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Abstract

A rigid automorphism of a linking system is an automorphism that restricts to the identity on the Sylow subgroup.

A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes,

it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid

outer automorphisms of a linking system at the prime 2 is elementary abelian and that it splits over the subgroup

of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group G restricts to

the identity on the centric linking system for G, then it is of ?′-order modulo the group of inner automorphisms,

provided G has no nontrivial normal ?′-subgroups. We present two applications of this last result, one to tame fusion

systems.

1. Introduction

A saturated fusion system F is a category in which the objects are the subgroups of a fixed finite ?-

group ( and the morphisms are injective group homomorphisms between subgroups, which are subject

to axioms first outlined by Puig [Pui06, AKO11]. When � is a finite group with Sylow ?-subgroup

(, there is a saturated fusion system F = F( (�) in which the morphisms are the �-conjugation maps

between subgroups. One of the important properties of this category is that it keeps precisely the data

required to recover the homotopy type of the Bousfield-Kan ?-completion ��∧
? of the classifying space

of �, as shown in the Martino-Priddy conjecture, proved by Oliver [Oli04, Oli06]. Recovery of ��∧
? ,

or a ?-complete space denoted �F when no group � is associated with F, is based on the construction

of a centric linking system L for F, an extension category of F whose existence and uniqueness up to

rigid isomorphism was first established in general by Chermak [Che13]. From a group theoretic point

of view, centric linking systems or, more generally, the transporter systems of Oliver-Ventura [OV07]

and the localities of Chermak [Che13], provide finer approximations to ?-local structure. They abstract

the transporter categories of finite groups and form structures appearing in recent new approaches to

revising the classification of finite simple groups.

We study here in more detail the comparison maps between automorphism groups of finite groups,

linking systems and fusion systems. When L is a centric linking system associated to the fusion sys-

tem F, there are groups of automorphisms Aut(L) and Aut(F) and a map ˜̀ : Aut(L) → Aut(F)

given essentially by restriction to the Sylow group (. When L = L
2
( (�) and F = F( (�)

for some finite group �, there is also a comparison map ˜̂� : #Aut(�) (() → Aut(L), where

#Aut(�) (() consists of those automorphisms of � that leave ( invariant. These induce a pair
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of maps

Out(�)
^�
−−→ Out(L)

`L

−−→ Out(F)

on outer automorphism groups. We write Aut0 (L) for the group of rigid automorphisms of L, namely,

ker( ˜̀L). Similarly, Out0(L) is short for ker(`L).

It follows from the exact sequence of [AKO11, III.5.12] and Chermak’s theorem that `L is an

isomorphism if ? is odd and is surjective with kernel an abelian 2-group when ? = 2. Moreover, the

surjectivity of ^� has been studied intensively in articles by Andersen, Oliver, and Ventura [AOV12]

and by Broto, Møller, and Oliver [BMO19].

Our first result extends the consequences of unique existence of centric linking systems to show that

the kernel of `L is in fact of exponent at most 2, in general, when ? = 2. To make it easier to apply, we

state and prove this in the slightly more general setting of a linking locality (defined just below) and in

three equivalent ways. Set : (?) = 1 if ? is odd and : (?) = 2 if ? = 2. In particular, a group of exponent

: (?) is the trivial group if ? is odd and is elementary abelian if ? = 2.

Theorem 1.1 (Linking locality version). If (L,Δ , () is a linking locality at the prime ?, then the group

Out0(L) of rigid outer automorphisms of L is abelian of exponent at most : (?). Moreover, the exact

sequence

1 → Aut/ (() (L) → Aut0 (L) → Out0 (L) → 1

splits.

Theorem 1.2 (Linking system version). If L is a linking system at the prime ? (in the general sense

of [Hen19]), then the group Out0(L) of rigid outer automorphisms of L is abelian of exponent at most

: (?). Moreover, the exact sequence

1 → Aut/ (() (L) → Aut0 (L) → Out0 (L) → 1

splits.

Theorem 1.3 (Cohomological version). Let F be a saturated fusion system over the finite ?-group (,

let O(F2) be the orbit category of F-centric subgroups and let ZF : O(F2)op → Ab denote the center

functor. Then lim1
ZF is of exponent at most : (?). Moreover, the exact sequence

1 → �̂(O(F2),ZF) → /̂1 (O(F2),ZF) → lim1
ZF → 1

splits.

Here, a linking locality in the sense of [Hen19] (also called a proper locality in [Che15]) is a locality

(L,Δ , () such that Δ contains all subgroups of ( that are centric and radical in F = F( (L), the

fusion system of L, and such that �#L (%) ($ ? (#L (%))) 6 $ ? (#L (%)) for each % ∈ Δ . Similarly, a

linking system is a transporter system L associated with a saturated fusion system F such that Ob(L)

contains all F-centric radical subgroups and such that �AutL (%) ($ ? (AutL (%))) 6 $ ? (AutL(%)) for

each % ∈ Ob(L). Other definitions of the term ‘linking system’ without further qualification, such as in

[AKO11, Definition III.4.1], are special cases of this one.

An automorphism of a locality L is inner if it is induced by conjugation by an element of #L ((),

and a similar remark applies to transporter systems. In the case of a linking locality or linking system, a

rigid inner automorphism is conjugation by an element of the center of (. We have denoted the group of

rigid inner automorphisms by Aut/ (() (L). This helps to explain some of the terminology and notation

in Theorems 1.1 and 1.2. We explain in more detail in Section 2. Terminology used in Theorem 1.3 is

recalled in Section 3.

When ? is odd and L is a centric linking system, Theorems 1.1 to 1.3 follow from either of

the alternative proofs of existence and uniqueness of centric linking systems as given in [Oli13] or
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[GL16]. The latter is based in part on the former but removes the dependence of the former on

the classification of finite simple groups (CFSG). The connection between existence and uniqueness

and the higher limits of the center functor ZF over the orbit category O(F2) of F-centric sub-

groups is described by [AKO11, Proposition III.5.12]. In particular, this result identifies Out0(L)

with the first derived limit lim1
O(F2)ZF of the center functor. So when ? is odd the theorems fol-

low from [Oli13, Theorem 3.4] or [GL16, Theorem 1.1] and an argument, provided in Section 4,

that uses Chermak’s iterative procedure for extending a given locality to a new locality on a larger

object set.

We shall prove Theorem 1.1 first in the case of a centric linking locality; that is, when Δ is the

collection of F-centric subgroups. The proof is applicable for all primes ?, and so we obtain an

alternative, somewhat simpler proof of the triviality of Out0(L) for ? odd, independent of the main

result of [GL16]. We then deduce Theorem 1.2 in the same special case, along with Theorem 1.3.

Afterward, we shall prove in Section 4 that this implies the seemingly more general statements in

Theorems 1.1 and 1.2.

Along the way, we extend to transporter systems a result of Oliver on isomorphisms of (quasicentric)

linking systems (Proposition 2.5), and we interpret Chermak’s work in the appendix of [Che13] as

an equivalence of groupoids between localities and transporter systems (Theorem 2.11). Besides their

use in deducing Theorem 1.2 from 1.1, one motivation for these extensions is to make clear that

the results of [Oli13, GL16] give existence and uniqueness of centric linking localities up to rigid

isomorphism in the same way as the main theorem of [Che13]. That this is not clear at first is caused

by an ambiguity in which the notion of ‘isomorphism’ of a transporter system commonly in use does

not restrict to the notion of ‘automorphism’ commonly in use but rather to what should be called

‘rigid automorphism’.

Automorphisms of a finite group that centralise a Sylow subgroup have been studied by Glauberman,

Gross, and others. The main result here can be seen as a generalisation to linking systems of [Gla68,

Theorem 10]. The current work bears the same relationship to [Gla68, Theorem 10] as the proof of

existence and uniqueness of centric linking systems outlined above does to the work of Gross [Gro82]

and to the recent work of the authors with Guralnick and Navarro [GGLN20]. Our proof of Theorem 1.1

is very different from the proof of [Gla68, Theorem 10], however, in part because not all subgroups of

( need be objects.

Recall that for a finite group � with Sylow ?-subgroup ( and centric linking system L
2
( (�), there is

a comparison homomorphism ^� : Out(�) → Out(L2
( (�)). It is induced essentially by restriction to

?-local structure modulo ?′-cores at the level of centric subgroups. In the course of trying to recover

from the above theorems the corresponding results about finite groups, we were led to the following

result, which seems to be of independent interest.

Theorem 1.4. Let ? be a prime and � a finite group with Sylow ?-subgroup (. If $ ?′ (�) = 1, then the

kernel of the map ^� : Out(�) → Out(L2
( (�)) is a ?′-group.

The proof of Theorem 1.4 relies on the /∗
?-theorem, namely, the statement that an element G ∈ (

whose only �-conjugate in ( is G itself must lie in the center of � modulo $ ?′ (�). Thus, our proof of

Theorem 1.4 depends on the CFSG if ? is odd. (This result and its corollaries in Section 5 for ? odd are

the only results in the article that depend on the CFSG.)

