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MINIMAL (τ -)TILTING INFINITE ALGEBRAS

KAVEH MOUSAVAND and CHARLES PAQUETTE

Abstract. Motivated by a new conjecture on the behavior of bricks, we

start a systematic study of minimal τ -tilting infinite (min-τ -infinite, for short)

algebras. In particular, we treat min-τ -infinite algebras as a modern counterpart

of minimal representation-infinite algebras and show some of the fundamental

similarities and differences between these families. We then relate our studies

to the classical tilting theory and observe that this modern approach can

provide fresh impetus to the study of some old problems. We further show

that in order to verify the conjecture, it is sufficient to treat those min-τ -infinite

algebras where almost all bricks are faithful. Finally, we also prove that minimal

extending bricks have open orbits, and consequently obtain a simple proof of

the brick analogue of the first Brauer–Thrall conjecture, recently shown by

Schroll and Treffinger using some different techniques.

§1. Introduction

Throughout this note, k denotes an algebraically closed field and all algebras are assumed

to be finite-dimensional over k, associative, and unital. We denote by ModΛ the category

of all left Λ-modules, and modΛ denotes the full subcategory of finitely generated left Λ-

modules. Let Ind(Λ) and ind(Λ), respectively, denote the collections of all indecomposable

modules in ModΛ and modΛ, up to isomorphism. Then, Λ is said to be representation-

infinite (rep-inf, for short) if ind(Λ) is infinite. In this work, we are primarily interested

in rep-inf algebras, because the problems treated here are trivial over representation-finite

algebras.

For our purposes in this paper, without loss of generality, we may always assume that Λ

is basic and connected. Thus, there is an isomorphism of algebras Λ� kQ/I, where Q is a

finite connected quiver and I is an admissible ideal in the path algebra kQ. In particular,

|K0(Λ)|= |Q0|, meaning that the rank of the Grothendieck group K0(Λ) is the same as the

number of vertices in Q. Consequently, each Λ-module can be viewed as a representation

of the bound quiver (Q,I). For the rudiments of representation theory of algebras, we refer

to [ASS].

1.1 Motivations and background

In 2014, Adachi, Iyama, and Reiten [AIR] introduced τ -tilting theory of associative

algebras as a modern generalization of classical tilting theory. For an algebra Λ, τ -tilting

theory treats the notion of rigidity and compatibility of Λ-modules with respect to the

Auslander–Reiten translation τΛ, which we often denote by τ . In particular, the set of
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(support) τ -tilting modules extends that of the classical tilting modules and admits a more

consistent behavior with respect to the notion of mutation (see [AIR] for details).

For an algebra Λ, let tilt(Λ) denote the set of all isomorphism classes of basic tilting

modules in modΛ. Similarly, by τ -tilt(Λ), we denote the set of all basic τ -tilting modules in

modΛ, up to isomorphism. Then, Λ is called tilting-finite if |tilt(Λ)|<∞ and it is τ -tilting

finite if |τ -tilt(Λ)| < ∞. As shown in [AIR], (support) τ -tilting modules closely relate to

several fundamental objects in modΛ and its bounded derived category. Thus, for a given

algebra, it is important to decide whether it is τ -tilting (in)finite. Since tilt(Λ)⊆ τ -tilt(Λ),

each τ -tilting finite algebra is evidently tilting-finite, but the converse does not hold in

general. For an explicit example, see §4.
Recall that a module M in Ind(Λ) is a brick if EndΛ(M) is a division algebra. Suppose

Brick(Λ) denotes a collection of all bricks in ModΛ, up to isomorphism, and similarly,

brick(Λ) is a set of all bricks in modΛ, up to isomorphism. In [DIJ], the authors established

the τ -rigid-brick correspondence, which is an elegant linkage between those indecomposable

modules M in modΛ for which HomΛ(M,τM) = 0, and elements of brick(Λ). Then, they

concluded that Λ is τ -tilting finite if and only if brick(Λ) is finite. More importantly, from

[DIJ], we know that τ -tilting finite algebras can be viewed as a natural generalization

of representation-finite algebras and they admit a phenomenon similar to the finite-type

cluster algebras: for Λ = kQ/I with |Q0|= n, each vertex of the mutation graph of support

τ -tilting modules in modΛ is n-regular (i.e., each vertex is of degree n) and the graph is

finite if and only if Λ is τ -tilting finite.

Notice that the problem of τ -tilting finiteness is of interest only at the level of rep-inf

algebras. Therefore, it is natural to treat τ -tilting finiteness of those algebras which are

rep-inf and minimal with respect to this property. Recall that an algebra Λ is said to be

minimal representation-infinite (min-rep-inf, for short) if ind(Λ) is infinite, but ind(Λ/J)

is a finite set, for every nonzero ideal J in Λ. For any rep-inf algebra Λ, let Mri(Λ) be the

set of isomorphism classes of all quotient algebras of Λ that are min-rep-inf. Observe that

if there exists Λ′ in Mri(Λ) which is τ -tilting infinite, then so is Λ. Thus, it is important to

have a description of τ -tilting (in)finiteness of min-rep-inf algebras. This direction of work

has been developed by Mousavand [M1], [M2]. For further details on this classification,

see §2.3.
Although τ -tilting finite algebras have been treated extensively, the study of τ -tilting

infinite algebras is significantly more complicated. In [AY] and [KPY], the authors have

studied a family of τ -tilting infinite algebras that satisfy some additional properties, called

g-tameness. In this work, we have a different perspective and motivated by the following

conjecture, and we aim to give a better description of those algebras which are τ -tilting

infinite but minimal with respect to this property. We say Λ is minimal τ -tilting infinite

(min-τ -infinite, for short) if Λ is a τ -tilting infinite algebra, but Λ/J is τ -tilting finite, for

each nonzero idea J in Λ. As further explained below, min-τ -infinite algebras play a crucial

role in the study of the following conjecture.

Conjecture 1.1. If Λ is τ -tilting infinite, there exists a positive integer d such that

there are infinitely many (non-isomorphic) bricks of length d in modΛ.

The above conjecture can be viewed as a modern analogue of the celebrated Brauer–

Thrall conjectures, yet it is not a verbatim counterpart of any of them in terms of bricks.

To better clarify this difference, we note that the fundamental theorem of Smalø [Sm]
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implies the second Brauer–Thrall conjecture: if there is an infinite family of indecomposable

modules of length d, there exists a strictly increasing sequence d1 < d2 < · · · of integers such
that there is an infinite family of indecomposable modules of length di, for each i. In

contrast, one should not expect an analogue of Smalø’s theorem for bricks. More precisely,

the number of integers d in the assertion of Conjecture 1.1 can be finite (in the 2-Kronecker

algebra, there is exactly one such d). As an immediate consequence of Smalø’s theorem,

Conjecture 1.1 implies the second Brauer–Thrall conjecture.

