353

Effect of dietary protein source on feed intake, growth, pancreatic enzyme activities and jejunal morphology in newly-weaned piglets

BY CAROLINE A. MAKKINK¹, GEORGE PUIA NEGULESCU^{1, 2}, QIN GUIXIN^{1, 3} AND MARTIN W. A. VERSTEGEN¹

¹ Agricultural University, Department of Animal Nutrition, Haagsteeg 4, 6708 PM Wageningen, The Netherlands

 ² Ministerul Agriculturii, Academia de Stiinte Agricole si Silvice Directia Generala Zooveterii, Institutul de Biologie si Nutritie Animala, 8113 Balotesti sector Agricol Ilfov, Roemenië
 ³ Jilin Agricultural University, Department of Animal Science, Jingyue, Changchun, 130118, China

(Received 15 January 1993 – Revised 31 August 1993 – Accepted 14 January 1994)

Seventy piglets with no access to creep feed were weaned at 28 d of age and fed on one of four diets based on either skimmed-milk powder (SMP), soya-bean-protein concentrate (SPC), soya-bean meal (SBM) or fish meal (FM). At 0, 3, 6 and 10 d after weaning, piglets were killed and the pancreas and digesta from stomach and small intestine were collected, freeze-dried and analysed for dry matter (DM), N, and trypsin (EC 3.4.21.4) and chymotrypsin (EC 3.4.21.1) activities. Small-intestinal tissue samples were taken to examine gut wall morphology. Results indicated that dietary protein source affected postweaning feed intake, pancreatic weight, gastric pH and gastric protein breakdown, and pancreatic and jejunal trypsin and chymotrypsin activities. Post-weaning feed intake appeared to be an important factor in digestive development of newly-weaned piglets.

Pancreas: Dietary protein: Piglet

In pigs, digestive disorders are frequently encountered in the early post-weaning period. The protein digestive capacity of newborn piglets is adapted to the digestion of milk proteins. Proteins of plant origin are digested to a lesser extent than milk proteins resulting in poor performance when fed to newly-weaned piglets (Wilson & Leibholz, 1981a, c). It has been hypothesized (Jones, 1986) that this may be due to insufficient development of the pancreatic enzyme system, since many authors report a decline in enzyme activities following weaning (Lindemann *et al.* 1986; Owsley *et al.* 1986). However, the often impaired feed intake of newly-weaned piglets may also play a role in this respect.

The present experiment was designed to study the development of pancreatic enzymes of newly-weaned piglets in relation to dietary protein source and post-weaning feed intake.

MATERIALS AND METHODS

Seventy piglets with no access to creep feed during the suckling period were weaned at 28 d of age. Ten piglets were anaesthetized immediately after weaning (day 0), weighed and exsanguinated from the jugular veins and artery. During exsanguination the gastrointestinal tract was divided into four segments: stomach, duodenum (first 2 m from pylorus), ileum (last 2 m of the small intestine) and jejunum (remaining part of the small intestine). Digesta were collected quantitatively from the stomach and small intestine segments. Usually, death of the piglets occurred after the tissue and digesta samples had been collected. In

fresh gastric digesta trichloroacetic acid (TCA)-precipitable protein was measured according to Ternouth *et al.* (1974). Digesta samples were weighed, the pH was measured and samples were frozen and stored at -20° before freeze-drying. The pancreas was excised, freed from adhering tissues, frozen and stored at -20° before freeze-drying. After freeze-drying, stomach and jejunum digesta samples were ground (1 mm) and analysed for dry matter and crude protein (N × 6.25) content.

The TCA-precipitable protein fraction of the digesta comprises proteins and large peptides which cannot be absorbed by the intestinal wall without further hydrolysis (Souffrant, 1991). The ratio between TCA-precipitable protein (PP) and crude protein (CP) in gastric digesta was therefore calculated to determine the degree of gastric protein breakdown.

Trypsin (EC 3.4.21.4) and chymotrypsin (EC 3.4.21.1) activities were measured in jejunal digesta and in pancreatic tissue after freeze-drying (Bergmeyer, 1974; Van Baak et al. 1991).

The remaining sixty piglets were fed on one of four experimental diets based on either skimmed-milk powder (SMP), soya-bean-protein concentrate (SPC), soya-bean meal (SBM) or fish meal (FM). Diet compositions are given in Table 1. At 3, 6 and 10 d after weaning, five piglets per diet were anaesthetized 1 h after feeding 100 g diet. Samples were collected, processed and analysed as described above (twenty piglets/d). At 6 d after weaning, duplicate tissue samples (approximately $5 \text{ mm} \times 5 \text{ mm}$) were taken from the proximal and distal jejunum immediately after removing the small intestine from the body cavity. These tissue samples were stored in 3 ml cryotubes (Sanbio BV Biological Products, P.O. Box 540, NL-5400 AM, Uden The Netherlands), frozen immediately in liquid N and kept at -70° until further analysis. Sections were cut from the deep-frozen tissue samples within 2 weeks from collection using a cryostat (2800 Frigocut N; Reichert-Jung, Heidelberg, Germany), stained with toluidine blue and the lengths of ten villi and the depths of ten crypts were measured in each sample.

Analysis of variance was performed using the GLM procedure of SAS (Statistical Analysis Systems, 1990) for each day of sampling separately using the following model:

$$Y_{ii} = \mu + D_i + (b_1 \times \text{FI}) + e_{ii},$$

in which Y_{ij} is the dependent variable, μ is the overall mean, D_i is the effect of diet (i = 1, 2, 3, 4), $b_1 \times FI$ is the effect of feed intake (overall co-variable) and e_{ij} is the error term.