When � is simple, the cokernel of ^� has been studied extensively in [AOV12], [BMO19]

and elsewhere. In particular, it has now been shown that the fusion system of each finite sim-

ple group � is tame in the sense of [AOV12], namely, there is a possibly different finite group

� ′ with Sylow subgroup ( such that F( (�) � F( (�
′) such that the map ^�′ is split sur-

jective. Theorem 1.4 has been shown in several special cases in the context of those works

(cf. [BMO19, Lemma 5.9,Theorem 5.16]).

Theorem 1.4 is proved as Theorem 5.1 in Section 5, and we give two applications of it: We show

that the splitting condition in the definition of a tame fusion system may be removed and we give an

interesting reinterpretation of the first author’s work on the Schreier conjecture [Gla66b].
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Terminology and notation

When � is a group and 6 ∈ �, we write 26 for the left-handed conjugation homomorphism G ↦→ 6G6−1

and its restrictions. The image of a subgroup % under 26 is sometimes written in left-handed exponential

notation 6%. We write Hom� (%,&) for the set {26 | 6 ∈ �, 6% 6 &} of conjugation homomorphisms

between % and & induced in �. Given a finite group � with Sylow ?-subgroup (, the fusion system

F( (�) is the category with objects the subgroups of ( and with morphism sets HomF( (�) (%,&) :=

Hom� (%,&) := {26 | 6 ∈ �, 6% 6 &}. Our terminology for fusion systems follows [AKO11].

For example, F2 denotes the set of F-centric subgroups, FA denotes the set of F-radical subgroups,

F
5 denotes the set of fully F-normalised subgroups and concatenation in the superscript denotes the

intersection of the relevant sets.

2. Transporter systems and localities

Throughout this section, F is a saturated fusion system over a ?-group (, and Δ is a nonempty collection

of subgroups of ( that is closed under F-conjugacy and passing to overgroups. Fix also another triple

F
′, (′ and Δ ′ of this type.

2.1. Transporter systems

In the case where F = F( (�) for some finite group � with Sylow ?-subgroup (, the transporter

category TΔ (�) of � with object set Δ is the category with morphisms MorTΔ (�) (%,&) = #� (%,&) =

{6 ∈ � | 6% 6 &} where composition is given by multiplication in �. There is an inclusion functor

X : TΔ (() → TΔ (�), as well as a functor c : TΔ (�) → F( (�), which is the inclusion on objects and

which sends 6 ∈ #� (%,&) to 26 ∈ Hom� (%,&), conjugation by 6. This is the standard example of a

transporter system associated with F( (�).

Definition 2.1 ([OV07, Definition 3.1]). A transporter system associated with F is a nonempty category

T with object set Δ ⊆ Ob(F), together with structural functors

TΔ (()
X
−→ T

c
−→ F

that satisfy the following axioms:

(A1) Δ is closed under F-conjugacy, and upon passing to overgroups, X is the identity on objects and

c is the inclusion on objects.

(A2) For each %,& ∈ Δ , the kernel

� (%) := ker(c%,% : AutT (%) → AutF(%))

acts freely on MorT (%,&) by right composition, and c%,& is the orbit map for this action. In

particular, c%,& is surjective. Also, � (&) acts freely on MorT (%,&) by left composition. Here,

AutT (%) denotes MorT (%, %).

(B) For each %,& ∈ Δ , X%,& : #( (%,&) → MorT (%,&) is injective, and the composite c%,& ◦ X%,&

sends 6 ∈ #( (%,&) to 26 ∈ HomF(%,&).

(C) For each i ∈ MorT (%,&) and each 6 ∈ %, the diagram

%
i // &

%

X%,% (6)

OO

i
// &

X&,& (c (i) (6))

OO

commutes in T.
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(I) X(,( (() is a Sylow ?-subgroup of AutT (().

(II) Let i ∈ IsoT (%,&), % ⊳ %̄ 6 ( and & ⊳ &̄ 6 ( be such that i ◦ X%,% (%̄) ◦ i
−1
6 X&,& (&̄). Then

there is ī ∈ MorT (%̄, &̄) such that ī ◦ X%,%̄ (1) = X&,&̄ (1) ◦ i.

From now on, we abbreviate X%,% to X% , c%,% to c% and use similar notation when considering

the application of an arbitrary functor on morphism sets. In addition, any future reference to axioms

(A1)-(II) should be interpreted as reference to the axioms given in Definition 2.1. The following lemma

collects some basic properties of morphisms in a transporter system.

Lemma 2.2. Fix a transporter system (T, X, c) associated with F.

(a) Each morphism in T is both a monomorphism and an epimorphism in the categorical sense.

(b) (Restrictions are unique) Given objects %0 6 %, &0 6 & and two morphisms i0, i′
0

making the

diagram

%
i // &

%0

X%0 ,%
(1)

OO

i0 ,i
′
0

// &0

X&0 ,&
(1)

OO

commute, one has i0 = i′
0
.

(c) (Extensions are unique) Given objects %0 6 %, &0 6 & and two morphisms i, i′ making the

diagram

%
i,i′

// &

%0

X%0 ,%
(1)

OO

i0

// &0

X&0 ,&
(1)

OO

commute, one has i = i′.

Proof. Parts (a) and (b) are contained in [OV07, Lemma 3.2], and part (c) is proved in [Che13, Lemma

A.5(c)]. �

A morphism of fusion systems F → F
′ means a pair (U,Φ) where U : ( → (′ is a group homomor-

phism andΦ : F → F
′ is a functor, which together satisfy U(%) = Φ(%) on objects andΦ(i) ◦U = U◦i

for each morphism i in F. If U is an isomorphism, then Φ is determined uniquely by U. So an isomor-

phism of fusion systems may be regarded as an isomorphism of the underlying ?-groups that ‘preserves

fusion’.

Definition 2.3 (Isomorphisms of transporter systems). Let (T, X, c) and (T′, X′, c′) be transporter sys-

tems with object sets Δ and Δ ′ for the saturated fusion systems F and F
′, respectively.

1. Let U : T → T
′ be an equivalence of categories. It is said that

◦ U is isotypical if U(X% (%)) = X′
U(%)

(U(%)) for each subgroup % ∈ Δ and

◦ U sends inclusions to inclusions if U(X%,& (1)) = X′
U(%) ,U(&)

(1) for each %,& ∈ Δ .

2. An isomorphism is an equivalence T → T
′ that is isotypical and sends inclusions to inclusions. An

automorphism is an isomorphism of a transporter system onto itself.

3. An isomorphism U : T → T
′ is said to be rigid if ( = (′ and U( ◦ X( = X′

(
as homomorphisms

( → AutT′ ((). Here, as before, U( means U(,( .

4. An automorphism U of T is inner if there is an element i ∈ AutT (() such that U is given on objects

by % ↦→ 2i (%) := c(i) (%) and on morphisms by mapping k : % → & to

2i (k) := i|&,2i (&) ◦ k ◦ (i|%,2i (%) )
−1,
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where, for example, i|&,2i (&) is the unique morphism from & to 2i (&) in T such that i ◦ X&,( (1) =

X2i (&) ,( (1) ◦i, as given by Lemma 2.2(b). We refer to 2i as conjugation by i. Write Aut/ (() (T ) for

the group of rigid inner automorphisms of T that are conjugation by elements of X( (/ (()) 6 AutT (().

Denote by Aut(T ) := Aut(T, X, c) the group of automorphisms of T. Denote by T the category of

transporter systems and isomorphisms.

Remark 2.4. An isomorphism of transporter systems is in particular an invertible functor, and so one

sees that Aut(T ) is indeed a group. This was shown for linking systems in [AOV12, Lemma 1.14(a)],

and the same argument applies for an arbitrary transporter system.

We have defined isomorphism here in analogy with the definition of an automorphism of a centric

linking system [AKO11, III.4.3] but more generally than is usually done. The usual definition of an

isomorphism of transporter systems is a functor U : T → T
′ that commutes with the structural functors

U◦X = X′ and c′◦U = c. See, for example, [BLO03, p.799], [OV07, Proposition 3.11], [AKO11, p.146]

or [Che13, Definition A.2]. Rather, Definition 2.3 specialises to the definition of an automorphism of a

linking system in [AKO11, Section III.4.3].

The following proposition extends Proposition 4.11 of [AKO11] in two ways, but the proof follows

the same basic outline. It helps explain that an isomorphism between transporter systems is equivalent to

a triple of functors commuting with the structural functors and that the usual definition of isomorphism

of transporter systems is the same as what we are calling a rigid isomorphism.

Proposition 2.5. Fix transporter systems (T, X, c) and (T′, X′, c′) associated to F and F
′ with object

setsΔ andΔ ′ that containF2A andF′2A . Given an isomorphism U : T → T
′ in the sense of Definition 2.3,

there is a unique associated isomorphism V : ( → (′, a unique functor V∗ : TΔ (() → TΔ′ ((′) and a

unique isomorphism 2V : : F → F
′ of fusion systems such that the diagram

TΔ (()
X //

V∗

��

T
c //

U

��

F

2V

��
TΔ′ ((′)

X′ // T′
c′

// F′.

(2.6)

commutes and V = (V∗)( . Moreover, U is a rigid isomorphism if and only if both V∗ and 2V are the

identity functors.