Adopting a different perspective while treating Conjecture 1.1 allows us to better manifest

the analogy between the classical and new settings. In particular, we remark that Crawley-

Boevey [C] has shown that Λ is rep-inf if and only if for some d, there are infinitely many

(non-isomorphic) modules in ind(Λ) of endolength d. From this viewpoint, Conjecture 1.1

is the analogous assertion for bricks: Λ is brick-infinite if and only if for some d, there are

infinitely many (non-isomorphic) modules in brick(A) of (endo)length d.

To prove Conjecture 1.1 in full generality, observe that it suffices to show it for all

min-τ -infinite algebras. This conjecture first appeared in [M2], where Mousavand phrased

it in a more geometric language to establish a new linkage between τ -tilting theory and

geometry of representation varieties of quivers. Furthermore, in the aforementioned paper,

the conjecture was verified for gentle algebras, as well as all the min-rep-inf algebras treated

there. In [STV], the authors have also come across the same conjecture and verified it for

special biserial algebras.

1.2 Outline and main results

In §2, we introduce our notations and terminology. Furthermore, we collect some known

results essential in our work. Before we state our main results, let us give analogous

characterizations of the classical and modern minimality conditions discussed in §2. The
following statements follow from a known result of Auslander [Au] and the recent work of

Sentieri [Se]. In particular, for an algebra Λ, we have:

• Λ is min-rep-inf if and only if Ind(Λ)\ ind(Λ) �= ∅ and every M ∈ Ind(Λ)\ ind(Λ) is faithful.
• Λ is min-τ -infinite if and only if Brick(Λ)\brick(Λ) �= ∅ and every N ∈Brick(Λ)\brick(Λ)
is faithful.

The next theorem lists some important properties of min-τ -infinite algebras, which are

shown in propositions 3.1, 3.2, and 3.5. As explained in §3, this theorem also highlights

some fundamental differences and similarities between the min-τ -infinite algebras and the

min-rep-inf algebras.

Theorem 1.1. Let Λ = kQ/I be a min-τ -infinite algebra. Then Λ is node-free and

central. Moreover, Λ admits no projective-injective module.

The previous theorem leads to the following classification result on algebras with radical

square zero, from which one immediately verifies Conjecture 1.1 for such algebras. This

also gives a simple proof for the following result of Adachi [Ad]. We say Q is a sink-source

quiver if every vertex of Q is either a sink or a source.

Corollary 1.2 [Ad]. Let Λ = kQ/I be such that rad2(Λ) = 0. The following are

equivalent:

1. Λ is τ -tilting infinite.

2. Q contains a sink-source subquiver of affine type.
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In §4, we slightly change our perspective and study the min-τ -infinite algebras from the

viewpoint of classical tilting theory. More specifically, we prove that min-τ -infinite algebras

are in fact minimal with respect to the notion of tilting modules, where the minimality is

defined analogously: an algebra Λ is min-tilting-infinite if it admits infinitely many tilting

modules, but every proper quotient algebra Λ/J has only finitely many tilting modules.

Before we summarize the main results of §4 in the following theorem, let us recall that

for a collection of objects O, we say almost all objects of O satisfy property P provided all

but finitely many objects of O have property P.

Theorem 1.3. Let Λ be an algebra. If Λ is min-τ -infinite, then almost all τ -rigid

Λ-modules are partial tilting. Consequently, we have:

1. Λ is min-τ -infinite if and only if it is minimal tilting infinite.

2. If Λ is min-τ -infinite, then the mutation graph of tilting modules in modΛ is infinite

and regular at almost every vertex.

In §5, we use min-τ -infinite algebras in the study of Conjecture 1.1. Before we state

the next theorem, we note that a min-τ -infinite algebra may admit infinitely many non-

isomorphic bricks with distinct annihilators. However, we prove that it is sufficient to only

treat the conjecture for a particular subfamily of min-τ -infinite algebras, as stated in the

following theorem.

Theorem 1.4. To verify Conjecture 1.1, it is sufficient to consider min-τ -infinite

algebras for which almost all bricks are faithful.

Finally, in §6, we employ some tools from the algebro-geometric aspects of representation

theory of algebras to show the following result on the minimal extending bricks (for the

definition, see §5). As an immediate consequence of this theorem, we give a simple proof

of the modern analogue of the first Brauer–Thrall conjecture, first shown in [ST] over an

arbitrary field.

Theorem 1.5. Let Λ be an algebra, and let M be a minimal extending brick in modΛ

with dimensional vector d. Then, the orbit of M under the GL(d) action is open.

As mentioned before, our work is primarily motivated by Conjecture 1.1 and some of our

main arguments rely on the study of bricks. Nevertheless, we stated our results in terms of

τ -tilting (in)finiteness of algebras under consideration. This allows us to better relate our

study to the other subjects discussed in the paper.

§2. Preliminaries

In this section, we only collect some basic materials needed in the rest of the paper. The

well-known results appear without proofs but only references, if necessary.

2.1 Notations and conventions

In addition to those introduced in §1, here we fix some notations and conventions used

throughout the paper.

By a quiver, we always mean a finite directed graph, formally given by a quadruple

Q= (Q0,Q1, s,e), with the vertex set Q0 and arrow set Q1, and the functions s,e :Q1 →Q0,

respectively, send each arrow α to its start s(α) and its end e(α). As mentioned before, up

to Morita equivalence, every algebra Λ treated in this paper is of the form Λ = kQ/I, for
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a unique quiver Q and an admissible ideal I in kQ. In particular, |K0(Λ)| = |Q0|, where
|Q0| is the number of vertices of Q. In a bound quiver (Q,I), if the arrow α ends where the

arrow β starts, then βα denotes the path of length 2 in Q. Moreover, a vertex v in (Q,I)

is called a node if it is neither a sink nor a source, and for each pair of arrows α and β in

Q with e(α) = v = s(β), we have βα ∈ I. Then, Λ = kQ/I is called node-free if (Q,I) has

no nodes.

If Λ = kQ/I, by R, we denote a minimal set of (uniform) relations that generates I.

Namely, each element of R is a linear combination of the form r =
∑t

i=1λipi, with t ∈ Z>0

and λi ∈ k \ {0}, and every pi is a path in Q whose length is not smaller than 2, and all

pi start at the same vertex and also end at the same vertex. The relation r is monomial if

t= 1, and is called binomial if t= 2.

For any algebra Λ, let Ideal(Λ) denote the set of all (two-sided) ideals in Λ. Note that

Ideal(Λ) carries a natural lattice structure, where J1∧J2 := J1∩J2 and J1∨J2 := J1+J2,

for each pair J1 and J2 in Ideal(Λ). Consequently, Λ is called distributive if Ideal(Λ) is a

distributive lattice. Otherwise, Λ is non-distributive. From [J1, Cor. 3.1], we know that Λ is

distributive if and only if Ideal(Λ) is finite. Moreover, it is immediate that every quotient of

a distributive algebra is again distributive. Moreover, it is known that each nondistributive

algebra is rep-inf. We also recall that a k -algebra is said to be central if Z(Λ) = k, where

Z(Λ) denotes the center of Λ.