Initially the effect of feed intake within diet was also tested, but this was found to be not significant for all variables except for chymotrypsin activity 3 d after weaning and was therefore eliminated from the model. Since the overall effect of feed intake on chymotrypsin activity on day 3 was not significant, the effects of diet and of feed intake within diet on chymotrypsin activities at day 3 were analysed according to the following model:

$$Y_{ij} = \mu + D_i + (b_{1i} \times \mathbf{FI}) + e_{ij},$$

in which Y_{ij} is the dependent variable (chymotrypsin activity at day 3), μ is the overall mean, D_i is the effect of diet (i = 1, 2, 3, 4), $b_{1i} \times FI$ is the effect of feed intake within diet and e_{ij} is the error term. From analysis of the data on feed intake during the first 3 d after weaning, two distinct patterns of feed intake emerged: several piglets consumed less than 50 g feed during these 3 d, while the others ingested more than 100 g. These two groups of piglets were called 'non-eaters' and 'eaters' respectively, and differences between these groups were analysed statistically. Post-hoc analysis of the effects of feed intake and diet on enzyme activities at day 3 was performed with the 'eaters' only.

To evaluate the development of gastrointestinal tissue weights after weaning the following model was used: W = W + z

$$Y_{ij} = \mu + W_i + e_{ij},$$

Diet	SMP	SPC	SBM	FM
Ingredient				
Skimmed-milk powder*	470.0		_	
Soya-bean-protein concentrate [†]	_	254.0	_	
Soya-bean meal [‡]	_	_	344.0	
Fish meal§	_	_		213.0
Maize/wheat starch	295 ·0	289.0	207.8	341.7
Dextrose	133-4	109.6	10 9·6	109.6
Lactose	—	225.0	225.0	225.0
Soya-bean oil	20.0	22.0	27.5	20.0
Cellulose	50.0	41·0	28.5	50·0
Ground limestone	7.5	14.5	14.5	7.5
CaHPO ₄	5.0	22.5	21.0	2.5
NaCl	3.0	3.0	3.0	3.0
KHCO,	3.0	2.0	_	11.0
NaHCŎ _a	1.0	2.0	4·0	4∙0
L-Lysine HCl	_	1.4	1.6	
DL-Methionine	1.1	2.2	2.1	1.0
L-Threonine	_	0.8	0.4	0.7
Vitamin and mineral premix	10-0	10.0	10.0	10.0
Cr ₂ O ₃	1.0	1.0	1.0	1.0
Calculated contents				
Dry matter	938·0	939.5	933·0	938.8
Crude protein (N \times 6.25)	162-1	164.4	163-8	162.2
Ether extract	25.1	24.4	31.8	35.4
Crude fibre	49.5	49.5	50.2	49.5
Inorganic matter	54.6	57.9	59.9	50.5
Net energy (MJ/kg)	10.20	10.25	10.21	10.49
Analysed contents				
Dry matter	912 ·1	924 ·1	927.0	925 [,] 3
Crude protein (N \times 6.25)	163.9	169.7	145.5	148.4
Buffering capacity	7.2	6.4	6.4	7.7
Pellet hardness¶	14-25	18-00	3.88	4.38

Table 1. Composition of experimental diets (g/kg)

SMP, skimmed-milk powder; SPC, soya-bean-protein concentrate; SBM, soya-bean meal; FM, fish meal.

* Crude protein, 351 g/kg; trypsin inhibitor activity, < 0.5 mg inhibited trypsin/g product; antigens, 2 titre \log_2 ; protein dispersability index, 0.93.

† Soycomil P, Loders Croklaan BV, P.O. Box 4, 1520 AA Wormerveer, The Netherlands. Crude protein, 639 g/kg; trypsin inhibitor activity, 1.3 mg inhibited trypsin/g product; antigens, < 1 titre log₂; protein dispersability index, 0.04. Heat treated.

 \ddagger Crude protein, 392 g/kg; trypsin inhibitor activity; 1 6 mg inhibited trypsin/g product; antigens, 5 titre log₂; protein dispersability index, 0.12. Heat treated.

\$ Crude protein, 692 g/kg; trypsin inhibitor activity; 1.1 mg inhibited trypsin/g product; antigens, 2 titre log₂; protein dispersability index, 0.10.

|| Volume (ml) 1 M-HCl needed to reach pH 400 in a suspension of 20 g feed in 100 ml demineralized water.

¶ Determined by Kahl Pellet Tester (Amandus Kahl Nachf. Maschinenfabrik, 2057 Reinbek, Hamburg). Pellet hardness expressed in kgf.

in which Y_{ij} is the dependent variable (gastric or intestinal tissue weight), W_i is the day after weaning (i = 0, 3, 6, 10) and e_{ij} is the error term.

RESULTS

Feed intake and growth

At weaning piglets were 28 d of age and had a mean live weight of 7.1 kg (sp 1.3, n 70). Feed intake during the first 3 d post-weaning was affected by dietary protein source (Table 2).

355

https://doi.org/10.1079/BJN19940039 Published online by Cambridge University Press

Day		0–3	3–6	6-10
FI(g/d)				
n		60	40	20
SMP		56 ^a	286	354
SPC		$80^{\rm ab}$	318	406
SBM		95 ^b	314	376
FM		112 ^b	339	453
	SEM	14	23	39
ADG (g/d)				
n		60	40	20
SMP		26	224	268
SPC		-6	293	257
SBM		-0	215	173
FM		26	273	217
	SEM	27	45	47
Effect of feed intake:				
Linear regression coefficient		2.56	0.27	0.43
P (regression coefficient = 0)		<i>P</i> < 0.001	NS	NS

Table	2.	Effect	of	diets	containing	skimmed -m ilk	powder	(SMP),	soya-bean-protein
concent	trai	te (SPC), se	oya-be	an meal (Si	BM) or fish med	ul (FM) d	on averag	e daily feed intake
(FI) an	d a	verage	dail	y grov	vth (ADG) a	of newly-weaned	piglets*		

(Values are least square means)

NS, not significant.

a.b Least square means within a column without a common superscript were significantly different (P < 0.05).