Proof. Let U : T → T
′ be an isomorphism. Because ( is the only object of T with the property that

MorT (%, () ≠ ∅ for each object % of T, and the same is true for (′ with respect to T
′, it follows that

U(() = (′. So U( (X( (()) = X′
(′ ((

′) because U is isotypical. By axiom (B) for a transporter system,

the map X′
(′ : (

′ → X′
(′ ((

′) is an isomorphism, so there is a unique map V from ( = AutTΔ (() (() to

(′ = AutTΔ′ ((
′) ((

′) such that

U( (X( (B)) = X′(′ (V(B)) (2.7)

for each B ∈ (. Then V = (X′)−1
(′ ◦ U( ◦ X( is an isomorphism from ( to (′. Now U sends inclusions

to inclusions and so commutes with restrictions. Hence, for each % ∈ Δ , as U(X% (%)) = X′
U(%)

(U(%)),

we have U( (X( (%)) = X′
(′ (U(%)), and this shows with (2.7) and injectivity of X′ that V(%) = U(%) for

each %.

Let V∗ : TΔ (() → TΔ′ ((′) be the functor induced by V. Namely, V∗ sends an object % to V(%), and it

sends a morphism %
B
−→ & to V(%)

V (B)
−−−→ V(&). Then X′ ◦ V∗ = U ◦ X by construction.

Next, we wish to define a functor 2V : F → F
′ via a mapping on objects sending % to V(%) and on

morphisms sending %
i
−→ & to V(%)

V◦i◦V−1

−−−−−−−→ V(&). This is an isomorphism of fusion systems (the one

corresponding to the isomorphism V from ( to (′) with inverse 2V−1 , if well defined. In order to show
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that the assignment is well defined, we must prove that each V◦i◦ V−1 is a morphism in F
′. This will be

done by showing that 2V (i) = c′(U(ĩ)) for each ĩ ∈ MorT (%,&) with c(ĩ) = i, thus simultaneously

showing that the right square in (2.6) commutes.

Fix such a lift ĩ of i, and let B ∈ %. Consider the following diagrams:

%
ĩ //

X% (B)

��

&

X& (i (B)) ,

��
%

ĩ
// &

U(%)
U( ĩ) //

U(X% (B))

��

U(&)

U(X& (i (B))) ,

��
U(%)

U( ĩ)
// U(&)

V(%)
U( ĩ) //

X′
V (%)

(V (B))

��

V(&)

X′
V (&)

(V (i (B)))

��
V(%)

U( ĩ)
// V(&)

By axiom (C) for T, the first diagram commutes, and the second is U applied to the first. As shown

above, V(%) = U(%) and U ◦ X = X′ ◦ V∗, so the third diagram is the same as the second. By axiom (C)

for T′ with U(ĩ) and V(B) in the roles of i and 6, the morphism X′
V (&)

(c′(U(ĩ)) (V(B))) in place of

X′
V (&)

(V(i(B))) also makes the third diagram commute, so we have

X′
V (&) (V(i(B))) ◦ U(ĩ) = X′

V (&) (c
′(U(ĩ)) (V(B))) ◦ U(ĩ)

as morphisms between V(%) and V(&) in T. Because each morphism in a transporter system is an

epimorphism (Lemma 2.2(a)) and X′
V (&)

is injective (axiom (B)), it follows that

V(i(B)) = c′(U(ĩ)) (V(B)), for B ∈ %.

Hence, after replacing B by V−1(B), we see that 2V (i) = c′(U(ĩ)) as claimed, and this completes the

proof of existence of the functors V∗ and 2V .

It remains to prove uniqueness. Observe that uniqueness of V would follow from that of V∗. Suppose

W : TΔ (() → TΔ′ ((′) is a functor such that W in place of V∗ makes the left square in (2.6) commute.

Because X and X′ are the identity on objects by axiom (A1), W agrees with V∗ on objects. Similarly, they

agree on morphisms, given commutativity of the diagram, because X′%,& is injective by axiom (B) for

each %,& ∈ Δ . Hence, W = V∗. Next, suppose in addition that [ : F → F
′ is another functor such that the

right square in (2.6) commutes with [ in place of 2V . By axiom (A1), the functors 2V and [ agree with U

on the objects Δ . For each morphism i in T between subgroups in Δ , we have [(c(i)) = 2V (c(i)), so

by axiom (A2) on the surjectivity of c on morphism sets we see that [ and 2V agree on morphisms in F

between subgroups in Δ . By assumption F
2A ⊆ Δ , the Alperin-Goldschmidt fusion theorem [BLO03,

Proposition A.10] or [AKO11, I.3.5] gives equality.

If U is a rigid isomorphism, then by definition ( = (′. By commutativity of the left square in (2.6),

X′
(
◦ V = U( ◦ X( = X′

(
. So V = id( as X′

(
is injective. It was shown above that V∗ and 2V are uniquely

determined by V, so V∗ and 2V are the identity. Conversely, if V∗ is the identity functor, then ( = (′, and

by commutativity of the left square we have U( ◦ X( = X′
(
◦ id( = X′

(
, so U is rigid. �

As in the setting of (quasicentric) linking systems [AOV12, p.197], one can define a group homo-

morphism relating automorphisms of a transporter system with automorphisms of the associated fusion

system in this more general setting using Proposition 2.5. Let (T, X, c) be a transporter system with

object set Δ associated with the saturated fusion system F on (. Assume that F2A ⊆ Δ . Define

˜̀T : Aut(T ) → Aut(F )

to be the map that sends U ∈ Aut(T ) to the automorphism X−1
(

◦ U( ◦ X( of ( = AutTΔ (() ((). Thus,

˜̀T (U) is the automorphism V in Proposition 2.5. This is a group homomorphism (using uniqueness of

2V) that maps AutT (() onto AutF (() and has kernel Aut0(T ). It induces a homomorphism

`T : Out(T ) → Out(F )
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with kernel Out0(T ). When T = TΔ (�) for some finite group� with Sylow ?-subgroup (, we sometimes

write ˜̀� for ˜̀T and `� for `T, provided T is understood from the context.

2.2. Localities

In his proof of the existence and uniqueness of centric linking systems, Chermak introduced localities

and showed in [Che13, Appendix] that they are essentially equivalent to transporter systems. The

purpose of this subsection is to explain how Chermak’s results give an equivalence of categories between

transporter systems and localities, with morphisms isomorphisms, while setting up notation.

Let L be a finite set (we shall consider only finite localities). Write W(L) for the monoid of words

( 5=, . . . , 51) in the elements of L, where the multiplication is concatenation ◦. A partial group is a

set L together with a subset D := D(L) ⊆ W(L), a multivariable product Π : D → L defined on

words in D and an inversion map (−)−1 : L → L, subject to certain axioms that may be found in

[Che13, Definition 2.1]. The product 5= · · · 51 is defined if ( 5=, . . . , 51) ∈ D, and in this case we set

5= · · · 51 = Π( 5=, . . . , 51). A partial group is a group if and only if D = W(L); that is, all products

are defined. A partial subgroup is a subset L0 of L with domain D0 ⊆ W(L0) ∩ D, such that the

restriction of the product Π to D0 is the product Π0 for L0. The subgroups of L are the partial subgroups

L0 with W(L0) ⊆ D(L). A homomorphism of partial groups is a function W : L → M such that

W∗ (D(L)) ⊆ D(M) and Π(W∗ (F)) = W(Π(F)) for any word F ∈ D(L). Here, W∗ : W(L) → W(M) is

the map on words determined by W. Partial groups and partial group homomorphisms form a category,

so there is the usual notion of isomorphism in this category. A homomorphism W as above is an

isomorphism if and only if it is a bijective homomorphism satisfying W∗ (D(L)) = D(M).

There is a natural notion of conjugation in a partial group when defined. Given 5 ∈ L, write D( 5 )

for the set of G ∈ L such that ( 5 , G, 5 −1) ∈ D. The product 5 G 5 −1 = Π( 5 , G, 5 −1) is the conjugate of G

by 5 , sometimes written 5 G. A usual convention, which we adopt, is that any such expression carries

the tacit assumption that G ∈ D( 5 ). Likewise, for any subset - ⊆ L, the expression 5 - has a similar

meaning, including that - ⊆ D( 5 ).

Definition 2.8. Let L be a finite partial group, let ( be a ?-subgroup of L and let Δ be a collection of

subgroups of (. The triple (L,Δ , () is a locality if

(L1a) D(L) is equal to the set of those ( 5=, . . . , 51) ∈ W(L) such that there is (-0, . . . , -=) ∈ W(Δ)

with 58+1-8 = -8+1 for each 0 6 8 < =.

(L1b) If % ∈ Δ and 5 ∈ L with % 6 D( 5 ) and 5 % 6 (, then & ∈ Δ for each 5 % 6 & 6 (.

(L2) ( is a maximal member of the poset of ?-subgroups of L.

We next set up some notation when working with a locality (L,Δ , (). A word F = ( 5=, . . . , 51) ∈

W(L) is in D(L) via -0 if 58 · · · 51-0 ∈ Δ for each 1 6 8 6 =; compare (L1a). For 5 ∈ L, denote

by ( 5 the set of B ∈ ( such that 5 B ∈ (. By [Che13, Proposition 2.11], ( 5 ∈ Δ . In particular, ( 5

is a subgroup of L that plays the role of a Sylow intersection. For an object % ∈ Δ , the normaliser

#L (%) = { 5 ∈ L | 5 % = %} and centraliser �L (%) = { 5 ∈ L | 5 G = G for all G ∈ %} are subgroups

of L.