For X in modΛ, let |X| denote the number of non-isomorphic indecomposable summands

of X. Then, X is basic if |X| is exactly the same as the number of indecomposable summands

of X. Moreover, by pdΛ(X) and τΛX, we, respectively, denote the projective dimension

and the Auslander–Reiten translation of X in modΛ. If there is no confusion, Λ is often

suppressed from our notations. The support of X at vertex i ∈ Q0 is defined as Xi :=

HomΛ(Pi,X), and the dimension vector of X is dim(X) = (dimXi)i∈Q0 . Then, X is sincere

if dim(X) ∈ Z
Q0

>0.

An algebra Λ is biserial if for every left and right indecomposable projective Λ-module P,

the submodule rad(P ) is sum of at most two uniserial modules X and Y and X ∩Y is

either zero or a simple module. Moreover, Λ is special biserial if it is Morita-equivalent to

an algebra kQ/I such that (Q,I) satisfies the following:

(B1) At every vertex x in Q, there are at most two incoming and at most two outgoing

arrows.

(B2) For each arrow α, there is at most one arrow β such that βα /∈ I and at most one

arrow γ such that αγ /∈ I.

We note that every special biserial algebra is biserial, but the converse is not true.

Furthermore, for each special biserial algebra Λ = kQ/I, one can choose a minimal set

of generators for I consisting of only monomial and binomial relations. A special biserial

algebra Λ = kQ/I is said to be a string algebra if there is a set of monomial relations in

kQ which generate I.

By a subcategory of ModΛ, we always mean a full subcategory which is closed under

direct sum, direct summands, and isomorphisms. A subcategory T of modΛ is a torsion

class if it is closed under quotients and extensions. Dually, a subcategory F of modΛ is

torsion-free if F is closed under submodules and extensions. It is well known that every

torsion class T uniquely determines a torsion pair (T ,F) in modΛ, where for each X ∈ T
and every Y ∈ F , we have HomΛ(X,Y ) = 0, and F is maximal with this property.
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2.2 τ -tilting finite algebras

A Λ-module M is called rigid if Ext1Λ(M,M) = 0. By rigid(Λ), we denote the set of all

basic rigid objects in modΛ, considered up to isomorphisms. Similarly, M is said to be

τ -rigid if HomΛ(M,τM) = 0. Analogously, we use τ -rigid(Λ) to denote the set of basic

τ -rigid modules in modΛ, up to isomorphisms. A rigid module X is called tilting if pdΛ ≤ 1

and |X|= |Λ|. Similarly, each τ -rigid module M with |M |= |Λ| is said to be τ -tilting. More

generally, M is called support τ -tilting if M is τ -tilting over Λ/〈e〉, where e is a maximal

idempotent in annΛ(M). By τ -tilt(Λ) and sτ -tilt(Λ), we, respectively, denote the set of

basic τ -tilting modules and that of basic support τ -tilting modules in modΛ, considered up

to isomorphisms.

Recently, there have been various attempts to systematically study the τ -tilting finiteness

of algebras. That is to find the necessary and sufficient conditions for arbitrary algebra Λ

such that |τ -tilt(Λ)|<∞. The brick-τ -rigid correspondence introduced by Demonet, Iyama,

and Jasso [DIJ] was a significant step toward such an objective. The following theorem

collects some fundamental characterizations of τ -tilting finite algebras extensively used in

this paper.

Theorem 2.1 [AIR, DIJ]. For an algebra Λ, the following are equivalent:

1. Λ is τ -tilting finite.

2. sτ -tilt(Λ) is finite.

3. τ rigid(Λ) is finite.

4. modΛ contains only finitely many isomorphism classes of bricks.

5. Every torsion(-free) class in modΛ is functorially finite.

2.3 Minimality conditions

Before we review some minimality conditions, let us make a handy observation that will

be freely used throughout our work.

We recall that any epimorphism of algebras ψ : Λ1 → Λ2 induces an exact functorial

embedding ψ̃ : modΛ2 → modΛ1. In particular, every indecomposable (resp. brick) in

modΛ2 can be seen as an indecomposable (resp. brick) in modΛ1. Hence, representation

finiteness of algebras is preserved under algebraic quotients: if Λ is rep-finite, then Λ/J

is rep-finite, for each J in Ideal(Λ). Moreover, by Theorem 2.1, it is immediate that the

τ -tilting finiteness of algebras is also preserved under taking quotients. In contrast, we note

that there are tilting finite algebras Λ such that Λ/J is tilting infinite, for some J ∈ Ideal(Λ).

Due to the above observation, rep-inf algebras which are minimal with respect to this

property have been decisive in the study of representation theory of algebras, such as in

the proofs of Brauer–Thrall conjectures. As defined earlier, Λ is min-rep-inf if it is rep-inf,

but any proper quotient of Λ is representation-finite. The literature on min-rep-inf algebras

is very rich (see, e.g., [Bo1], [Bo2] and the references therein). Notice that the latter two

works of Bongartz also account for the decisive role of min-rep-inf algebras in the study of

the Brauer–Thrall conjectures. A conceptual classification of these algebras appears in [R],

where Ringel shows that each min-rep-inf algebra belongs to at least one of the following

families. For the definition of a good covering, see [Bo1].

• Mri(FsB): min-rep-inf special Biserial algebras;

• Mri(FnD): min-rep-inf non-Distributive algebras;
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• Mri(FgC): min-rep-inf algebras with a good Covering Λ̃ such that a finite convex

subcategory of Λ̃ is tame-concealed of type D̃n or Ẽ6,7,8.

The bound quivers of the first two subfamilies from the above list are, respectively,

described in [Bo2] and [R]. Moreover, it is known that a concrete classification of the last

subfamily in terms of their bound quivers is very hard, if not impossible, and soon falls out

of control as the number of simple modules grows.

As of a more contemporary approach to the study of min-rep-inf algebras, it is natural

to determine which ones are τ -tilting (in)finite. One can show that each of the above-

mentioned subfamilies contains both τ -tilting finite and τ -tilting infinite algebras. In [M1]

and [M2], Mousavand carried out a full study of τ -tilting finiteness of the algebras in

Mri(FsB) and Mri(FnD) and determined which ones are τ -tilting finite and which ones

are not. The following theorem captures the main results in this direction. For explicit

description of the bound quivers and further details, see the aforementioned papers.

Theorem 2.2 [M2]. Let Λ = kQ/I belong to Mri(FsB)∪Mri(FnD). Then Λ is τ -tilting

finite if and only if (Q,I) has a node or a nonquadratic monomial relation.

§3. Minimal τ -tilting infinite algebras

As already noticed, τ -tilting finiteness of algebras is preserved under taking algebraic

quotients. In [M1] and [W], where the problem of τ -tilting finiteness is concerned, the

authors independently noticed that a natural analogue of min-rep-inf algebras in the modern

setting should be crucial in the study of τ -tilting (in)finiteness. In particular, an algebra Λ

is min-τ -infinite, if Λ is τ -tilting infinite, but every proper quotient algebra of Λ is τ -tilting

finite.

