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Abstract. Superbubbles that result from the stellar winds and super-
novae of OB associations probably playa fundamental role in the struc-
ture and energetics of the ISM in star-forming galaxies. Their influence
may also dominate the relationship between the different interstellar gas
phases. How do superbubbles form and evolve? How do they affect the
local and global ISM? The Magellanic Clouds provide a superior oppor-
tunity to study this shell-forming activity, since both stellar content and
gaseous structure can be examined in detail. Here, the results of recent
studies of superbubbles in the Magellanic Clouds are reviewed.

1. Introduction

It is now well-established that the kinetic feedback from massive stars creates
shell structures in the interstellar medium (ISM). Indeed, studies of these ob-
jects in the Magellanic Clouds provide the best empirical understanding of this
phenomenon. These types of shells can be roughly classified into three categories
(e.g., Chu 1996; Meaburn 1980), which are summarized in Table 1: "bubbles"
and supernova remnants (SNRs) , which result from stellar winds and supernovae
(SNe) of individual massive stars; "superbubbles," which result from the action
of a few, to hundreds of, OB star winds and SNe clustered in an OB associa-
tion; and "supergiant shells," which have sizes of order f"V 1 kpc or more. If the
supergiant shells are analogously created by massive star feedback, they must
be associated with starburst phenomena having total wind and SN energies of
~ 1054 erg. This review will focus on recent (1990's) studies of superbubbles in
the Magellanic Clouds, with also a brief look at supergiant shells.

Table 1. OB star shells.

Type
Bubble, SNR
Superbubble
Supergiant shell

Parent population
sIngle 0, WR
08 assoc.
starburst

logE/erg
51

52 - 53
> 54

logR/pc
0-1
1 - 2
2-3

How do these shells evolve? Depending on the dominant physics, there are
three self-similar relations that are usually used to describe the shell evolution.
In the case of a single point energy deposition, as would apply to a SN, we have
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the traditional Sedov (1959) blastwave:

R ex (E /n)1/5 t2/5
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(1)

where R is the shell radius, E is the input mechanical energy, n is a uniform
ambient density, and t is elapsed time. For a constant mechanical power Lover
an extended period, there is a standard, adiabatic evolution (Pikel'ner 1968)
given by,

R ex (L In) 1/5 t3 / 5 (2)

This model has a double-shock structure, in which the inner shock, close to the
energy source, heats the wind ejecta to temperatures of order 106 K, driving
the shell growth by the thermal pressure behind the outer shock at the shell. If
the hot interior is able to radiate away its energy, the inner shock will collapse
upon the outer one, and the shell may assume a momentum-conserving model
(Steigman et al. 1975):

R ex (Llnvoo ) 1/ 4 t 1/ 2 (3)

where Voo is the wind terminal velocity. This model describes a growth rate
intermediate between those of equations 1 and 2. There are other variations
of these models; for example, an extensive review of astrophysical blastwaves is
given by Ostriker & McKee (1988).

Assuming coeval star formation in OB associations, the growth of superbub-
bles quickly becomes dominated by SN activity, although most of those found
in Ho are extremely young objects that are still wind-dominated, ~ 5 Myr old.

2. Evolution

Most empirical, recent studies of superbubbles attempt to test the applicability
of the standard, adiabatic model. The LMC in particular, offers a fine selection
of objects, which have been used to evaluate the shell dynamics and search for
enclosed hot gas.

Recent dynamical studies (Oey & Massey 1995; Oey 1996; Mac Low et
ale 1998; Oey & Smedley 1998) of individual LMC superbubbles have found a
class of objects whose observed vIRis far too high for self-similar growth, in
view of the stellar population present (v is the shell expansion velocity). Based
on excess observed X-ray luminosities, Chu & Mac Low (1990) and Wang &
Helfand (1991a) suggest that most of these objects suffered recent SNR impacts
on the shell walls. Complex velocity structures in several objects (Rosado et
al. 1990; Ambrocio-Cruz et al. 1997) are consistent with this interpretation.
However, Oey & Smedley (1998) and Mac Low et al. (1998) demonstrate that
blowout from a high-density into a low-density region can perfectly mimic the
shell kinematics.

Although many optical superbubbles show this high vIR evidence of disrup-
tion, it is important to note that other objects have been found whose dynamics
are fully consistent with self-similar growth (Oey 1996). However, all of the
objects, along with the high vI R objects, appear to indicate a growth rate dis-
crepancy from the standard model, where the assumed Lin is overestimated
by up to an order of magnitude. It is unclear whether this is caused by an
overestimate in stellar wind power, or underestimate in ambient n, or both.
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The search for hot gas within the superbubbles is an important test of
the standard model. Several studies (Chu & Mac Low 1990; Wang & Helfand
1991a; Magnier et al. 1996; Mac Low et al. 1998) have found objects with X-ray
emission in excess of predictions. As mentioned above, these may be caused
by SNR impacts. Reassuringly, there are other superbubbles that do not show
X-ray enhancements (Chu et al. 1995), and detection limits for these remain
consistent with the predicted X-ray emission. Furthermore, in all superbubbles
that have been examined for C IV and Si IV absorption, these high-ionization
species have been found (Chu et al. 1994), and can be attributed to an interface
layer between the shell wall and hot interior.