* For details of diets and procedures, see Table 1 and pp. 354-355.

Pellets of the SMP diet were harder than pellets of the SBM and FM diets (Table 1) and feed intake on the SMP diet was lower during the first 3 d post-weaning. Feed intake on the SPC diet was intermediate although pellets of this diet were very resistant to crumbling. Ten piglets out of sixty (five on SMP, three on SPC and two on SBM) consumed less than 50 g feed during the first 3 d after weaning. From 3 d after weaning, feed intake was similar for all diets. Average daily gain was not affected by dietary protein source (Table 2). During the first 3 d after weaning, growth was very variable between piglets and feed intake strongly affected average daily gain. From 3 d after weaning, no effect of feed intake on growth was found (Table 2).

Tissue weights

Dietary protein source did not influence the weight of the stomach and the small intestine (absolute and relative to live weight) after weaning (Table 3). The relative weight of the small-intestinal tissue decreased during 3 d after weaning (Fig. 1). The relative weight of gastric tissue increased gradually after weaning (Fig. 1).

Pancreatic weight was clearly affected by dietary protein source. At day 3 the weight of the pancreas (g/kg live weight) was higher for piglets fed on SPC and FM than for piglets fed on SBM. At day 6 the pancreatic weight (g) was high for piglets fed on SPC and SMP and low for piglets fed on FM. At day 10 the relative weight of the pancreas was high for piglets fed on SPC and low for piglets on the FM diet (Table 3). At days 6 and 10 postweaning, small-intestinal tissue weight was positively affected by preceding feed intake. At day 6 the same was found for the weight of the pancreas (absolute and relative).

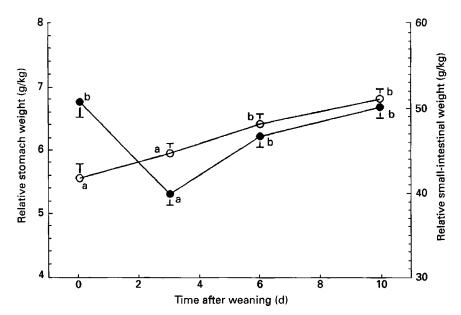


Fig. 1. Development of relative stomach (\bigcirc) and small intestinal (\bigcirc) tissue weights (g/kg live weight) after weaning. Values are least square means, with their standard errors indicated by vertical bars. Data points within a tissue carrying different letters were significantly different (P < 0.05).

Digesta pH

At days 3 and 6 after weaning, digesta pH was not affected by dietary protein source. At day 3, jejunum pH was positively related to feed intake (Table 4). At day 10, piglets fed on the soya-bean diets had lower gastric pH than piglets fed on the FM diet.

Gastric PP:CP ratio

At day 10 after weaning the PP:CP ratio in the stomach digesta was significantly lower for piglets fed on the FM diet than for piglets on SPC, indicating a higher degree of gastric protein breakdown in gastric digesta at the time of slaughter with piglets fed on the FM diet (Table 4).

Gut wall morphology

None of the piglets killed at day 6 post-weaning had finger-shaped villi. All villi were tongue- and leaf-shaped (Kik *et al.* 1990). No effects of dietary protein source on villus lengths or crypt depths were found. Jejunal villus lengths (proximal and distal) and distal crypt depths at day 6 after weaning were positively related to feed intake (Table 4).

Enzyme activities

Enzyme activities are presented in Table 5 (trypsin) and in Table 6 (chymotrypsin).

Four out of twenty piglets sampled at day 3 post-weaning had consumed less than 10 g feed daily and these piglets were analysed separately because they ('non-eaters') were distinctly different from the other piglets with respect to enzyme activities. Non-eaters had higher enzyme activities in pancreatic tissue and higher chymotrypsin activities/g jejunal digesta than piglets that did consume appreciable amounts of feed after weaning ('eaters'; Table 7). Trypsin activity:chymotrypsin activity in pancreas and jejunum was higher for 'eaters' than for 'non-eaters' (Table 7). Therefore, the 'non-eaters' were not included in the further statistical analysis of piglets sampled at day 3 after weaning (Tables 5 and 6).