Inspired by the classification of min-rep-inf algebras, as briefly recalled in §2.3, it is

natural to search for a classification of min-τ -infinite algebras. Although it might be

impossible to describe the bound quivers of all of min-τ -infinite algebras, one can still

treat this problem for certain subfamilies of them. We pursue this direction of work in a

separate paper. In this section, we focus on some fundamental properties of min-τ -infinite

algebras. In particular, we compare min-rep-inf and min-τ -infinite algebras and derive some

interesting results from this comparison.

It is known that a min-rep-inf algebra admits no projective-injective module. Let us begin

by showing that the same property holds for min-τ -infinite algebras. For the sake of brevity,

for two algebras Λ1 and Λ2, we say Λ1 and Λ2 are of the same τ -tilting type when Λ1 is

τ -tilting finite if and only if Λ2 is so.

Proposition 3.1. Let Λ be an algebra such that modΛ contains a projective-injective

module. Then, there exists a nonzero ideal J such that Λ and Λ/J are of the same τ -tilting

type. Consequently, if Λ is min-τ -infinite, there is no projective-injective module in modΛ.

Proof. Suppose Λ = kQ/I, and let X ∈ ind(Λ) be projective-injective. Then, X = Px =

Iz, for a pair of vertices x and z in Q0. Hence, X =Λex and soc(X) is a subspace of ezΛex.

Note that soc(X) is simple and Λ is basic. Then, we have dimk(soc(X)) = 1. Consider the

ideal J := 〈ρ〉, where ρ denotes the element of ezΛex ⊆ kQ/I associated with soc(X). Then

J is one-dimensional and JY = 0 if and only if Y �� X. Consequently, brick(Λ) \ {X} ⊆
brick(Λ/J) ⊆ brick(Λ). Then, the first part of the assertion follows from Theorem 2.1.

Moreover, the second part is an immediate consequence of the minimality assumption.
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For Λ= kQ/I, suppose a and z are, respectively, a source and a sink in (Q,I). Let (Q′, I ′)

be the bound quiver obtained from (Q,I) by gluing the vertices a and z in Q, as follows:

first, identify a and z, then kill all the composition of arrows βα, for each α incoming to

z with any β outgoing from a. If v denotes a vertex of (Q′, I ′) obtained from gluing a

sink and a source in (Q,I), then obviously v is a node. The reverse process of gluing is

called resolving a node. It is well known that if Λ′ is obtained from Λ via a sequence of

gluing (resolving), then Λ and Λ′ are of the same representation type. In particular, Λ is

min-rep-inf algebra if and only if Λ′ is so.

The following proposition shows that there is a fundamental difference between the bound

quivers of min-τ -infinite algebras and min-rep-inf algebras. This result is already shown in

[M2, Th. 1.1], and thus we omit the proof.

Proposition 3.2 [M2]. Let Λ = kQ/I be a min-τ -infinite algebra. Then, (Q,I) does

not contain any node.

By the above proposition and the remark preceding that, one observes that for the

classification of min-rep-inf algebras and min-τ -infinite algebras, we only need to treat the

node-free bound quivers. Moreover, the proposition gives a simple sufficient condition for

τ -tilting finiteness of a large family of min-rep-inf algebras. We note that, however, there

also exist node-free min-rep-inf algebras which are τ -tilting finite (for explicit examples, see

the wind wheel algebras in [M1]).

As an important consequence of the previous proposition, we get an explicit criterion for

τ -tilting (in)finiteness of algebras with radical square zero. We note that a classification of

τ -tilting finite algebras with radical square zero also appears in [Ad], where Adachi uses the

notion of separated quivers. However, as shown in Propositions 3.1 and 3.2, the reduction to

the min-τ -infinite algebras allows us to use the property of their bound quivers and obtain

the same result via a less technical approach.

To state the next result more succinctly, we say Q is a sink-source quiver if each vertex

of Q is either a sink or a source.

Corollary 3.3 [Ad]. Provided that rad2(Λ) = 0, the following are equivalent:

1. Λ is τ -tilting infinite.

2. There exists an ideal J in Λ such that Λ/J is hereditary of affine type with a sink-source

quiver.

Proof. Suppose Λ is τ -tilting infinite. Without loss of generality, we can assume Λ is min-

τ -infinite. By Proposition 3.2, Λ is node-free. Therefore, rad2(Λ) = 0 implies that Λ = kQ,

for a sink-source quiver Q. To finish the proof, we use the fact that hereditary algebras of

affine type are τ -tilting infinite and obviously minimal with respect to this property.

For an affine quiver Q, it is well known that the path algebra kQ admits a one-parameter

family of bricks of the same length (e.g., [SS, Chap. 13]). Therefore, the following result

is an immediate consequence of the above classification and verifies Conjecture 1.1 for the

family of algebras with rad2(Λ) = 0.

Corollary 3.4. A radical square zero algebra is τ -tilting infinite if and only if it admits

a one-parameter family of bricks of the same length.

Before showing another property of min-τ -infinite algebras, we remark that the center of a

min-rep-inf algebra can be as large as the entire algebra. For instance, k〈x,y〉/〈x2,y2,xy,yx〉
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is a commutative string algebra which is min-rep-inf. This algebra is in fact obtained by

gluing the source and sink in the Kronecker quiver. In contrast, our following result shows

that the behavior of min-τ -infinite algebras with respect to their center is very different

from their classical counterparts.

Proposition 3.5. Every min-τ -infinite algebra is central.

Proof. As a consequence of [EJR, Th. 1] and [DIJ], for any algebra Λ and each ideal J

generated by some elements in Z(Λ)∩rad(Λ), the sets τ rigid(Λ)∩ ind(Λ) and τ rigid(Λ/J)∩
ind(Λ/I) are in bijection. In particular, Λ is τ -tilting finite if and only if Λ/J is so.

Now, assume Λ = kQ/I is min-τ -infinite. Obviously, |Q0| = n ≥ 2 (otherwise, Λ is

local and therefore τ -tilting finite). Moreover, by the minimality assumption, we have

Z(Λ)∩ rad(Λ) = 0.

Every element of Λ = kQ/I can be expressed as ρ :=
∑n

i=1λiei+r+I, where λi ∈ k, and

r is a linear combination of paths of positive length in Q. Suppose α is an arrow in Q with

s(α) = i and e(α) = j. Then, multiplying ρ by α from the left and from the right, and then

reducing modulo rad2(Λ), we get λiα= λjα. Since Q is a connected quiver, we have all λi

are equal. Consequently, we have ρ= λ ·1+ r+ I, for some λ ∈ k. Since λ ·1+ I ∈ Z(Λ), we

get that r+ I ∈ Z(Λ). Moreover, from Z(A)∩ rad(Λ) = 0, it follows that r ∈ I. Therefore,

ρ= λ ·1.

