42 42 44 

+ S4 4 sin4t)e
4 (33) 

A = AQ + A2 e
2+ A4 e

4 . (34) 

The constant matrices C.. , S.., Ao, A. involved in the above solution 
ij i j 4 

for R(t) and A are obtained in the solution process and are given by 
the following expressions: 

< S l l ) . . = - (B).. /Jj + (X.-A.)2J 

0, i= j 

Cl 

"Wij 

^{B)i3 ~ I (B)ik ( c n > k j n / 2 a . - A . ) , i * 

^ i j = I5'1"0!!5 + i EV ^ l lOJ i j /L^ + ( A . - A . ) 2 ^ 

c22 = - i K > s
2 2 n + i Bs

n 

( A2 , i i - i ( B ) i i " i I (B)ik ^ n ' k i 

(S3 

- K v (Bsii}n- B(C2O - T c n + 

l 1* - c n A 2( i j / E i + <vv2^ i C22 + 
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CV s3i3 + i B ( 
S 22 - 2 S l l } + S 11 A 2 

J }TA0, (BS220 - J [Afl, (BS^O 

K i 4 1 >} / L9 + {h-x/l 1 B (C22 

H v s33̂  + i B (s - — s ) 
22 2 1 1 ' 

0 , i = j 

S (B) . . - ( C , n ) . . (A_). . + 
8 13 20 13 2 13 

1 J Bik r . 4 C 2 0 - 3 C 1 1 - 4 C 3 1 + 2 C 2 2 n k j [ / ( X . - X i ) , 

i * J 

= J H v ( Bvn 4 I JV (Bs33jn 
~\ K ' (BS2 2G + E A O ' (S22 A

2 i l 

+ I E V ( B S l l O -B<C31+ C33-C22+C20+CirI ) 

- 2C22A2j / [ 4 + a i T X )22 

1 E V S423 + I B (S31+ S3 3-S2 2 + I S n ) + I S. 

- | i £ v (Bs33)n-{ CA0, (BS22O + K V B S H H 

• K r i " ji/n^Mx.-x.^n 

'22*2 

B ( 2 C 3 3 - C 2 2 + ' 
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C44 = " 1 C V S44ll + ? B (S33" 1 S22 + 7 V 

( A . ) . . = | ( B ) . . + ^ 2 B . . (4C - 3 C . . - 4 C + 2 C „ _ ) , . . 
4 l i 8 l i 8 k l k 20 11 31 22 k i 

From Equation (22) we now obtain 

W(tQ; tQ) = T, (35) 

where T is determined to fourth-order terms in e, from the solution 
process described above. The column of T corresponding to the larger 
(real) eigenvalue of L-the real positive element of diagonal matrix A-
provides the initial state of the outgoing asymptotic orbit leaving the 
equilibrium. This initial state is normalized by forcing the first 
component to be equal to 1, thus introducing the orbital parameter e 
appearing in the heading of the table of numerical results below. 

The smalness of the orbital parameter e is obligatory since we are 
treating the linearized Equations. An analytical solution, based on a 
similar perturbation technique, to higher order terms in e based on 
second-or higher-order Equations in the place of Equations (l),is also 
possible to obtain. In the case of the circular restricted problem 
(e=0) this has been done by Deprit and Henrard (1965). In the present 
case of the elliptic restricted problem this perturbation in e is much 
more involved and is not included here. The analysis described here 
for the collinear equilibria is similar to that of Bennett (1966) 
referring to the triangular equilibria. 

NUMERICAL VERIFICATION 

In practice the initial state of the outgoing asymptotic orbit (for 
given e) was determined both analytically (as outlined above) and 
numerically. The numerical determination is based on numerical integra­
tion of the linearized system (1). For details on this we refer to 
Bennett (1965). The results of the two procedures agreed satisfactorily. 

3. SYMMETRIC DOUBLY ASYMPTOTIC ORBITS 

Having obtained the appropriate initial state of the outgoing asymptotic 
orbit we apply a differential corrections procedure for its "correction" 
in order to achieve a perpendicular crossing of the axis of the prima­
ries by the orbit. This ensures an asymptotic "return" of the particle 
back to the unstable equilibrium, at "infinite time" (subject to an 
additional requirement mentioned below). 
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The initial state vector depends on the three parameters : 

Pi e, t , 

while the occurrence of a "parpendicular crossing" is equivalent to the 
satisfaction of the following two conditions: 

y (y , e, tQ; x) = 0, 

x(y, e, t ; T) = 0, 
(36) 

where x and y are the usual pulsating - rotating coordinates of the 
elliptic restricted problem, and T(=nii) must be an integer multiple 
of the half-period % of the primaries. In the elliptic problem this 
ensures that the perpendicular crossing is also a "mirror condition" as 
required for the above mentioned asymptotic return (to the equilibrium), 
i.e for the symmetry of the orbit, T = nit is therefore the additional 
requirement mentioned above. 

For given value of n (i.e of x)we have three parameters to adjust in 
order to satisfy the two conditions (36). This shows that the symmetric 
doubly asymptotic orbits sought are members of monoparametric sets, and 
it is easy to set up a predictor-corrector procedure for their nume­
rical determination. 

Many doubly asymptotic orbits, belonging to a number of monoparemetric 
sets-series-of such orbits have been obtained by means of such a pro­
cedure and the numerical data corresponding to five such symmetric 
doubly asymptotic orbits of the elliptic problem (belonging to the 
same series) and given as examples in the Table below. One of them is 
shown graphically in the Figure. 

Table 1. Symmetric doubly asymptotic orbits 
( e = -0.001, T = 6n ) 

e 

0.001 

0.006 

0.01 

0.06 

0.1 

y 

0.1782153 

0.1810822 

0.1834156 

0.2149984 

0.2403649 

fco 

1.919801 

1.996968 

2.057626 

2.705028 

3.043285 

X 
T 

-2.737897 

-2.744719 

-2.750137 

-2.808980 

-2.820386 

*x 

2.249880 

2.257073 

2.262752 

2.321029 

2.322685 
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Figure 1. The fifth doubly asymptotic orbit of Table 1. 

THE QUESTION OF ASYMPTOTIC TRAPPING 

One of the motives behind the present work was to be able to experi­
ment numerically with the idea that an asymptotic orbit in-coming 
toward the unstable equilibrium can perhaps be considered as represen­
ting a trapping mechanism, based on "duration of passage" rather than 
stability of motion. 

With the use of some of the symmetric doubly asymptotic orbits, deter­
mined as described earlier, a number of "experimental" numerical inte­
grations "toward the equilibrium" have been performed and the results 
seem to be encouraging in that, despite the high instability of the 
integrated orbits, the anavoidable deviations from the model orbits 
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seem to result in "long duration of passage", i.e. slow motion hear 
the unstable equilibrium. 
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