357

Pre-dict Dict Dict LSM sm SMP SPC SBM FM P sm gl 38.2 313 stite 345.5 2142 stite 345.5 2142 estine 345.5 2142 stite 345.5 2142 stite 345.5 2142 stite 345.5 2142 stite 345.5 2142 stite 345.5 2142 stite 345.5 2142 stite 345.5 2142 stite 345.5 313 245.5 545.4 565.4	Pre-diet								
LSM smi SMP SPC SBM FM P smi b† 345-5 2142 10-37 0-843 5 10-37 0-843 5 1-42 10-37 0-843 5 1-33 0-81 5 1-33 0-81 5 1-33 0-81 5 1-33 0-81 5 1-33 1-33 5 1-33 1-33 1-31 2-7 1-34 2-7 1-1-46 1-002 10-73 NS 2-9 2-9 1-006 0-033 0-003 1-336 1-006 0-003 1-006 0-003 1-006 0-003				Diet				Feed	intake
38.2 313 3455 2142 1037 0843 3455 2142 1037 0843 3455 2142 1037 0843 56 023 510 185 1-53 0081 1139 2662 1139 2662 1139 2146 3077 2356 3077 2356 3077 2356 1139 1146 1139 1146 1139 1146 1139 1146 1139 1146 1139 1146 1139 1146 1139 1146 1139 1146 1139 1146 1139 1146 1139 1146 1139 1146 1302 1299 937 384 947 712 3699 4048 3641 3621 3548 <td< th=""><th></th><th>SMP</th><th>SPC</th><th>SBM</th><th>FM</th><th>٩</th><th>SEM</th><th>b^{\ddagger}</th><th>Р</th></td<>		SMP	SPC	SBM	FM	٩	SEM	b^{\ddagger}	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
510 185 1:53 0.081 1:53 0.081 1:53 0.081 1:53 0.081 1:53 0.081 1:39 2662 1:39 2665 1:39 2656 3007 263-6 313:1 279-6 N 265-6 3077 263-6 313:1 279-6 307 263-6 313:1 279-6 307 263-6 313:1 279-6 307 263-6 313:1 279-6 307 263-6 397 384 397 384 397 384 397 384 397 384 397 156b 1-59b 0019 0647 1274 1592 0019 0647 712 166b 1274 1574 1902 1671 1364 1672 1902 1674 792 1679 0019 063 1912 1671 792 168 3621									
1:53 0.081 1139 26.62 124:8 248.6 1139 26.62 1139 26.62 124:8 248.6 3007 263-6 313:1 279-6 3007 263-6 313:1 279-6 3007 263-6 313:1 279-6 307 263-6 313:1 279-6 307 263-6 397 313:1 397 384 397 384 397 384 397 384 397 384 397 384 397 156b 1-59b 0019 069 1274 159 0019 167 1292 167 1292 1771 1366 1361 792 947 712 3699 4048 3621 3548 3659 3548 3651 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
113-9 2662 124-8 2486 124-8 2486 124-8 2486 42-7 41:8 43.3 43.2 NS 418 0.023 300-7 263-6 313-1 279-6 NS 265-4 0.336 300-7 263-6 313-1 279-6 NS 265-4 0.336 307 263-6 313-1 279-6 NS 265-4 0.336 397 397 313-4 399 418 NS 0.881 -0006 97 384 399 418 NS 0.298 0.003 977 153 ¹¹ 166 ¹¹ 127 ¹¹ 159 ¹⁰ 0.019 0.084 -0.003 167 127 ¹¹ 1366 127 ¹¹ 159 ¹¹ 0.019 0.084 -0.003 177-1 1366 127 ¹¹ 179 ¹² 19019 0.084 -0.003 3699 448 3621 3548 NS 29-57 1.354 3699 4488 3621 3548 NS									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
42.7 41.8 43.3 43.2 NS 4.18 0.023 300.7 263.6 313.1 279.6 NS 26.54 0.336 300.7 263.6 313.1 279.6 NS 26.54 0.336 300.7 263.6 313.1 279.6 NS 26.54 0.336 97 11.46 10.02 10.73 NS 0.881 -0.006 97 38.4 39.9 41.8 NS 0.29 0.003 97 153.8 1668 1.274 1.599 0.019 0.084 -0.003 177.1 136.6 130.2 129.9 NS 29.57 1.354 94.7 71.2 124.1 792 NS 19.12 0.797 369.9 404.8 362.1 354.8 NS 29.57 1.354 369.9 404.8 362.1 354.8 NS 29.57 0.797 369.9 404.8 362.1 354.8 NS 29.55 0.797 369.9 404.8 362.1									
42.7 41.8 43.3 43.2 NS 4.18 0.023 300.7 263.6 313.1 279.6 NS 26.54 0.336 300.7 263.6 313.1 279.6 NS 26.54 0.336 300.7 263.6 313.1 279.6 NS 26.54 0.336 6.2 5.9 5.5 6.3 NS 0.29 -0.001 39.7 38.4 39.9 41.8 NS 0.29 -0.001 39.7 38.4 39.9 41.8 NS 2.98 0.003 $1.53a^{10}$ 1.66^{1} 1.27^{1} 1.59^{10} 0.019 0.084 -0.001 177^{1} 136.6 130.2 1299 0.019 0.084 -0.003 177^{1} 136.4 127^{1} 1729 1129^{1} 792 0.033 54.5 54.4 48.7 47.2 NS 29.57 0.797 3699 4048 362.1 3548 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
42.7 41.8 43.3 43.2 NS 4.18 0.023 300.7 263.6 313.1 279.6 NS 26.54 0.336 11.39 11.46 10.02 10.73 NS 26.54 0.336 6.2 5.9 5.5 6.3 NS 0.29 -0.001 39.7 38.4 39.9 41.8 NS 2.98 0.003 $1.53a^{10}$ 1.66^{10} 1.27^{a} 1.59^{10} 0.019 0.084 -0.001 1.77^{-1} 136.6 130.2 129.9 NS 29.57 1.354 177^{-1} 136.6 130.2 129.9 NS 29.57 1.354 94.7 71.2 124.1 792 0.797 0.797 369.9 404.8 362.1 354.8 NS 29.55 0.657 369.9 404.8 362.1 354.8 NS 29.55 0.657 369.9 404.8 362.1 354.8									