As discussed in §2.3, for an algebra Λ, both for the min-rep-inf and the min-τ -

infinite algebras, the minimality conditions are defined with respect to certain sets of

isomorphism classes of modules of finite length over Λ and the corresponding sets on the

quotient algebras Λ/J . In our next proposition, we give analogous characterizations of these

minimality conditions in terms of certain modules of infinite lengths. To do so, we recall an

elegant characterization of rep-inf algebras by Auslander [Au]. Recently, Sentieri [Se] has

shown a brick version of this theorem of Auslander. The following theorem collects both of

the results.

Theorem 3.6 [Au] and [Se]. Let Λ be an algebra. Then:

1. Λ is representation-finite if and only if any M ∈ Ind(Λ) is finitely generated.

2. Λ is brick-finite if and only if any M ∈ Brick(Λ) is finitely generated.

Building upon the preceding theorem, we obtain new characterizations of the minimality

conditions treated in this paper. We recall that a module over Λ is faithful if its annihilator

is trivial.

Proposition 3.7. Let Λ be an algebra. Then:

1. If Λ is rep-inf, then it is min-rep-inf if and only if every M ∈ Ind(Λ)\ ind(Λ) is faithful.
2. If Λ is τ -tilting infinite, then it is min-τ -infinite if and only if every N ∈ Brick(Λ) \

brick(Λ) is faithful.

Proof. To show (1), suppose Λ is min-rep-inf. If there exists M ∈ Ind(Λ)\ ind(Λ) with

annΛ(M) �= 0, then for the quotient algebra Λ′ := Λ/〈annΛ(M)〉, we have M ∈ Ind(Λ′) \
ind(Λ′). Since Λ′ is rep-finite, the desired contradiction follows from Theorem 3.6.

For the converse, let us assume that Λ is not min-rep-infinite. Thus, for some nonzero

ideal J ∈Λ, the quotient algebra Λ/J is rep-infinite and, again by Theorem 3.6, there exists
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M in Ind(Λ/J)\ ind(Λ/J). However, M also belongs to Ind(Λ)\ ind(Λ) and it is not faithful.

So, we get the desired contradiction.

In the above proof, if we replace the indecomposable modules by bricks, we obtain a

proof of (2).

§4. Minimal tilting infinite algebras

Now, we change our perspective and study the min-τ -infinite algebras in the setting of

classical tilting theory. Our main theorem in this section results in a good understanding

of tilting modules and their mutation graph for min-τ -infinite algebras. Before we show the

main result of the section, we need some basic facts.

Proposition 4.1. [ASS, VIII.5.1] A τ -rigid Λ-module is partial tilting provided that it

is faithful. In particular, tilt(Λ) consists of faithful modules in τ -tilt(Λ).

For a basic Λ-module M, recall that Fac(M) denotes the subcategory of modΛ which

consists of all quotients of direct sums of M. In particular, if M is τ -rigid, then Fac(M) is

a functorially finite torsion class in modΛ. If M belongs to τ -rigid(Λ)\ sτ -tilt(Λ), then it

is a summand of a basic support τ -tilting module T, which is given by the direct sum of all

indecomposable Ext-projective modules in Fac(M) (for details, see [AIR]).

Now, we are ready to prove the following theorem, which establishes interesting

connections between our results on min-τ -infinite algebras and tilting theory.

Theorem 4.2. Let Λ be min-τ -infinite. Then, almost all τ -rigid modules are faithful,

thus partial tilting.

Proof. Suppose {Ti}i∈N is a family of pairwise non-isomorphic unfaithful modules in

τ -rigid(Λ), and let Ti = Fac(Ti) be the corresponding functorially finite torsion classes.

From the beginning, we can assume every Ti is a nonzero support τ -tilting module.

We want to construct an infinite strictly ascending chain of functorially finite torsion

classes as follows. Set U0 := {0}, which is clearly functorially finite and is contained in

all Ti. It follows from [DIJ, Th. 1.3] that for each j, there is a right mutation U j
1 of U0 with

U0 � U j
1 ⊆ Tj . Since the Hasse quiver of the poset of functorially finite torsion classes of

modΛ is n-regular, there is a (functorially finite) right mutation U1 of U0 such that U j
1 = U1

for infinitely many j ∈ N. Note that for all but at most one such j, the inclusion U1 ⊆ Tj is

proper. By induction, assume that we have constructed a functorially finite torsion class Ui

that is properly contained in infinitely many Tj . For any such j, we again apply [DIJ, Th.

1.3] to get a right mutation U j
i+1 of Ui with Ui � U j

i+1 ⊆ Tj . As before, we construct Ui+1

as a functorially finite torsion class that coincides with infinitely many of the U j
i+1. Once

again, observe that U j
i+1 ⊆ Tj is proper for infinitely many j. This yields a chain

0 = U0 ⊂ U1 ⊂ U2 ⊂ ·· ·

of functorially finite torsion classes such that each Ui is contained in infinitely many Tj .
Because each Tj is unfaithful, so is every Ui. If Ji denotes the annihilator of Ui, we get a

corresponding descending chain

· · · ⊆ J2 ⊆ J1 ⊆ J0

of nonzero ideals. Since ideals of Λ are finite-dimensional, this chain has to stabilize to a

nonzero ideal I, implying that there is a positive integer r such that I = Jr+j for all j ≥ 0.
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For all i ∈ N, observe that each Ui, and therefore the algebra Λ/Ji, has at least i non-

isomorphic bricks. Indeed, for each i, there is at least one brick that belongs to Ui but not

to Ui−1. Thus, Λ/I has infinitely many non-isomorphic bricks, and by Theorem 2.1, Λ/I

is τ -tilting infinite. This contradicts the minimality assumption on Λ. Thus, almost every

τ -rigid Λ-module is faithful.

The last assertion follows from the fact that, for any algebra, any faithful τ -rigid module

is partial tilting.

Remark 4.3. For any min-τ -infinite algebra Λ, Theorem 4.2 implies that for almost

all τ -rigid Λ-modules, we have pdΛ(X) = 1, and therefore τΛ(X) = DExt1Λ(X,Λ). This

is interesting, particularly because there exist min-τ -infinite algebras of infinite global

dimension. The generalized barbell algebras studied in [M2] are shown to be min-τ -infinite,

but one can easily observe that they could be of infinite global dimension.

In the previous theorem, we note that the corresponding statement for bricks is not

true. Namely, a min-τ -infinite algebra may admit infinitely many isomorphism classes of

unfaithful bricks. For instance, all regular bricks over the Kronecker algebra are unfaithful.

We further remark that there exist τ -tilting infinite algebras Λ such that almost all τ -rigid

Λ-module are faithful, but Λ is not min-τ -infinite. For example, every indecomposable rigid

module of the 3-Kronecker quiver is preprojective or preinjective. In this case, almost all

τ -rigid modules are faithful.