The fusion systemF( (L) ofL is the fusion system on ( with morphisms being those group monomor-

phisms between subgroups of ( that can be written as compositions of restrictions of the conjugation

homomorphisms 2 5 : % → &, G ↦→ 5 G between objects %,& ∈ Δ . It is said thatL is a locality onF( (L).

Example 2.9 ([Che13, Example/Lemma 2.10]). Let � be a finite group, let ( be a Sylow ?-subgroup of

� and let Δ be a collection of subgroups of ( that is closed under F( (�)-conjugacy and upon passing to

overgroups and that contains all F( (�)-centric radical subgroups. Let L be the subset of � consisting

of those 6 ∈ � such that there exists % ∈ Δ with 6% 6 ( (so that 6% ∈ Δ). Let D ⊆ W(L) denote the

collection of all words (6=, . . . , 61) ∈ W(L) such that there is (-0, . . . , -=) ∈ W(Δ) with 68 · · ·61-0 ∈ Δ

for each 0 6 8 6 =. Whenever (6=, . . . , 61) is a word in D, define Π(6=, . . . , 61) = 6= · · · 61, the product

in �. Then (L,Δ , () is a locality on F( (�), written LΔ (�).
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Definition 2.10 (Isomorphisms of localities). Let (L,Δ , () and (L′,Δ ′, (′) be localities.

1. An isomorphism from (L,Δ , () to (L′,Δ ′, (′) is an isomorphism of partial groups V : L → L
′ such

that V(Δ) = Δ ′ (hence, V(() = (′). An automorphism of (L,Δ , () is an isomorphism of (L,Δ , ()

to itself.

2. An isomorphism V is rigid if ( = (′, and V is the identity on (.

3. An automorphism U of L is inner if it is given by conjugation by an element of #L ((), namely, there

is 5 ∈ #L (() such that U(G) = 5 G 5 −1 for all G ∈ L. (Note that the product 5 G 5 −1 is always defined

when 5 ∈ #L (().)

Write Aut(L) := Aut(L,Δ , () for the group of automorphisms of L, Aut0(L) for the subgroup of rigid

automorphisms and Aut/ (() (L) for the subgroup of Aut0 (L) consisting of automorphisms that are

conjugation by elements in / ((). Denote by L the category of localities with isomorphisms.

2.3. Equivalence between transporter systems and localities

In [Che13, Appendix], Chermak goes most of the way toward proving that there is an equivalence

between the category of transporter systems with rigid isomorphisms (in the sense of Definition 2.3)

and the category of localities with rigid isomorphisms. Here, we suggest a mild extension of Chermak’s

results to an equivalence of the slightly larger categories T and L with the same objects. First, we briefly

review how to pass from a locality to a transporter system and vice versa. More details are given in

[Che13, Appendix A].

2.3.1. From localities to transporter systems

Given a locality (L,Δ , (), one can make a transporter system (TΔ (L), X, c) associated with F( (L) in

the following way. Let TΔ (L) have object set Δ , and for each %,& ∈ Δ take

MorTΔ (L) (%,&) = {( 5 , %, &) | 5 ∈ L, 5 % 6 &}.

Composition is given by multiplication in L. The functor X is the identity on objects and sends %
B
−→ & to

(B, %, &). The functor c is the inclusion on objects and sends ( 5 , %, &) to the conjugation homomorphism

2 5 : % → &.

2.3.2. From transporter systems to localities

Conversely, to make a locality given a transporter system (T, X, c), consider the collection of isomor-

phisms Iso(T ) in T and the following relation on the set Mor(T ) of morphisms in T: the morphism

i : % → & is an extension of i0 : %0 → &0, written i0 ↑ i, if the diagram

%
i // &

%0

X%0 ,%
(1)

OO

i0

// &0

X&0 ,&
(1)

OO

commutes in T. This is a partial order, and the equivalence relation on Iso(T ) generated by its restriction

to Iso(T ) is denoted ≡. It is shown in [Che13, Lemma A.8(a)] that each ≡-class has a unique maximal

member with respect to ↑. Write [i] for the equivalence class of i, and set (L,Δ , () = (Iso(T )/≡,Δ , (),

where, by abuse of notation, ( is identified with the set of equivalence classes {[X( (B)] | B ∈ (} of

elements in X( (() ⊆ AutT (() ⊆ Iso(T ). The domain D(LΔ (T )) for the product is the set of all

words ( 5=, . . . , 51) ∈ W(LΔ (T )) such that there exist objects %0, . . . , %= ∈ Δ and isomorphisms

i8 : %8−1 → %8 in T such that i8 ∈ 58 for each 8. The product Π : D(LΔ (T )) → LΔ (T ) is defined by

Π( 5=, . . . , 51) = [i= ◦ · · · ◦ i1]. The inversion map −−1 : LΔ (T ) → LΔ (T ) is given by [i]−1 = [i−1]
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for each i ∈ Iso(T ). It can be shown that these operations on L are well defined and that LΔ (T ) is a

locality [Che13, Lemmas A.7,A.9,A.13].

Recall that T denotes the category of transporter systems with isomorphisms and L denotes the

category of localities with isomorphisms. We write T0 and L0 for the categories of transporter systems

and localities with rigid isomorphisms.

Theorem 2.11 (cf. Chermak [Che13, Appendix]). The categories T and L are equivalent via a functor

that restricts to an equivalence between T0 and L0.

Remark 2.12. Strictly speaking, in order for the restriction of the functor T → L (to be constructed in

the proof) to induce an equivalence between T0 and L0, we must make two canonical identifications

of ( with other incarnations of (. It is possible that a more precise statement could be made involving

a category of (-rigid localities, where an (-rigid locality is a locality L together with an embedding

( ↩→ L of partial groups that satisfies natural conditions. But we do not pursue that, because our interest

here is mainly in Corollary 2.13.

Proof of Theorem 2.11. Define functors Θ : L → T and Λ : T → L as follows. On objects, the functors

are as described in Subsections 2.3.1 and 2.3.2. Let W : L → L
′ be an isomorphism between the two

localities (L,Δ , () and (L′,Δ ′, (′). Define a functor Θ(W) : TΔ (L) → TΔ′ (L′) by the rule

% ↦→ W(%),

( 5 , %, &) ↦→ (W( 5 ), W(%), W(&)).

Θ(W) is an invertible functor with inverseΘ(W−1), it is clearly isotypical, it sends inclusions to inclusions

because W(1) = 1 and hence it is an isomorphism of transporter systems. Observe that if Δ = Δ ′ (so

( = (′) and W is a rigid isomorphism, then Θ(W) (X( (B)) = (B, (, () = X′
(
(B) for each B ∈ (, so Θ(W) is

a rigid isomorphism of transporter systems. It is then clear that Θ determines a functor L → T, which

restricts to send L0 → T0.

Conversely, given an isomorphism U : T → T
′
, form the associated localities (LΔ (T ),Δ , () and

(LΔ′ (T
′
),Δ ′, (′) and define a function Λ(U) : LΔ (T ) → LΔ′ (T

′
) via Λ(U) ([i]) = [U(i)]

′
, where

here we write [−]
′

for equivalence classes in Iso(T
′
). Because U is invertible, it induces a bijection

Δ → Δ ′ sending ( ↦→ (′ and a bijection Iso(T ) → Iso(T
′
). Because U sends inclusions to inclusions,

it preserves ↑ and ≡, and hence Λ(U) is a well-defined bijection. Given that U is a functor, it follows

from the definition of multiplication in LΔ (T ) and [Che13, Lemma A.7(b)] that Λ(U) is a partial

group homomorphism. Then Λ(U) restricts to a homomorphism from ( to (′ (if we identify these with

{[X( (B)] | B ∈ (} and {[X′
(′ (B

′)] | B′ ∈ (′} via X and X′, respectively), because U is isotypical. Further,

if U is rigid, then this translates directly to the condition that Λ(U) is a rigid isomorphism of localities.

Again, Λ(U−1) is the inverse of Λ(U), and so Λ(U) is an isomorphism of localities. Thus, Λ is a functor

that restricts to send T0 → L0.

Define [ : idT → Θ ◦ Λ as follows. For any transporter system T, [T : T → Θ(Λ(T )) sends each

object to itself, and it sends a morphism i : % → & in T to the triple ([i0], %, &), where i0 is

the unique morphism from % to &0 := c(i) (%) in T such that X&0 ,& (1) ◦ i0 = i. We will show

that [ is a natural isomorphism of functors. By [Che13, Lemma A.15], [T is a rigid isomorphism of

transporter systems, provided that we make the identification of ( with the group of equivalence classes

{([X( (B)], (, () | B ∈ (} via the canonical isomorphism. Let now U : T → T
′
be any isomorphism of

transporter systems, and consider the naturality diagram

T
[T //

U

��

Θ(Λ(T ))

Θ(Λ(U))

��
T

′

[
T

′
// Θ(Λ(T

′
)).
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Fix a morphism i : % → & in T. Then

Θ(Λ(U)) ([i0], %, &) = ([U(i0)], U(%), U(&))

and

[T ′ (U(i)) = ([U(i)0], U(%), U(&)),

where U(i)0 is the unique morphism from U(%) to &1 := c′(U(i)) (U(%)) such that U(i) =

X&1 ,U(&) (1) ◦U(i)0. Note also that U(i) = XU(&0) ,U(&) (1) ◦U(i0) as U sends inclusions to inclusions.