300.7 263.6 313.1 279.6 NS 26.54 0.336 $11:39$ $11:46$ 10.02 10.73 NS 26.54 0.336 $6\cdot2$ $5\cdot9$ $10\cdot73$ NS 0.881 -0.006 39.7 38.4 39.9 41.8 NS 0.29 -0.001 36.7 38.4 39.9 41.8 NS 2.98 0.003 $1.53u^5$ 1.66^5 1.27^4 1.59^0 0.019 0.084 -0.003 $177\cdot1$ $136\cdot6$ $130\cdot2$ 1299 NS 29.57 1.354 94.7 $71\cdot2$ $124\cdot1$ 792 NS 29.57 1.354 54.5 54.4 48.7 47.2 NS 23.55 0.657 3699 4048 362.1 3548 NS 23.55 0.657 3699 4048 362.1 3548 NS 23.55 0.657		42.7	41.8	43-3	43.2	SZ	4.18	0-023	SZ
creas $11\cdot39$ $11\cdot46$ $10\cdot02$ $10\cdot73$ NS $0\cdot881$ $-0\cdot006$ wt (g/kg LW) 6.2 5.9 5.5 6.3 NS $0\cdot29$ $-0\cdot001$ mach $39\cdot7$ $38\cdot4$ $39\cdot9$ $41\cdot8$ NS $2\cdot98$ $0\cdot003$ all intestine $39\cdot7$ $38\cdot4$ $39\cdot9$ $41\cdot8$ NS $2\cdot98$ $0\cdot003$ all intestine $39\cdot7$ $38\cdot4$ $39\cdot9$ $41\cdot8$ NS $2\cdot98$ $0\cdot003$ intestine $39\cdot7$ $38\cdot4$ $39\cdot9$ $1\cdot59^{10}$ $0\cdot019$ $0\cdot084$ $-0\cdot003$ intestine $1\cdot53^{ab}$ $1\cdot66^{b}$ $1\cdot27^{a}$ $1\cdot59^{b}$ $0\cdot019$ $0\cdot084$ $-0\cdot003$ int (g) $177\cdot1$ $136\cdot6$ $130\cdot2$ $129\cdot9$ $0\cdot019$ $0\cdot084$ $-0\cdot003$ intestine $94\cdot7$ $71\cdot2$ $124\cdot1$ $79\cdot2$ NS $29\cdot57$ $1\cdot354$ intestine $54\cdot5$ $54\cdot4$ $48\cdot$		300-7	263-6	313.1	279.6	SZ	26.54	0-336	SZ
$m(g/kg Lw)$ 6.2 5.9 5.5 6.3 NS 0.29 -0.001 mach 39.7 38.4 39.9 41.8 NS 2.98 0.003 all intestine 39.7 38.4 39.9 41.8 NS 2.98 0.003 all intestine $3.9.7$ 1.53^{ab} 1.66^{b} 1.27^{a} 1.59^{b} 0.019 0.084 -0.003 in vit (g) 1.77^{a} 1.27^{a} 1.29^{b} 0.019 0.084 -0.003 in avit (g) 1.77^{a} 1.27^{a} 1.29^{b} 0.019 0.084 -0.003 in avit (g) 1.77^{a} 1.27^{a} 1.29^{b} 0.019 0.084 -0.003 all intestine 94.7 71.2 124.1 79.2 NS 29.57 0.797 $s wit (g)$ 54.5 54.4 48.7 47.2 NS 23.55 0.657 andth intestine 369.9 404.8 <td></td> <td>11.39</td> <td>11-46</td> <td>10-02</td> <td>10-73</td> <td>SZ</td> <td>0-881</td> <td>-0-006</td> <td>SZ</td>		11.39	11-46	10-02	10-73	SZ	0-881	-0-006	SZ
matrix 39.7 39.7 39.9 10.3 10.3 20.2 0003 0013 0013 0013 0013 0013 0003		6.7	5.0	5.5	6.2	SIN	0.00	0-001	SN
ta wt (g) 1.53^{ub} 1.66^{b} 1.27^{u} 1.59^{b} 0.019 0.084 -0.003 ta wt (g) 1.77^{-1} 1366 1.27^{u} 1.59^{b} 0.019 0.084 -0.003 ta wt (g) 1.77^{-1} 136.6 130.2 129.9 NS 29.57 1.354 all intestine 94.7 71.2 124.1 79.2 NS 19.12 0.797 all intestine 54.5 54.4 48.7 47.2 NS 3.34 0.057 all intestine 369.9 404.8 322.1 354.8 NS 23.55 0.657		39.7	38.4	39.9	41.8	n Z	2.08 80-0	0.003	SZ
ta wt (g) 177-1 136-6 130-2 129-9 NS 29-57 1-354 mach 94-7 71-2 124-1 79-2 NS 19-12 0-797 all intestine 94-7 71-2 124-1 79-2 NS 19-12 0-797 s wt (g) 54-5 54-4 48-7 47-2 NS 3-34 0-057 all intestine 369-9 404-8 322-1 354-8 NS 23-55 0-657		1.53 ^{ab}	1.66 ^b	1.27 ^a	1.59 ^b	0-019	0-084	-0.003	0.012
mach 177-1 136-6 130-2 129-9 NS 29-57 1-354 all intestine 94-7 71-2 124-1 79-2 NS 19-12 0-797 s wt (g) 54-5 54-4 48-7 47-2 NS 3-34 0-057 all intestine 369-9 404-8 362-1 354-8 NS 23-55 0-657									
all intestine 94.7 71.2 124.1 79.2 NS 19.12 0.797 = wt (g) 54.5 54.4 48.7 47.2 NS 3.34 0.057 all intestine 369.9 404.8 362.1 354.8 NS 23.55 0.657		177-1	136.6	130-2	129-9	SZ	29.57	1-354	0-002
s wt (g) mach 54.5 54.4 48.7 47.2 NS 3.34 0.057 mach 362.1 354.8 NS 23.55 0.657 all intestine 369.9 404.8 362.1 354.8 NS 23.55 0.657		94-7	71-2	124-1	79-2	SN	19-12	0-797	0-003
54-5 54-4 48-7 47-2 NS 3-34 0-057 369-9 404-8 362-1 354-8 NS 23-55 0-657									
24-5 24-4 48-7 47-2 NS 5-34 0-057 369-9 404-8 362-1 354-8 NS 23-55 0-657			ļ					500	0000
200-0 202-1 202-8 00-201 202-8 NS 23-20 0-001		0.40	4-40 4 0 1 0	48./	4/-7	2 Z	3.34	100-0	2000 2005
		369-9	404.8	362·I	5.4-C	Soo o	23:55	/ 0.00	c00-0
Pancreas			24.86	24-86 42-7 300-7 11-39 6-2 39-7 1-53 ^{ab} 1-53 ^{ab} 177-1 94-7 369-9 13-47 ^{be}	24.86 42.7 41.8 300.7 263.6 11.39 11.46 6.2 5.9 39.7 38.4 1.53 ^{ab} 1.66 ^b 177.1 136.6 94.7 71.2 369.9 404.8 13.47 ^{be} 15.41 ^e	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