Before we state an important consequence of Theorem 4.2, note that for an arbitrary

algebra Λ, we may have |τ -tilt(Λ) \ tilt(Λ)| =∞. In particular, a τ -tilting infinite algebra

Λ can admit only one tilting module. For instance, take the double Kronecker quiver (with

two arrows a,b : 1→ 2 and two arrows a′, b′ : 2→ 1) modulo the ideal generated by 〈aa′+
bb′,a′a+b′b,ab′, ba′,a′b,b′a〉. The corresponding algebra is self-injective. However, it contains

the Kronecker quiver as a subquiver, and therefore it is τ -tilting infinite.

Roughly speaking, our next result shows that for a min-τ -infinite algebra Λ, the two sets

sτ -tilt(Λ) and tilt(Λ) are almost the same. This is far from obvious and suggests that min-

τ -infinite algebras can be useful in the study of some classical problems in tilting theory. In

particular, it implies that over any min-τ -infinite algebra Λ, the mutation graph of tilt(Λ)

is infinite and n-regular at almost all vertices.

To state our result more precisely, we say Λ isminimal tilting infinite if it admits infinitely

many tilting modules, up to isomorphism, but each proper quotient algebra Λ/J has only

finitely many tilting modules.

Corollary 4.4. If Λ is a min-τ -infinite algebra, then almost all support τ -tilting

modules are tilting. Therefore, an algebra is minimal tilting infinite if and only if it is

min-τ -infinite.

Proof. This follows from the inclusions tilt(Λ) ⊆ τ -tilt(Λ) ⊆ sτ -tilt(Λ), and the fact

that τ -tilt(Λ) consists of sincere modules in sτ -tilt(Λ). By Theorem 4.2, almost all support

τ -tilting Λ-modules are faithful as Λ-modules, and thus almost all τ -tilting modules are

tilting. It is evident that if Λ is a min-τ -inf algebra, then it must be minimal tilting infinite.

If the converse fails, there exists a proper quotient Λ/J which is min-τ -infinite. Now, the

desired contradiction immediately follows from the first part.

Remark 4.5. For a given algebra Λ, it is a priori a hard problem to describe the

mutation graph of tilting modules, and even harder to decide whether all proper quotients
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of Λ admit finite mutation graphs. This is partially because the notion of tilting finiteness

is not preserved under taking quotients. The previous corollary is significant in the sense

that it yields an elegant classification of those algebras which are tilting infinite, but all of

their proper quotients are tilting-finite. Thanks to Theorem 2.1, this classification could be

stated in terms of bricks rather than tilting modules, which could have its own advantages,

especially if one is interested in the study of geometric representation theory. In that setting,

bricks coincide with points having trivial stabilizers. Therefore, they are decisive in the study

of moduli spaces of finite-dimensional algebras (see, e.g., [K]).

From the preceding corollary and Theorem 3.3, the following result is immediate.

Corollary 4.6. Let Λ = kQ/I with rad2(Λ) = 0. If tilt(Λ) is an infinite set, then Q

contains a subquiver Q′ which is sink-source affine type.

Remark 4.7. It is well known that the study of τ -tilting theory closely relates to that

of silting theory. In particular, for an algebra Λ, in [AMV], the authors show that finite-

dimensional silting modules in ModΛ are exactly the support τ -tilting Λ-modules. Thus,

an algebra Λ is τ -tilting-finite if and only if all torsion classes are generated by basic finite

dimensional silting Λ-modules. This is the case if and only if all silting modules in ModΛ, up

to some equivalence, are finite-dimensional. This allows us to establish a connection between

minimality conditions among τ -tilting infinite and silting infinite algebras. In particular, if Λ

is min-τ -infinite, there exists a (definable) torsion class in Tors(Λ) such that the associated

silting module, up to equivalence, is not finite-dimensional. It is immediate that if Λ′ is

a proper quotient of Λ, all silting Λ′-modules, up to equivalence, are finite-dimensional

and hence Λ′ admits only finitely many basic silting modules. Therefore, as long as silting

modules are considered up to equivalence, an algebra Λ is min-τ -infinite if and only if it is

minimal silting infinite.

§5. Reduction of the conjecture

In the current section, we return to Conjecture 1.1 and verify it for some families of

min-τ -infinite algebras. Consequently, we obtain Theorem 1.4, as a reduction of Conjecture

1.1 to a particular subfamily of min-τ -infinite algebras. Before we show the main result of

this section, we need some preparation.

Lemma 5.1. Let {Ii}i∈N be an infinite subset of Ideal(Λ) such that the corresponding

algebras Λ/Ii are all isomorphic. If Λ/I1 has a faithful brick of dimension d, then Λ admits

infinitely many non-isomorphic bricks of dimension d.

Proof. Let B be a faithful brick of dimension d in modΛ/I1. For each i ≥ 2, let Bi be

the brick of Λ/Ii induced from the isomorphism ϕi : Λ/Ii → Λ/I1. Then Bi is faithful of

dimension d. The Bi are non-isomorphic as Λ-modules since they have pairwise distinct

annihilators.

Note that any algebra that satisfies the assumption of the previous lemma must

be nondistributive. We postpone a more detailed study of τ -tilting (in)finiteness of

nondistributive algebras to our future work.

Let Λ be a min-τ -infinite algebra such that it admits an infinite family {Bi}i∈N of (non-

isomorphic) unfaithful bricks, with Ii := annΛBi, for i ∈ N. By the minimality assumption

on Λ, these ideals must form an infinite family. Without loss of generality, assume that they
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are pairwise distinct and consider the algebras Λ/Ii for i≥ 1. Looking at these algebras up

to isomorphisms, we have either a finite family, or an infinite family. In the former case, we

apply Lemma 5.1 to get an infinite family of non-isomorphic bricks of the same dimension.

In case the Λ/Ii form infinitely many non-isomorphic algebras, we have infinitely many

τ -tilting finite quotient algebras of the same dimension.

Recall that if T and T ′ are functorially finite torsion classes in modΛ, such that T � T ′

is a covering relation in the poset of torsion classes, then there is a unique brick B ∈ T ′

which satisfies the following properties:

1. HomΛ(T ,B) = 0.

2. Every proper quotient of B lies in T .

3. Every nonsplit short exact sequence 0→B→X → T → 0 with T ∈ T is such that X ∈ T .

Such a module is called a minimal extending brick for T . This brick is used to label the

edge corresponding to the covering relation T � T ′ in the Hasse diagram of functorially

finite torsion classes of modΛ. In [BCZ], the authors extensively study the brick labeling

of the poset of functorially finite torsion classes.