Thus, to show that [ is natural, it suffices by uniqueness of restrictions (Lemma 2.2(b)) to show that

&1 = U(&0). To this end, let V be the isomorphism from ( to (′ associated with U in Proposition 2.5.

By Proposition 2.5, U(%) = V(%) for each % ∈ Δ , and we have

c′(U(i)) (U(%)) = 2V (c(i)) (V(%)) = V(c(i) (%)) = U(c(i) (%)),

as required. This completes the proof that [ is a natural isomorphism.

Next, given a locality (L,Δ , (), define ZL : L → (Λ ◦ Θ) (L) by

ZL ( 5 ) = [( 5 , ( 5 ,
5( 5 )] .

We will show that Z = (ZL) : idL → Λ ◦ Θ is a natural isomorphism. Let ( 5=, . . . , 51) ∈ D(L), and

set 5 = Π( 5=, . . . , 51). By Definition 2.8(L1a), there are objects %0, . . . , %= ∈ Δ such that %8−1 6 ( 58

and 58%8−1 = %8 for 8 = 1, . . . , =. Then [( 58 , ( 58 ,
58( 58 )] = [( 58 , %8−1, %8)] by definition of the equivalence

class [−], and this implies that Z∗
L
( 5=, . . . , 51) := (ZL ( 5=), . . . , ZL ( 51)) ∈ D(Λ(Θ(L))). By definition

of the product in Λ(Θ(L)), we have

Π(Z∗
L
( 5=, . . . , 51)) = [(Π( 5=, . . . , 51), %0, %=)] = [( 5 , %0, %=)] = [( 5 , ( 5 ,

5( 5 )] = ZL (Π( 5=, . . . , 51)),

so ZL is a partial group homomorphism.

There is an extension of Lemma 3.6 of [Che13] in which ( and (′ (and Δ and Δ ′) need not be equal

and for which Chermak’s proof remains valid. This will be used to show that ZL is an isomorphism of

localities. The typical element of Λ(Θ(L)) has the form [( 5 , %, &)] for 5 ∈ L, % 6 ( 5 and & > 5%. It

is the image of 5 under ZL, because ZL ( 5 ) = [( 5 , ( 5 ,
5( 5 )] = [( 5 , %, &)] by the commutative diagram

( 5

( 5 ,( 5 ,
5( 5 ) // 5( 5

%
( 5 ,%,&)

//

(1,%,( 5 )

OO

&

(1,&, 5( 5 )

OO

in Θ(L), so ZL is surjective.

Set (′ = {[(B, (, ()] | B ∈ (} 6 Λ(Θ(L)), and fix B ∈ ( and 5 ∈ L. Then ( 5 , B, 5 −1) ∈ D(L) via

- ∈ Δ if and only if

([( 5 , B 5
−1

-, 5 B 5
−1

-)], [(B, 5
−1

-, B 5
−1

-)], [( 5 −1, -, 5
−1

-)]) ∈ D(Λ(Θ(L)))

by definition of the domain of the locality built out of the transporter system Θ(L). Moreover, in this

case, 5 B 5 −1 ∈ ( via - ∈ Δ if and only if

[( 5 B 5 −1, -, 5 B 5
−1

-)] = [( 5 , B 5
−1

-, 5 B 5
−1

-) ◦ (B, 5
−1

-, B 5
−1

-) ◦ ( 5 −1, -, 5
−1

-)] ∈ (′.

This shows that ZL (( 5 ) = (′
ZL ( 5 )

.
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Let ℎ ∈ ker(ZL). Then [(ℎ, (ℎ ,
ℎ(ℎ)] = 1Λ(Θ(L)) = [(1, (, ()]. This means that (ℎ, (ℎ ,

ℎ(ℎ) is a

restriction of (1, (, (); that is, (1, (ℎ , () = (ℎ, (ℎ , (), and hence ℎ = 1. This completes the check of

the hypotheses of the extension of [Che13, Lemma 3.6], and so ZL is an isomorphism by that lemma.

Moreover, ZL is a rigid isomorphism of localities, provided that we make the identification of ( with

the group of equivalence classes {[(B, (, ()] | B ∈ (} via the canonical isomorphism.

Finally, it remains to verify naturality of Z . Given another locality (L′,Δ ′, (′) and isomorphism

W : L → L
′ mapping ( onto (′, we have for each 5 ∈ L that

Λ(Θ(W)) (ZL ( 5 )) = [(W( 5 ), W(( 5 ), W(
5( 5 ))]

′

and

ZL (W( 5 )) = [(W( 5 ), (W ( 5 ) ,
W ( 5 )(W ( 5 ) )]

′.

Because W is an isomorphism mapping ( onto (′, W∗ (DL ( 5 )) = DL′ (W( 5 )), and hence W(( 5 ) = (W ( 5 ) .

In addition, W( 5%) = W ( 5 )W(%) for each % ∈ Δ and 5 ∈ L. This establishes naturality and completes the

proof of the theorem. �

Corollary 2.13. Fix a transporter system (T, c, X) and let LΔ (T ) be the associated locality. Then the

map

Φ : Aut(T ) −→ Aut(LΔ (T ))

given by sending an automorphism U ∈ Aut(T ) to the map LΔ (T ) → LΔ (T ), which sends a class

[i] to [U(i)], for each i ∈ Iso(T ), is an isomorphism of groups. Moreover, Φ maps Aut0 (T ) onto

Aut0(LΔ ())).

Proof. This follows directly from Theorem 2.11. �

Remark 2.14. The obstruction theory for the existence and uniqueness of centric linking systems ‘up to

isomorphism’ as given by Broto, Levi, and Oliver [BLO03, Theorem 3.1] (see also [AKO11, III.5.11])

holds, of course, with respect to the notion of isomorphism of centric linking systems used there. By

Proposition 2.5 and Corollary 2.13, this definition coincides with the notion of ‘rigid isomorphism’ of

the associated localities. Thus, Theorem 3.4 of [Oli13] and Theorem 1.1 of [GL16] imply that any two

centric linking localities (i.e., Δ-linking systems with Δ = F
2 in the terminology of [Che13, p.49])

associated to a given saturated fusion system are rigidly isomorphic in the sense of [Che13].

2.4. Linking systems and linking localities

Theorems 1.1 and 1.2 do not hold for arbitrary localities and transporter systems, as can be seen

by considering an appropriate finite group � of the form $ ?′ (�) × �, with $ ?′ (�) supporting an

automorphism of order ?2 and forming a locality as in the standard Example 2.9.

Definition 2.15. A finite group # is of characteristic ? if �# ($ ? (#)) 6 $ ? (#). A linking locality

is a locality (L,Δ , () such that F( (L) is saturated, F( (L)
2A ⊆ Δ and #L (%) is of characteristic ? for

each % ∈ Δ . A linking system is a transporter system (T, X, c) associated with a saturated fusion system

F having object set Δ such that F2A ⊆ Δ and AutT (%) is of characteristic ? for each % ∈ Δ .

The assumption that L is a linking locality (in Theorem 1.1) or a linking system (in Theorem 1.2) is

necessary when applying [GL16, Lemma 8.2], which says that a rigid automorphism of a finite group

of characteristic ? is conjugation by an element of the center of a Sylow ?-subgroup.

The definition of linking system appearing in Definition 2.15 was given by Henke [Hen19]. It is

more general than the usual definition in [AKO11, Definition III.4.1], which forces each object to be F-

quasicentric. In Henke’s definition, the objects are forced merely to be a subset of the larger collection

of F-subcentric subgroups of (, namely, the subgroups % of ( with the property that $ ? (#F (&)) is

F-centric for each fully F-normalised conjugate & of %. The term ‘linking locality’ also appears first in
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[Hen19] and refers to the same thing as a ‘proper locality’ in [Che15]. By [Hen19, Proposition 1], the

equivalence between localities and transporter systems given in Theorem 2.11 restricts to an equivalence

between linking localities and linking systems.

Examples of linking localities include localities of finite groups of Lie type in characteristic ?, where,

by the Borel-Tits theorem, one may take Δ to be the set of nonidentity subgroups of a Sylow subgroup.

On the other hand, every finite group � gives rise to a linking locality on the set Δ of F( (�)-subcentric

subgroups of a Sylow subgroup (, the main theorem of [Hen19].

3. Rigid outer automorphisms of centric linking systems

In this section, we prove Theorems 1.1 and 1.2 in the case Δ = F
2 and prove Theorem 1.3. Throughout,

we fix a saturated fusion system F over the finite ?-group ( and a linking locality (L,Δ , () on F.

A version of the Alperin-Goldschmidt fusion theorem for linking localities was proved by Chermak

and is needed in the proof of Theorem 1.1. We state a special case of it in a flexible form.