3. Supergiant Shells

Supergiant shells (SGS's) are more poorly understood than superbubbles. It is
possible that many of these do not originate from star formation events at all.
Alternative mechanisms include impacts by high-velocity clouds (e.g., Tenorio-
Tagle et al. 1987) and gamma-ray bursters (Efremov et al. 1998; Loeb & Perna
1998). At any rate, the evolution of SGS's is likely to differ substantially from
that of superbubbles because the size scales are similar to those of galactic
parameters like scale height and length.

The SGS's in the LMC have been catalogued by Meaburn (1980), and only
two of these have been examined in any detail. The most well-known example
is LMC-4, associated with the Constellation III stellar region. This region is
a remarkably well-defined shell, rv 600 pc in radius, seen in both H I and as a
ring of optical H II regions. There have been numerous studies of LMC-4 over
the last two decades; the most recent work is by Domgoergen et al. (1995) and
Bomans et al. (1996) studying its gaseous properties, and by Olsen et al. (1997)
and Braun et al. (1997) on the stellar content. The other LMC SGS that has
been examined is LMC-2, just east of 30 Dor. Its gas properties were studied
by Wang & Helfand (1991b), Caulet & Newell (1996), and Points et al. (1999).

4. Superbubbles and the Global ISM

Superbubbles, as a direct manifestation of massive star feedback, are of critical
importance to the global properties of the ISM. These include ISM structure
and kinematics, relationship between the different gas phases, and interstellar
processes like star formation.

To gain insight on the ISM structure and kinematics caused by superbub-
bles, it is possible to use equation 2 to derive a size and velocity distribution for
superbubbles in the ISM. This also serves as an additional test of the standard,
adiabatic evolution over the full lifetimes of the superbubbles. Oey & Clarke
(1997) computed the size distribution N(R) dR ex: R-odR for the SMC, using
the H II region luminosity function and assuming a constant creation rate for OB
associations. The observed slope Q' = 2.7 ± 0.6 for HI superbubbles (Staveley-
Smith et al. 1997) is in remarkable agreement with the predicted slope of 2.8±0.4,
suggesting that superbubble activity can fully explain the H I structure of the
SMC. This can be compared to N(R) dR for holes in a fractal ISM structure
(Elmegreen 1997), which is being quantified for the S:NIC by Stanimirovic et
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al. (1998). They find a volume fractal dimension D = 2.5, translating directly
to a = 2.5. It is therefore too difficult to distinguish between a superbubble
and fractal ISM model, using only N(R) dR. Indeed, the similarity in observed
N(R) dR for both cases in the SMC, might be indicative of a physical relation
between the two structural models.

It is also possible to test for superbubble structure in the ISM by examining
the morphology of the H I holes, of which > 500 were catalogued as shells,
based on elliptical shape (Staveley-Smith et al. 1997). In addition, the velocity
distribution N (v) dv computed by Oey & Clarke (1998) is also consistent with
the observed shell velocities for the SMC. A superbubble velocity structure could
be a dominant input to the kinematics and turbulence of the ISM.

As superbubbles expand and age, their surface brightness quickly dimin-
ishes. Hence, they could be an important component of the diffuse, warm,
ionized medium (WIM). Hunter (1994) obtained emission-line spectra of super-
bubbles in the LMC, which do show that some of the line ratios are intermedi-
ate between those for classical H II regions and WIM detected in other galaxies.
Kennicutt et al. (1995) examined the morphological structure of the WIM in
the Magellanic Clouds, and also found a substantial contribution from faint
superbubbles and SGS's.

Finally, it is widely thought that superbubbles can trigger renewed star
formation in their shells of swept-up cool gas. Several candidates have been
examined in the LMC. The clearest example is DEM 34 / NIl (Walborn &
Parker 1992; Rosado et al. 1996), and additional candidates are DEM 152 /
N44 (Oey & Massey 1995) and DEM 192 / N51 D (Oey & Smedley 1998).
As mentioned above, the SGS LMC-4 has a long history of investigation as a
triggered star formation candidate (e.g., Efremov 1999).
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Discussion

Jan Palous: The expanding shells and supershells are rather stable to Jeans,
Elmegreen, Vishniac instabilities. To get them unstable we need pre-existing
clouds or shell-shell collision. (See my poster, this volume)

Oey: Thank you. Indeed, we do not yet understand the conditions for triggered
star formation.
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Marc Kutner: When you look at the large scale effects of superbubbles in the
MCs, can you speculate on their effect on the MW?

Oey: In our paper (Oey and Clarke 1997), we examined exactly this question.
We found that if we apply our method of using the observed HII LF to derive the
porosity of the Galactic ISM, we obtain a fairly small value of rvO.3. However,
when we use the observed SN rate for the galaxy instead of the HII LF, we obtain
a porosity value that is larger by an order of magnitude. This discrepancy is
not seen in the 4 other galaxies we studied. Hence, it suggests some sort of
discrepancy between the observed HII LF and SN rate in the Milky Way.

Daniel Wang: Do you think that we can distinguish supershells from supergiant
shells in a more physical way? Say, supershells are produced by individual
OB associations, whereas supergiant shells by a combination of multiple OB
associations?

Oey: You point out an inconsistency in the definitions of the shells. It's true that
we define supergiant shells by virture of their "supergiant" status. At present,
we do not understand the creation and evolution of these objects, and they may
originate from different and/or varying mechanisms. Multiple generations ofOB
associations could indeed be one of these mechanisms. Until we understand the
nature of the origins better, it would seem best to leave the supergiant shells as
morphologically defined for now.
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