In the poset of functorially finite torsion classes of Λ, a torsion class T is said to be at

level at most t ∈ N if the interval [0,T ] contains a path of covering relations of length at

most t. For a functorially finite torsion class T , in the next lemma, we show that the length

of all extending bricks for T are bounded by a function which depends only on the level of

T and d := dimkΛ. To give a more explicit proof for the next lemma, we use a bijection

from [AIR, §3] which relates sτ -tilt(Λ) and the isomorphism classes of basic 2-term silting

complexes in Kb(projΛ). As further shown in [AIR], the aforementioned bijection gives rise

to a poset isomorphism between the poset of support τ -tilting modules and the poset of

2-term silting complexes coming from [AI]. Hence, the mutation of modules in sτ -tilt(Λ)

amounts to mutation of the corresponding 2-term silting complexes, where the latter is in

terms of certain triangles in the bounded derived category of modΛ. Namely, if T < T ′ is a

covering relation in the poset of 2-term silting complexes in Kb(projΛ), by [AI, Th. 2.31],

T ′ is a right mutation of T at one of its indecomposable summand. More precisely, we have

T = U ⊕X and T ′ = U ⊕Y , with U being a 2-term presilting object and X and Y a pair

of non-isomorphic indecomposable objects which appear in a triangle

Y → U ′ →X → Y [1],

where U ′ is such that U ′ → X is a minimal right add(U)-approximation of X. (For full

details, see [AI] and [AIR].)

Lemma 5.2. Let T =Fac(M) be a functorially finite torsion class in modΛ which is at

level at most t, and where M is support τ -tilting. Then, the dimension of M as well as that

of any minimal extending brick for T is bounded by a function that depends only on t and

on the dimension of Λ.

Proof. Let T be a 2-term silting complex in Kb(projΛ) represented by P1 → P0. We

assume that the differential is a radical morphism, and hence P0 and P1 are uniquely

determined up to isomorphism. Let dimT denote the total dimension of T, given by

dimkP0+dimkP1.

Using the same notation as in the paragraph preceding the lemma, we assume T ′

is the right mutation of T at X. Let dimHom(U,X) = m. Then we have a right
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add(U)-approximation Um → X of X. It is well known that there is a direct summand

of Um, isomorphic to U ′, such that the corresponding restriction map is minimal. This

yields dimU ′ ≤m dimU . Observe that an upper bound for dimHom(U,X) =m is given by

dimHom(T,T ), which in turn is bounded above by dimHom(P1,P1) + dimHom(P0,P0).

Now, the latter is bounded above by (dimP0)
2+(dimP1)

2, which in turn does not exceed

2(dimT )2. Therefore,

dimY ≤ dimU ′+dimX

≤m dimU +dimX

≤ (m+1)dimT

≤ (2(dimT )2+1)dimT,

and hence, as dimU ≤ dimT , we get

dimT ′ = dimY +dimU ≤ (2(dimT )2+2)dimT.

Note that for the minimal element of sτ -tilt(Λ), the corresponding element in the poset of

2-term silting complexes is Λ→ 0, which has total dimension d := dimkΛ. Let T be a 2-term

silting complex such that the interval [0,T ] in the Hasse quiver of poset of 2-term silting

complexes has a path of length at most t. Then there is a function g(d,t) which depends

only on d and t such that dimT ≤ g(d,t). Note that this function g(d,t) is polynomial of

degree 3t in d.

Now, let T be at level at most t and T ′ be a right mutation of T. By [AIR, Th.

3.2], the support τ -tilting module M (resp. M ′) corresponding to T (resp. to T ′) is the

zeroth cohomology of T (resp. of T ). Thus, dimM ≤ dimT ≤ g(d,t) and dimM ′ ≤ dimT ′ ≤
g(d,t+1). By [AIR, Ths. 2.7 and 3.2], we assume that T denotes the functorially finite

torsion class associated with T. Moreover, [AIR, Cors. 2.34 and 3.9] imply that T is at level

at most t in the poset of functorially finite torsion classes of modΛ, with the covering relation

T < Fac(M ′). Since the minimal extending brick B for the covering relation T < Fac(M ′) is

a quotient of M ′, we obviously have dimB ≤ g(d,t+1). This gives a function that bounds

the dimension of all minimal extending brick for T .

Proposition 5.3. Let Λ be min-τ -infinite, and let {Ii}i∈A be an infinite family of

pairwise distinct ideals in Λ. If each Λ/Ii admits a faithful brick, then brick(Λ) has an

infinite family of pairwise non-isomorphic bricks of the same dimension.

Proof. Without loss of generality, assume that the family {Ii}i∈A is such that all ideals

are of the same dimension, and this dimension is maximal with the property that each Λ/Ii
admits a faithful brick. If infinitely many of these Λ/Ii are isomorphic, apply Lemma 5.1 and

we are done. Thus, assume that Λ/Ii are pairwise non-isomorphic. If Vi denotes a faithful

brick over Λ/Ii, then {Vi}i∈A is a family of pairwise non-isomorphic modules in brick(Λ),

particularly because Vi have pairwise distinct annihilators in Λ. If there is a bound on the

dimension of bricks in {Vi}i∈A, we are done. Thus, for the sake of contradiction, we assume

that there is no bound on the dimension of {Vi}i∈A.

For every functorially finite torsion class T at level s, by Lemma 5.2, there is a global

bound on the dimension of all minimal extending bricks for T . We can start by picking a

positive integer d1 such that infinitely many of the Λ/Ii have a brick in dimension d1 (such

as d1 = 1). For each i, by Hi, we denote the Hasse quiver of the functorially finite torsion
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classes in modΛ/Ii. There is an arrow T → T ′ in Hi precisely when T < T ′ is a covering

relation. Since we assume that there is no bound on the dimension of {Vi}i∈A, that means

from Lemma 5.2 that the Hi have arbitrarily large heights.

Claim: For a fixed dimension s, we may assume that there is a function h(s) such that

every path in any given Hi has at most h(s) minimal extending bricks of dimension at

most s. To prove the claim, assume otherwise. Hence, there is a dimension s′ ≤ s such that

we can find paths in the Hi having arbitrarily large number of minimal extending bricks

of dimension s′. Note that in a given path, the minimal extending bricks are pairwise non-

isomorphic. For the bricks of dimension s′ over all Λ/Ii, if their annihilators in Λ form an

infinite family of pairwise distinct ideals, then we are done. Therefore, we are in the case

where there is an ideal J such that Λ/J has an infinite number of non-isomorphic bricks of

dimension s′, and similarly we are done. This proves our claim.

By the claim, the number of bricks of dimension at most d1 on any given path of each

Hi is bounded by h(d1). Pick a positive integer l2 > h(d1). We know that we have infinitely

many Hi, each of which having at least one path of length l2. By the claim, for each such i,

Hi admits at least one minimal extending brick of dimension bigger than d1. However, it

follows from Lemma 5.2 that the length of a brick on a path of length l2 is bounded by a

function that depends only on l2 and the dimension of Λ/Ii. Therefore, by the pigeonhole

principle, there is a positive integer d2 > d1 such that infinitely many of the Λ/Ii have a

brick of dimension d2. In general, for k ≥ 2, we pick lk > h(dk−1) and we get that there

are infinitely many Hi having a path of length lk. As argued previously, there is a positive

integer dk > dk−1 such that infinitely many of the Λ/Ii have a brick of dimension dk.