Proposition 3.1. Let C be any conjugation family for F and let 6 ∈ L. Then there are &8 ∈ C ∩ Δ and

elements 68 ∈ #L (&8) such that 6 = 6= · · · 61.

Proof. Recall, by definition of a linking locality (proper locality), that F2A ⊆ Δ . Further, the collection

A(F ) defined in [Che16, Notation 3.3] is a subset of F
2A and coincides with the collection of F-

essential subgroups [AKO11, Definition I.3.2]. So the assertion is a special case of [Che16, Theorem

3.5], given that the collection of F-essential subgroups is contained in any conjugation family (cf.

[AKO11, Proposition I.3.3(b)]). �

Proposition 3.1 has the immediate consequence that an automorphism that is the identity on #L (&)

for each & ∈ C ∩ Δ is the identity automorphism of L. We take the opportunity to prove below a more

general statement that generalises Lemma 5.4 of [GL16] to the setting of linking localities. We refer

to [Cra11, Definition 7.14] for the definition of a positive characteristic ?-functor , , which we call a

conjugacy functor for short. There is a mistake in the proof of [GL16, Lemma 5.4], in which , (&)

is claimed to be well placed, given that & is. This seems unlikely to be true. It is true that , (&) is

conjugate to a well-placed subgroup, and we give a correct argument in the proof of Lemma 3.2.

Lemma 3.2. Let g be an automorphism of L. Fix a conjugacy functor , for F, let C be the associated

conjugation family consisting of those subgroups of ( that are well placed with respect to , and set

W = {& ∈ C ∩ Δ | , (&) = &}.

Assume that , (&) ∈ Δ and , (, (&)) = , (&) whenever & ∈ Δ . If g is the identity on #L (&) for

each & ∈ W, then g is the identity automorphism of L.

Proof. Assume first that , is the identity functor. Then W = C ∩ Δ . Let g ∈ Aut(L), and assume that

g is the identity on #L (&) for all & ∈ W = C ∩ Δ . For 6 ∈ L, there are &8 ∈ C ∩ Δ and 68 ∈ #L (&8)

such that 6 = 6= · · · 61 by Proposition 3.1. Then g(6) = g(6=) · · · g(61) = 6= · · · 61 = 6 by assumption.

Thus, g is the identity automorphism.

Next, we prove the result for general , satisfying the hypotheses. By the previous case with the

identity functor in place of , , it suffices to show that g is the identity on #L (&) for each & ∈ C ∩ Δ .

Proceed by induction on the index of & in (. Assume first that & = (. Because ( ∈ C (it is contained in

every conjugation family), , (&) = , (() ∈ C ∩ Δ by assumption on , . Hence, because g |#L (, (()) =

id#L (, (()) and #L (() 6 #L (, (()), g is the identity on #L (&). Fix now & < ( and assume that

g is the identity on #L (') for all ' ∈ Δ with |' | > |& |. Let 6 ∈ L with 6#( (, (&)) 6 ( and
6, (&) well-placed by [Cra11, Lemma 7.23]. We claim that g fixes 6. Write 6 = 6= · · · 61 for subgroups

'8 ∈ C∩Δ and 68 ∈ #L ('8) with '8 >
68 · · ·61#( (, (&)). So |'8 | > |#( (, (&)) | > |#( (&) | > |& |. The

claim now follows from the inductive hypothesis. Because 6, (&) is well placed and Δ is closed under
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L-conjugation, we have 6, (&) ∈ C ∩ Δ . Now #L (
6&) 6 #L (

6, (&)) by the axioms for a conjugacy

functor. Because g is the identity on #L (
6, (&)) by hypothesis, we see that g is the identity on #L (

6&).

Finally, because g(6) = 6, g is the identity on #L (&), as desired. �

Proof of Theorem 1.1 in the case Δ = F
2 . Recall that : (?) = 1 if ? is odd, and : (?) = 2 if ? = 2. Fix

g ∈ Aut0 (L). For any finite ?-group %, we take the abelian version of the Thompson subgroup � (%),

namely, � (%) is the subgroup generated by the abelian subgroups of % of order 3 (%), where 3 (%) is the

maximum of the orders of the abelian subgroups of %.

We proceed in several steps to complete the proof. The main part of the proof consists in showing that

if the automorphism g is the identity on #L (� (()), then g: (?) = idL. This is carried out in Steps 2 to 6.

Step 1. We first arrange that g restricts to the identity automorphism of #L (� (()). The restriction g to

#L (� (()) is an automorphism of #L (� (()) that is identity on ( 6 #L (� (()). Because L is a linking

locality and � (() ∈ Δ = F
2 , the normaliser #L (� (()) is of characteristic ?. Thus, by [GL16, Lemma

8.2], we may fix I ∈ / (() such that g is conjugation by I on #L (� (()). Then upon replacing g by 2−1
I g,

where 2I : L → L denotes the rigid inner automorphism that is (everywhere defined) conjugation by I,

we complete the proof of Step 1.

Consider the following ordering on F
2:

& <� % ⇐⇒ 3 (&) < 3 (%) or 3 (&) = 3 (%) and |� (&) | < |� (%) |.

We claim that g: (?) is the identity on L. Assume the contrary and, using Lemma 3.2 with, the identity

functor, choose & maximal under <� with the property that #L (&) is not fixed by g: (?) .

Step 2. We show that & may be taken to be well placed with respect to �. Let C be the collection

of subgroups of ( that are well placed with respect to the Thompson subgroup functor �. Then C

forms a conjugation family for F by [Cra11, Corollary 7.26]. Let 6 ∈ #L (&) not fixed by g: (?) . By

Proposition 3.1, we may write 6 as a product of elements 68 ∈ #L ('8) with '8 ∈ C ∩ Δ and where

& = &0 = &=, &8 =
68&8−1 and '8 > 〈&8−1, &8〉 for each 8. Because 6 is not fixed by g: (?) , some 68

is not fixed by g: (?) . Now because & is isomorphic to a subgroup of '8 , we see that 3 (&) 6 3 ('8).

Therefore, equality holds by maximality of & under <� . Then |� (&) | 6 |� ('8) |, so again equality holds

by maximality of &. Hence, upon replacing & by '8 , we may assume that & ∈ C.

Step 3. Set � = #L (&) and ) = #( (&). We next show that � (&) = � (&� ())). Because & ∈ Δ , �

is of characteristic ?. By [GL16, Lemma 8.2], we may fix I ∈ / ()) such that g is conjugation by I

on �. Then g2 is conjugation by I2 on �. Because g: (?) is not the identity on �, we have that I: (?)

is not centralised by �. Applying [Gla68, Theorem A], we conclude that I: (?) is not centralised by

#� (� ())). Now #� (� ())) 6 #� (&� ())) because � = #� (&), so that g: (?) is not the identity on

#L (&� ())). Because &� ()) ∈ F
2 and 3 (&) 6 3 (&� ())), we have equality by maximality of & under

<� . Then � (&) 6 � (&� ())), and so

� (&) = � (&� ())), (3.3)

again by maximality of & under <� .

Step 4. Here we show � ()) = � (&). Because 3 (&) 6 3 ()) = 3 (� ())) 6 3 (&� ())), we have equality

by Step 3. Thus, 3 (&) = 3 ()) and & 6 ) yield that � (&) 6 � ()) 6 � (&� ())), and again we have

equality by choice of &. This completes the proof of Step 4.

Step 5. We next show that � (&) is F-centric. Suppose on the contrary that � (&) is not F-centric.

By Step 2, & is well placed. By definition of well placed, � ()) is fully F-normalised. Hence, � (&)

is fully F-normalised by Step 4. Because � (&) is fully F-normalised and not F-centric, we have

�( (� (&)) � � (&). Note that �( (� (&)) � & because � (&) does contain its centraliser in &. Hence,

&�( (� (&)) > &, so with ' := #&�( (� (&)) (&), we have

' > &.
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On the other hand, Step 4 shows that

' = &#�( (� (&)) (&) = &�) (� (&)) = &�) (� ())) = &/ (� ())) = &/ (� (&)) = &,

a contradiction.

Step 6. Lastly, we obtain a contradiction. Among all well-placed, F-centric subgroups maximal under

<� whose normaliser in L is not centralised by g: (?) , choose & of minimum order. By Step 4 and the

definition of well placed, � (&) = � ()) is well placed. By Step 5, � (&) is centric. Note that g: (?) is not

the identity on #� (� (&)) = � by choice of &. Because 3 (&) = 3 (� (&)) and � (� (&)) = � (&), we

have that & = � (&) by minimality of |& |. Therefore, by Step 4,

� (&) = � ()) = � (#( (&)) = � (#( (� (&))).

It now follows that & = � (&) = � (() by [GL16, Lemma 8.5(b)]. Because #L (� (()) is centralised by g

by Step 1, this is a contradiction.