358

Table 3. Effect of diet and feed intake on digestive organ tissue weights (g and g/kg live weight (LW)) and digesta weights (g) of

https://doi.org/10.1079/BJN19940039 Published online by Cambridge University Press

	Pre-	Pre-diet			Diet				reed intake	IIIAKC
	LSM	SEM	SMP	SPC	SBM	FM	d	SEM	<i>b</i> †	Р
Tissue wt (g/kg LW)										
Stomach			6-6	6-2	6-7	6.3	SN	0-29	-0.003	SN
Small intestine			44-7	46·1	49-8	47-0	SN	2.30	600-0	SN
Pancreas			1.63	1.76	1. 64	1-41	SN	0.109	0.002	0.019
Digesta wt (g)										
Stomach			125-0	204-7	202·1	191.8	SN	32-25	-0.127	NS
Small intestine			158-0	258-2	213-8	167-5	SN	37-14	-0.049	SN
Day 10										
Tissue wt (g)										
Stomach			62.9	57-3	64-7	60-3	SN	6-03	0-073	SN
Small intestine			480-6	438-4	459-0	421-3	SN	31-04	0-924	0-006
Pancreas			15-62	17-59	14.52	13-17	SN	1.314	0-019	SN
Tissue wt (g/kg LW)										
Stomach			6.7	6-5	7-4	7.0	SN	0.36	-0.002	SN
Small intestine			51-6	49-9	51-7	48.6	SZ	2.18	0-037	0.087
Pancreas			1-67 ^{abc}	1.98°	1-65 ^{ab}	1-54ª	0-044	0.108	-0.000	SN
Digesta wt (g)										
Stomach			198-7	166-4	273-5	202.0	SN	40-79	0-737	0-072
Small intestine			207-5	185-5	188-4	129-5	SN	39-29	-0.169	NS

Table 3. (cont.)

Table 4. Effect of diet and feed intake on digesta pH, precipitable protein: crude protein (PP:CP) ratio in the stomach morphology of newly-weaned piglets*

	Pre	Pre-diet			Diet	1			Feed	Feed intake
	TSM	SEM	SMP	SPC	SBM	FM	d	SEM	<i>b</i> †	ط
Day 0 bH										
Stomach	3-80	0-459								
Duodenum	5.82	0-179								
Jeiunum	6.85	0.146								
Ileum	7-47	0.124								
PP:CP										
Stomach	0-64	0.043								
Day 3										
рп Stomach			6-38	4.00	4.64	6.40	SN	0.600	0.012	SN
Ducdenum			96.40	9 10 10	00.5	0+-0		C1C.0	7000	n v N
leinnim			01-2	7.57	36.9	9C.F	s z	0.00	0000	0000
Ileum			LT.L	1.9.7	27.5	07 /		0.227	0000	NIC
PP: CP			101	C0-1	G (01.1	22	167.0	C00.0-	ŝ
Stomach			0.19	0-28	0-18	0.19	SN	0-056	-0.001	SN
Day 6										
Hd										
Stomach			4-29	5-18	5-12	6.11	SZ	0.610	-0.001	SZ
Duodenum			5.98	5.76	5.94	6.22	SZ	0.340	-0.002	SZ
Jejunum			1.20	1.20	9.5-/	7-30	SZ	0.168	-0000	SZ
Ileum			17-71	7.52	7.84	7-87	SN	0.148	0-001	SN
PP:CP			ļ							1
Stomacn			0-17	CE-0	C7-0	67-0	N	9<0-0	000-0	SZ
P				101	700	200	JIV.		0.400	5100
Distal			514 200	105	200	067	SN	0./1	0.436	10.0
Crvnt denth ("m)			000	007	000	607		C-01	0.40	CT0.0
Proximal			132	02.1	170	137	SN	5.3	0-043	SN
Distal			134	130	144	132	Z	6.L	0-148	0.043
Day 10							2			2
Hd										
Stomach			5-36 ^{ab}	3-89 ^a	4-94 ^a	6-63 ^b	0-017	0-539	0-004	SN
Duodenum			5-94	5-91	6-08	6-37	NS	0-261	-0.001	SN
Jejunum			7.48	7.75	7-70	7.02	NS	0-207	000-0	SN
			8.10	7.96	7-89	8·12	SZ	0-196	-0.000	SN

LSM, least square mean; SMP, skimmed-milk powder; SPC, soya-bean-protein concentrate; SBM, soya-bean meal; FM, fish meal; NS, not significant. * For details of diets and procedures, see Table 1 and pp. 353–355. \uparrow Coefficient of regression.

https://doi.org/10.1079/BJN19940039 Published online by Cambridge University Press

360

C. A. MAKKINK AND OTHERS

Table 5. Effect of diet and feed intake on trypsin activities (units*) in digesta and pancreas of newly-weaned piglets[†] (Least square means and standard errors of the mean)