If for a given r, infinitely many of the bricks of dimension dr are faithful over the

corresponding Λ/Ii, then we are done, as we obtain an infinite family of non-isomorphic

bricks over Λ of the same dimension dr. Fix r ≥ 1. Assume without loss of generality that

each Λ/Ii has an unfaithful brick Bi of dimension dr. Let Ji := annΛ(Bi), then Ii � Ji. If the

ideals Ji form an infinite family, then again, we get that the Bi form an infinite family of

non-isomorphic bricks of dimension dr. We may thus assume that infinitely many of the

Bi have the same annihilator Jdr . In particular, the algebra Λ/Jdr has a faithful brick of

dimension dr. We need only to consider the case where these Bi are (almost all) isomorphic.

Thus, we are left with the situation such that for each r ≥ 1, we have an ideal Jdr with

Λ/Jdr having a faithful brick of dimension dr. We may assume that infinitely many of the

ideals in the family {Jdr} are pairwise distinct, as otherwise a proper quotient of Λ admits

infinitely many unbounded bricks, and this contradicts the fact that each Λ/Jdr is τ -tilting

finite. Now, the family {Jdr}r≥1 yields an infinite family of ideals of the same dimension

which are pairwise distinct and each Λ/Jdr admits a faithful brick. This gives the desired

contradiction with our assumption at the beginning of the proof on the dimension of ideals

in the family {Ii}i∈A.

From the previous proposition, we obtain the following theorem.

Theorem 5.4. Let Λ be a min-τ -infinite algebra. If Λ has infinitely many unfaithful

bricks, then it admits an infinite family of bricks of the same length.

Again, we note that the situation in Lemma 5.1, Proposition 5.3, and the above theorem

can occur only for nondistributive algebras. In particular, it is natural to ask whether it

is true in general that a min-τ -infinite algebra Λ is nondistributive if and only if brick(Λ)

contains an infinite family of unfaithful bricks. We remark that the analogous classification
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holds for min-rep-infinite algebras. Namely, a min-rep-inf algebra Λ is nondistributive if

and only if ind(Λ) contains an infinite family of unfaithful modules. In our future work, we

treat the nondistributive min-τ -infinite algebras more closely.

§6. The first Brauer–Thrall conjecture for bricks

In this short section, we use the geometric setting of representation varieties to give a new

proof for the brick analogue of the first Brauer–Thrall conjecture, recently shown by Schroll

and Treffinger [ST]. To do so, we prove an interesting property of the minimal extending

bricks in terms of the geometry of their orbits.

Recall that if the algebra Λ is given by a bound quiver (Q,I) over a field k, each module

in modΛ can be viewed as a point in a representation variety. For a fixed dimension vector

d= (dx) ∈ Z
Q0

≥0, we consider rep(Q,d) the affine space given by

∏
α∈Q1

Matde(α)×ds(α)
(k).

This variety parameterizes the representations of kQ having dimension vector d. More

precisely, to the point (Vα)α∈Q1 in rep(Q,d) is associated the representation M with

Mx = kdx and M(α) = Vα. Then, rep(Q,I,d) is the closed subset of rep(Q,d) whose

points correspond to the representations annihilated by I. In this way, we view rep(Q,I,d)

as an affine variety. Moreover, under the well-known action of the general linear group

GL(d) on the variety rep(Q,I,d) via conjugation, the isomorphism classes of Λ-modules

of dimension vector d are in bijection with the GL(d)-orbits in rep(Q,I,d). We sometimes

denote rep(Q,I,d) by rep(Λ,d), where Λ = kQ/I. We note that the variety rep(Q,I,d)

is not necessarily irreducible, but has finitely many irreducible components and each such

component is stable under the action of GL(d).

Before we state the following result, let us remark that for an arbitrary brick M with

dim(M)=d, the GL(d)-orbit ofM in rep(Q,I,d) is not necessarily open. However, provided

that Λ is a brick finite algebras, every brick has an open orbit. The next proposition gives

us a nice geometric property of the minimal extending bricks defined in §5. In particular,

this result is of significance over brick infinite algebras.

Theorem 6.1. Any minimal extending brick of a functorially finite torsion class has

an open orbit.

Proof. Let Fac(N) be an arbitrary functorially finite torsion class, where N is assumed

to be a basic support τ -tilting module corresponding to a τ -rigid pair (N,P ) where P is

projective with Hom(P,N) = 0 and N is τ -tilting over its support. It follows from [DIR+,

Prop. 4.13] that any minimal extending brick X labeling an arrow Fac(N) → T lies in

M⊥ ∩⊥ τM ∩ P⊥ where M is a direct summand of N. By [J2, Th. 3.8], the category

M⊥∩⊥ τM ∩P⊥ is equivalent to the module category modA, for a finite-dimensional local

algebra A (see also [DIR+, Th. 4.12b]). Hence, X is the unique brick in M⊥∩⊥ τM ∩P⊥.

Let dim(X) =d and consider the representation variety rep(Λ,d). Observe that the function

Y �→ dimHom(M,Y ) from rep(Λ,d) to N is upper-semicontinuous. Hence, the conditions

Hom(M,−) = 0 defines an open set U1 in rep(Λ,d). Similarly, the conditions

Hom(−, τM) = 0 and Hom(P,−) = 0 also define respective open sets U2 and U3 in rep(Λ,d).

Therefore, U := U1 ∩U2 ∩U3 is a nonempty open set which contains X. Furthermore, let

brick(Λ,d) denote the set of bricks in rep(Λ,d). Note that the orbit of a representation
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B in rep(Λ,d) is of dimension dimGL(d)−dimEnd(B), and hence of maximal dimension

when B is a brick. Hence, it follows that brick(Λ,d) also forms an open set in rep(Λ,d),

since the map that associates to a representation in rep(Λ,d) the dimension of its orbit

is upper-semi-continuous. Consequently, we have a nonempty open set U ∩brick(Λ,d) in

rep(Λ,d) which consists of bricks. However, as mentioned above, X is the unique brick in

M⊥∩⊥ τM ∩P⊥, which implies that the orbit of X must be open in rep(Λ,d).

If a one-parameter family of bricks means an irreducible curve of non-isomorphic bricks

in the representation variety, the above proposition yields that none of the bricks in a

one-parameter family of bricks can occur as a minimal extending brick.

Using the above proposition, we give an easy proof for the following theorem, which could

be viewed as a modern analogue of the first Brauer–Thrall conjecture. This result has been

first shown in [ST] with no assumption on the ground field.

Theorem 6.2. An algebra Λ is τ -tilting infinite if and only if there is no bound on the

length of bricks in modΛ.

Proof. We only show the necessity, as the sufficiency follows directly from Theorem 2.1.

In the Hasse diagram of the functorially finite torsion classes of Λ, consider an infinite

path starting at the minimal element. The corresponding minimal extending bricks form an

infinite family of pairwise non-isomorphic bricks. We know that, for each dimension vector d,

the variety rep(Λ,d) has only finitely many irreducible components, and the closure of each

open orbit provides an irreducible component. Hence, Proposition 6.1 implies that for each

d there are only finitely many minimal extending bricks whose dimension vector is d. Now,

the desired result is immediate.
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