Step 7. We prove the splitting condition. Because Steps 1 to 6 show that Out0(L) = 1 if ? is odd,

splitting is trivial in that case. So take ? = 2. Let � be the subgroup of Aut0 (L) consisting of those

automorphisms that restrict to the identity on #L (� (()). Step 1 shows that � maps surjectively onto

Out0(L) via the quotient map Aut0(L) → Out0(L), and Steps 1 to 6 show that � is a vector space over

F2. There is therefore a subgroup �0 that is a complement to �Aut/ (() (L) (#L (� (())) in � and that maps

isomorphically onto Out0 (L). This proves the assertion. �

Proof of Theorem 1.2 when L is a centric linking system. This follows directly from Theorem 1.1 in the

centric linking locality case, given Theorem 2.11. �

Remark 3.4. The method of proof of Theorems 1.1 and 1.2 in case Δ = F
2 shows the slightly stronger

conclusion: If g is an automorphism of a centric linking locality (centric linking system) that is the

identity on #L (� (()) (AutL(� (()), then g: (?) = idL.

We next want to prove Theorem 1.3, but first recall certain definitions from [AKO11, Section III.5].

Let O(F2) be the category with objects the F-centric subgroups and with morphism sets

MorO(F2 ) (%,&) = Inn(&)\HomF(%,&),

the set of orbits of Inn(&) in its left action by composition. The center functor

ZF : O(F2) → Ab

is the functor that sends a subgroup % to its center / (%) and sends a morphism [i] : % → & to

the composite / (&) ↩→ / (i(%))
i−1 |/ (i (%) )

−−−−−−−−−→ / (%) induced by the restriction of i−1 : i(%) → % to

/ (i(%)).

We refer to Subsection III.5.1 of [AKO11] for a description of the bar resolution for functor co-

homology and write 3 for the coboundary map. Recall that a 0-cochain for ZF sends an object % of

O(F2) to an element in / (%). A 1-cochain sends a morphism %
[i ]
−−−→ & in the orbit category to an

element in / (%). A 1-cochain for ZF is said to be inclusion-normalised if it sends the class of each

inclusion ]
&

%
to 1 ∈ / (%). Write /̂1 (O(F2),ZF) for the group of inclusion-normalised 1-cocycles and

write �̂1(O(F2),ZF) ⊆ /̂1 (O(F2),ZF) for the group of inclusion-normalised 1-coboundaries.

By the proof of [AKO11, III.5.12], there is a group homomorphism

_̃ : /̂1 (O(F2),ZF) → Aut(L)
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given by sending a 1-cocycle C to the automorphism of L that is the identity on objects and that sends a

morphism i : % → & in L to i ◦ X% (C ([i])). Next, consider the group homomorphisms

cnst : / (() → �0(O(F2),ZF) and conj : / (() → Aut0(L),

where cnst sends an element I ∈ / (() to the constant 0-cochain DI with value I on each centric

subgroup, and conj sends an element I to the conjugation automorphism 2X( (I) ∈ Aut0(L).

Lemma 3.5. There is an isomorphism of short exact sequences

1 // �̂1(O(F2),ZF) //

3D ↦→D (()/ (F )

��

/̂1 (O(F2),ZF)

_̃

��

// lim1ZF
//

_

��

1

1 // / (()// (F )
conj // Aut0 (L) // Out0(L) // 1.

(3.6)

Proof. This is essentially contained in the proof of [AKO11, Proposition III.5.12]. There the groups

Aut(L) and Out(L) are denoted Aut�typ(L) and Outtyp(L). The commutative diagram displayed on

[AKO11, p.186] is shown to have exact rows and columns. Thus, _̃ : /̂1 (O(F2),ZF) → Aut(L)

is injective with image ker( ˜̀) = Aut0 (L). In addition, _̃ induces an injective homomorphism

_ : lim1
ZF → Out(L) with image ker(`) = Out0 (L), and so _̃ and _ are isomorphisms after restricting

to these codomains. Thus, the commutativity of this diagram also gives that the right square in (3.6)

commutes.

Second, from the proof of [AKO11, III.5.12], the composite 3◦cnst has image �̂1 (O(F2),ZF), where,

for each I ∈ / ((), the image 3DI of DI under the coboundary map is inclusion normalised, and _̃(3DI) is

conjugation by X( (I) onL. The composite �̂1 (O(F2),ZF) ↩→ /̂1 (O(F2),ZF)
_̃
−→ Aut0(L) is injective.

Thus, the kernel of the composite 3 ◦ cnst is the same as the kernel of conj. But ker(conj) = / (F ) by

[AOV12, Lemma 1.14]. Therefore, the inverse 3D ↦→ D(()/ (F ) of the isomorphism / (()// (F ) →

�̂1(O(F2),ZF) induced by 3 ◦ cnst makes the left square in (3.6) commute. �

Proof of Theorem 1.3. By Theorem 1.2 in the case Δ = F
2 , the sequence 1 → Aut/ (() (L) →

Aut0(L) → Out0 (L) → 1 is split exact. Because Aut/ (() (L) is the image of the conjugation map

/ (()// (F ) → Aut0(L), it follows from Lemma 3.5 that the sequence 1 → �̂1(O(F2),ZF) →

/̂1 (O(F2),ZF) → lim1
ZF → 1 is also split exact and that lim1

ZF � Out0 (L) is elementary

abelian. �

4. Extending to larger object sets

In this section, we observe via Chermak descent [Che13, Theorem 5.15] that the group of rigid automor-

phisms does not change when a centric linking locality is expanded to a larger object set. Recall from

[Hen19] that a subgroup % of ( is said to be F-subcentric if for each fully F-normalised F-conjugate &

of % the subgroup $ ? (#F (&)) is F-centric. The set of F-subcentric subgroups is denoted F B .

Proposition 4.1. Let L+ be a linking locality with object set Δ+ and fusion system F over a ?-group (.

Let Δ ⊆ Δ+ be a subset that contains F2A and is closed under F-conjugacy and passing to overgroups.

Assume that L+ |Δ = L. Then restriction induces an isomorphism Aut0(L
+) → Aut0(L) that restricts to

an isomorphism Aut/ (() (L
+) → Aut/ (() (L).

Proof. This follows from Corollary 5.16 of [Che13], applied in the same way as in [Hen19, Theorem

7.2]. The proof is by induction on |Δ+ − Δ |. If Δ+ = Δ , then L
+
= L and there is nothing to prove. Let

) ∈ Δ+ − Δ be maximal under inclusion. We claim that Hypothesis 5.3 of [Che13] holds. Because Δ

and Δ+ are F-invariant and closed under passing to overgroups, we can replace ) by an F-conjugate if

necessary and assume that) is fullyF-normalised. By induction, we may also assume thatΔ+ = Δ∪)F.
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Let )̂ = $ ? (#F ())). Then ) 6 )̂ , and we claim that the inclusion is proper. Assume otherwise. As

an object of a linking locality,) isF-subcentric by [Hen19, Proposition 1(b)]. So by [Hen19, Proposition

3.18], it follows that ) ∈ F
2A . But then ) ∈ Δ , which contradicts the choice of ) . Thus, ) < )̂ , so )̂ ∈ Δ

by choice of ) .

Let " = #L ()), and set

Δ) := {#% ()) | ) 6 % ∈ Δ} = {% ∈ Δ | ) 6 % 6 #( ())},

where the second equality comes from maximality of ) in Δ+ − Δ . By Lemma 7.1 of [Hen19], " is a

finite group that is a model for #F ()). In particular, ) is normal in " and #( ()) is a Sylow ?-subgroup

of " . So, indeed, taking the identity L → L as a rigid automorphism, Hypothesis 5.3 of [Che13] holds.

Recall the locality LΔ)
(") from Example 2.9, and note that LΔ)

(") = " in the current situation,

because each normal ?-subgroup of the fusion system of " is normal in " [Hen19, Theorem 2.1(b)].

By Corollary 5.16 of [Che13], there is a unique rigid isomorphism L
+ (id" ) → L

+ that restricts to the

identity on L, where the former is constructed in [Che13, Theorem 5.14] and defined after the proof of

[Che13, Theorem 5.14]. Identify L
+(id" ) and L

+ via this isomorphism. The identity automorphism is

then the unique rigid automorphism of L+ that is the identity on L. This shows that the restriction map

Aut0(L
+) → Aut0(L) is injective.

To see surjectivity of restriction, take an arbitrary rigid isomorphism V of L. Again by [Che13,

Corollary 5.16], there is a rigid isomorphism V+ : L+(V |" ) → L
+ that restricts to V on L. Taking now

L
+(V" ) in the role of L+, we see that there is also a rigid isomorphism id+ : L+

= L
+(id" ) → L

+(V" )

that is the identity on L. The composition V+ ◦ id+ ∈ Aut0 (L
+) restricts to V on L, and this shows that

the restriction map is surjective. �

Proof of Theorems 1.1 and 1.2. Let (L,Δ , () be an arbitrary linking locality. Now Δ ⊆ F
B by Proposi-

tion 1(b) of [Hen19], so by Theorem 7.2 of [Hen19] there is a linking locality (L+,FB , () that restricts

to L on Δ . Because F
2 ⊆ F

B , two applications of Proposition 4.1 give an isomorphism of short ex-

act sequences between 1 → Aut/ (() (L) → Aut0(L) → Out0(L) → 1 and 1 → Aut/ (() (L
+ |F2 ) →

Aut0(L
+ |F2 ) → Out0 (L

+ |F2 ) → 1. Theorem 1.1 now follows from the proof in the case Δ = F
2 . Then

Theorem 1.2 follows from Theorem 1.1 and Theorem 2.11. �

Remark 4.2. Given the results of this section, the stronger statement mentioned in Remark 3.4 applies

verbatim to arbitrary linking localities (linking systems) with object set Δ containing � (().