0-041 NS 0-097 NS NS NS NS 0-021 0-075 < 0-001 0-008 0-024 0-228 0-009 0-881 0.412 0-807 10-0 ٩. szs Feed intake 8:45 1:47 19:38 59:79 0:00 0:01 14-20 - 0-99 60-10 2:48 62:58 10-0-0-0-0.57 0.57 5.76 5.76 0.01 0.01 1 0-618 0-615 0-866 0-709 0-757 0-803 SEM 010-2 743-6 906-9 53-5 863-9 305-8 933-7 387·2 90·8 603·5 84·7 2130·8 1742·5 2323·2 264-4 NS 0-039 0-048 NS 0-001 Р, \$ <u>\$</u> 6-15 6-42 2-22 3-45 6-36 7-98 1287 152^a 1325 954^a 4279^a FM 1718 382^a 3832^a 3784 7615^a 4846 544 14435 3746 18180 Diet 4-52 5-52 2·29 3·13 SBM 6·70 6:48 2041 534^{ab} 5033^{ab} 4265 9298^{ab} 904 154^a 1974 1011^a 2985^a 2669 734 8912 7503 6415 3-71 4-64 4-44 7-61 5-44 8-29 2209 649^{ab} 7803^b 6269 4072^c SPC 1068 360^b 2348 1524^a 3871^a 2939 823 11665 7787 19452 5-94 5-18 7-00 3-80 5-99 SMP 2526 790^b 7287^b 4285 1571^{be} 2025 602° 5266 4149^b 9415^b 3407 837 11327 8430 19757 394.4 67.2 1349-5 761-9 1395-0 0-489 0-551 SEM **Pre-diet** 1-59 LSM 1·33 923 180 979 3172 Jtryp Pryptot Itryptot Itryptot Jt/c Day 3 (caters) Jtryp Pryptot Jtryp Pryptot Itryp Jtryp Jtryp Jtryp Jtryp Pryptot Itryp Pryptot Itryp Pryptot Itryp Jt/c Day 10 Ptryp Jtryp Ptryptot Jtryptot Dt/c Pt/c Day 0 Ptryp

PROTEIN TYPE AND DEVELOPMENT IN PIGS

LSM, least square mean; SMP, skimmed-milk powder; SPC, soya-bean-protein concentrate; SBM, soya-bean meal; FM, fish meal; Ptryp, trypsin activity/g freeze-dried pancreatic tissue; Itryp, trypsin activity/g freeze-dried jejunal digesta; Ptryptot, total trypsin activity in pancreas; Jtryptot, total trypsin activity in pancreas + jejunum; Pt/c, Ptryp/chymotrypsin activity/g freeze-dried pancreatic tissue; It/c, Jtryp/chymotrypsin activity/g freeze-dried jejunal digesta; NS, not significant.

 $a_{h,e}$ Least significant means within a row without a common superscript were significantly different (P < 0.05)

* 1 unit = amount of enzyme required to hydrolyse 1 µmol substrate (Nα-p-toluoĭsulphonýl-L-arginine methyl ester)/min at 25° and pH 8-1. ↑ For details of diets and procedures, see Table 1 and pp. 353–355.

‡ Coefficient of regression.

Table 6. Effect of diet and feed intake on chymotrypsin activities (units*) in digesta and
pancreas of newly-weaned piglets ⁺

	Pre	-diet			Diet	t			Fe	ed intake
	LSM	SEM	SMP	SPC	SBM	FM	P	SEM	b‡	Р
Day 0 Pchym Jchym Pchymtot Jchymtot totchym	796 105 1899 560 2459	188-9 14-2 634-1 103-2 629-6								
Diet: Effect of:	feed i	MP intake n diet	SP feed in within	ntake	feed	BM intake in diet		feed	M intake in diet	Diet
Day 3 ('eaters')	b	Р	b	Р	b	Р		b	Р	P
Pchym Jchym Pchymtot Jchymtot totchym	$ \begin{array}{r} -11 \\ 1 \\ -55 \\ 2 \\ -52 \\ \end{array} $ Pre	08 NS 26 NS 49 NS	$ \begin{array}{r} -0.07 \\ -0.48 \\ -3.24 \\ -3.97 \\ -7.21 \end{array} $	NS NS NS 0·075 NS	$ \begin{array}{r} -8.20 \\ 0.26 \\ -22.62 \\ 9.15 \\ -13.48 \\ \text{Diet} \end{array} $	NS NS 0.026 NS		10·94 0·15 32·62 2·54 35·16	< 0.001 NS 0.002 NS 0.002 Fe	0.015§ NS 0.018 0.035¶ 0.22†† ed intake
	LSM	SEM	SMP	SPC	SBM	FM	P	SEM		Р
Day 6 Pchym Jchym Pchymtot Jchymtot totchym Day 10			432 154 ^b 1230 ^{ab} 810 2040 ^{be}	532 95ª 1913 ^b 850 2763 ^e	442 104 ^{ab} 1088 ^a 846 1934 ^b	269 51 ^a 574 ^a 508 1082 ^a	NS 0-009 0-009 NS 0-003	230-0 150-1	0· 7·1 2·2	12 NS 34 0.001 24 0.099
Pchym Jchym Pchymtot Jchymtot totchym			536 124 1803 1195 2999	556 102 2190 868 3058	399 114 1285 1159 2443	793 84 2368 580 2947	NS NS NS NS	93.9 13.5 343.3 172.5 330.1	-0 8: 0:	11 NS 25 0-021 48 NS

(Least square means and standard errors of the mean)

LSM, least square mean; SMP, skimmed-milk powder; SPC, soya-bean-protein concentrate; SBM, soya-bean meal; FM, fish meal; Pchym, chymotrypsin activity/g freeze-dried pancreatic tissue; Jchym, chymotrypsin activity/g freeze-dried jejunal digesta; Pchymtot, total chymotrypsin activity in pancreas; Jchymtot, total chymtot, total chymt

^{a, b, c} Least square means within a row without a common superscript were significantly different (P < 0.05). * 1 unit = amount of enzyme required to hydrolyse 1 μ mol substrate (N-benzoyl-L-tyrosine ethyl ester)/min at

25° and pH 7·8.