5. Comparing automorphisms of groups and linking systems

One may wonder whether it is possible to recover from Theorem 1.2 the analogous theorems about

groups, namely, [Gla68, Theorem 10] for ? = 2 and [GGLN20, Theorem 3.3] for ? odd. This is possible,

but the only way we know how to do it goes through an argument similar to existing arguments for

establishing the group case anyway, so our way seems to have little additional value. However, in the

process of trying to construct a proof, we obtained Theorem 5.1, which appears to be new and of

independent interest. It depends for its proof on the /∗
?-theorem [Gla66a], [GLS98, Proposition 7.8.2

and Remark 7.8.3] that in a finite group with no normal ?′-subgroups, any element that is weakly closed

in a Sylow ?-subgroup is central.

First we need to set up some notation. Let ? be a prime and let � be a finite group with Sylow ?-

subgroup (. We write L = L
2
( (�) and F = F( (�) for the centric linking system and fusion system of

�. Thus, L has objects the F-centric subgroups or, equivalently, the ?-centric subgroups of �; that is,

the subgroups % of ( with �� (%) = / (%) ×$ ?′ (�� (%)). Morphisms are given by

MorL (%,&) = #� (%,&)/$ ?′ (�� (%)),

where #� (%,&) = {6 ∈ � | 6% 6 &} is the transporter set, where composition is induced by

multiplication in � and where $ ?′ (�� (%)) acts on #� (%,&) from the right. The structural functor X

is the inclusion map, and c sends a coset 6$ ?′ (�� (%)) to conjugation by 6.
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By Sylow’s theorem, each outer automorphism of � is represented by an automorphism U ∈

#Aut(�) ((). Such an automorphism induces an isomorphism from $ ?′ (�� (%)) to $ ?′ (�� (U(%)))

and a bijection #� (%,&) → #� (U(%), U(&)) for each pair of centric subgroups % and &. It is then

straightforward to check that U induces an automorphism of L by restriction in this way. Let

˜̂� : #Aut(�) (() → Aut(L)

denote the resulting group homomorphism. This map sends Aut� (() onto {2W | W ∈ AutL (()}, and so

there is an induced homomorphism

^� : Out(�) → Out(L).

The composition ˜̀� ◦ ˜̂� : #Aut(�) (() → Aut(F( (�)) is just restriction to (. Here ˜̀� is defined just

after Proposition 2.5.

Theorem 5.1. Fix a prime ?, a finite group � and a Sylow ?-subgroup ( of �. Let L be the centric

linking system for �. If $ ?′ (�) = 1, then ker(^�) is a ?′-group.

The proof uses the /∗
?-theorem only in the semidirect product of � by a ?-power automorphism. So

if ? = 2 or the composition factors of � are known, then this does not depend on the CFSG.

Proof. Assume $ ?′ (�) = 1. Fix 0 ∈ #Aut(�) (() with [0] ∈ ker(^�) and recall that ˜̀� ◦ ˜̂� sends 0 to

0 |( . Because ˜̂� maps #Inn(�) (() onto Inn(L) = {2W | W ∈ AutL (()}, we may adjust 0 by an element

of #Inn(�) (() and take 0 ∈ �Aut(�) ((). Then by choice of 0, ˜̂� (0) ∈ Inn(L) ∩ker( ˜̀�) = Aut/ (() (L).

Choose I ∈ / (() such that ˜̂� (0) = 2I . Replacing 0 by 02I−1 , we may take 0 ∈ ker( ˜̂�). Finally,

replacing 0 by a ?′-power, we may take 0 of ?-power order.

We will show that, if [0] ≠ 1 in Out(�), then 0 normalises but does not centralise �/$ ?′ (�) for

some ?-local subgroup � = #� (&) with & ?-centric in �; that is, with & ∈ F( (�)2 . Thus, ˜̂� (0)

does not centralise AutL(&), and hence ˜̂� (0) ≠ 1, contrary to our choice of 0.

So assume [0] ≠ 1. Let �̂ = �〈0〉 be the semidirect product, and set (̂ = (〈0〉. Then (̂ is Sylow in

�̂, and 〈0〉 6 / ((̂). In addition, (̂ = ( × 〈0〉 and / ((̂) = / (() × 〈0〉. Note that if 0 is weakly closed in

(̂ with respect to �̂, then by the /∗
?-theorem we have 0 ∈ / (�̂) because $ ?′ (�̂) = $ ?′ (�) = 1, so that

0 = 1, contrary to assumption.

So 0 is not weakly closed in (̂ with respect to �̂. By the Alperin-Goldschmidt fusion theorem in �̂,

there is a F
(̂
(�̂)-centric radical subgroup &̂ 6 (̂ and ℎ̂ ∈ #

�̂
(&̂) such that 0 ∈ / ((̂) 6 / (&̂) and

0 ≠ ℎ̂0 ∈ / (&̂). By [LO02, Proposition A.11(c)],

& := &̂ ∩ � is F( (�)-centric radical. (5.2)

Write ℎ̂ = ℎ0: for some integer : and some ℎ ∈ �. Because 0: ∈ &̂ and & = &̂ ∩ �, we

have ℎ ∈ #� (&̂) 6 #� (&). In addition, 0 ≠ ℎ̂0 = ℎ0. So [0, ℎ] ∈ (̂. Note that 0 normalises

#� (&), so 0 normalises $ ?′ (#� (&)). If 0 centralises ℎ modulo $ ?′ (#� (&)), then we would have

[0, ℎ] ∈ $ ?′ (#� (&)) ∩ (̂ = 1, a contradiction. Hence, 0 does not centralise #� (&)/$ ?′ (#� (&)).

Together with (5.2), this completes the proof of the proposition. �

A saturated fusion system F over ( is said to be tame if F = F( (�) for some finite group � with

Sylow ?-subgroup ( such that the map ^� is split surjective. Theorem 5.1 can be combined with the

following lemma of Broto, Møller, and Oliver to show that the splitting condition in the definition

of tame is unnecessary. The version we give of this lemma is a little different from the corresponding

statement in [BMO19, Lemma 1.5(b)]: Two occurrences of$ ?′ (/ (�)) appearing there (in the statement

and proof) have been replaced by $ ?′ (�). This change helps to make clearer the step in the proof of

[BMO19, Lemma 1.5(b)] that reduces to the case in which / (�) is a ?-group. The proof of the lemma

is otherwise the same.
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Lemma 5.3. Let � be a finite group, ? a prime and ( a Sylow ?-subgroup of �. Assume that ^� is

surjective and ker(^�) is a ?′-group. Then there is �̂ > �/$ ?′ (�) such that ^
�̂

is split surjective and

such that F( (�̂) = F( (�). In particular, F( (�) is tame, and it is tamely realised by �̂.

Proposition 5.4. Let F be a saturated fusion system over the ?-group (. If F � F( (�) for some

finite group � such that the map ^� is surjective, then F is tame. Moreover, there is an extension

�̂ > �/$ ?′ (�) of �/$ ?′ (�) that tamely realises F.

Proof. Fix such a �, let �̄ = �/$ ?′ (�) and identify ( also with its image in �̄. Write F = F( (�),

F̄ = F( (�̄),L = L
2
( (�) and L̄ = L

2
( (�̄). The canonical homomorphism� → �̄ induces isomorphisms

L → L̄ andF → F̄. As in the proof of [AOV12, Lemma 2.19], there is a resulting commutative diagram

Out(�) //

^�

��

Out(�̄)

^�̄

��
Out(L)

� // Out(L̄)

Because ^� is surjective, ^�̄ is also surjective, so we may replace � by �̄ and take $ ?′ (�) = 1. The

result now follows from Theorem 5.1 and Lemma 5.3. �

In [Gla66b], the first author showed, for a core-free group � with Sylow 2-subgroup (, that the

group �Aut(�) (() has abelian 2-subgroups and a normal 2-complement. The following proposition

gives further information and a reinterpretation of that situation.

Proposition 5.5. Let � be a finite group with Sylow ?-subgroup (, let L be the centric linking system

for � and set � = �Aut(�) (()/�Inn(�) ((). If $ ?′ (�) = 1, then � � $ ?′ (�) ⋊ � where � = 1 if ? is

odd and where � is an elementary abelian 2-group if ? = 2. The normal ?-complement $ ?′ (�) is the

subgroup of #Aut(�) (()/#Inn(�) (() consisting of those classes that have a representative that restricts

to the identity on L. In particular, ^� is injective upon restriction to any Sylow ?-subgroup of Out(�).

Proof. The group � is the kernel of the composite `� ◦ ^� , which is induced by restriction to (. By

Theorem 1.2, the kernel of `� is either 1 or an elementary 2-group in the cases ? odd or ? = 2,

respectively. So ker(^�) = $ ?′ (�) by Theorem 5.1. The last statement follows immediately. �
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