[†] For details of diets and procedures, see Table 1 and pp. 353-355.

‡ Coefficient of regression.

- § FM > SPC.
- \parallel FM > SPC, FM > SBM.

¶ SMP > FM.

 \dagger FM > SPC, FM > SBM.

At day 3, trypsin activity in the jejunum was affected by protein source (Table 5). The highest trypsin activity was found with piglets fed on SMP and the lowest activity was noticed in piglets fed on SBM and FM.

A significant effect of feed intake within diet on chymotrypsin activity at day 3 post-

~ ~	
0	
0	
5	
¥	
<u>í</u>	
g/1	
0	
- 52	
- 1	
270	
ø	
œ	
9	
~ ~	
JN19	
Ğ	
4	
Ó	
0	
2	
누	
<u> </u>	
IS.	
ish	
ishe	
ished	
ished o	
ished onl	
ished onlir	
ished online	
ished online t	
d online t	
ished online by (
ished online by Ca	
ished online by Can	
ished online by Camb	
ished online by Cambr	
ished online by Cambrid	
ished online by Cambridg	
ished online by Cambridge	
ished online by Cambridge L	
ished online by Cambridge Ur	
ished online by Cambridge Uni	
ished online by Cambridge Unive	
ished online by Cambridge Univer	
ished online by Cambridge Univers	
ished online by Cambridge Universit	
ished online by Cambridge University	
ished online by Cambridge University Pi	
y Cambridge University Pr	
ished online by Cambridge University Press	

Table 7. Comparison of trypsin and chymotrypsin activities (units)* in the pancreas and
jejunal digesta from newly-weaned piglets that consumed more than 100 g feed/d ('eaters') or
less than 50 g feed/d ('non-eaters') in the 3 d immediately after weaning [†]

(Least square means with their standard errors)

	'Eat (n	ters' 15)		eaters' 4)	
Day 3	LSM	SE	LSM	SE	Р
Trypsin activity:				-	
Ptryp	1225	177	3029	342	< 0.001
Jtryp	268	51	150	98	NS
Ptryptot	2963	500	9239	969	< 0.001
Jtryptot	1547	284	370	549	0.074
tottryp	4510	660	9608	1277	0.003
Pt/c	2.85	0.31	1.08	0.61	0.019
Jt/c	4.02	0.36	0.84	0.70	0.001
Chymotrypsin activity:					
Pchym	467	70	2868	135	< 0.001
Jchym	63	10	150	19	< 0.001
Pchymtot	1138	278	8992	539	< 0.001
Jchymtot	369	52	199	100	NS
totchym	1507	274	9191	530	< 0.001

LSM, least square mean; Ptryp, trypsin activity/g freeze-dried pancreatic tissue; Jtryp, trypsin activity/g freeze-

dried jejunal digesta; Ptryptot, total trypsin activity in pancreas; Jtryptot, total trypsin activity in jejunum; tottryp, total trypsin activity in pancreas+jejunum; Pchym, chymotrypsin activity/g freeze-dried pancreatic tissue; Jchym, chymotrypsin activity/g freeze-dried jejunal digesta; Pchymtot, total chymotrypsin activity in pancreas; Jchymtot, total chymotrypsin activity in jejunum; totchym, total chymotrypsin activity in pancreas + jejunum; Ptc/, Ptryp/Pchym; Jt/c, Jtryp/Jchym; NS, not significant.

* 1 unit = the amount of enzyme required to hydrolyse 1 μ mol substrate/min at 25°.

† For details of diets and procedures, see Table 1 and pp. 353-355.

weaning was found (Table 6). Chymotrypsin activity in pancreatic tissue was positively related to feed intake only for piglets on the FM diet. At day 3, pancreatic chymotrypsin activity and total chymotrypsin activity (pancreas + jejunum) were higher for the FM-fed piglets than for the soya-bean-fed piglets. Jejunal chymotrypsin activity was higher for piglets fed on SMP than for piglets fed on FM.

At day 6, enzyme activities in pancreatic tissue and jejunal chyme were lowest for piglets fed on the FM diet compared with the other diets. Total enzyme activities (pancreas+ jejunum) were highest for the SPC-fed piglets. Trypsin activity/g freeze-dried jejunal digesta was lower in piglets fed on FM than in piglets fed on SMP (Table 5). Chymotrypsin activity/g freeze-dried jejunal chyme was lower in piglets fed on FM and SPC than in piglets fed on SMP. Total enzyme activities in the pancreas were highest for SPC-fed piglets and lowest for FM-fed piglets (Tables 5 and 6). Total trypsin and chymotrypsin activities in pancreas + jejunum at day 6 were positively related to post-weaning feed intake. This was mainly due to the strong relationship between feed intake and pancreatic enzyme activities (total and per g pancreatic tissue).

At day 10 after weaning no effects of dietary protein source on either trypsin or chymotrypsin activities were found. In particular, the pancreatic trypsin and chymotrypsin activities seemed to increase sharply for the FM diet, resulting in equal pancreatic enzyme activities for all four diets.

DISCUSSION

Feed intake and growth

The low feed intake of piglets on the SMP diet may be related to the physical form of the feed. Feeds containing large amounts of skimmed-milk powder are difficult to pellet and will therefore result in hard pellets which are not readily accepted by young piglets (Jensen, 1966; Liptrap & Hogberg, 1991).

Piglets fed on the SMP diet consumed less feed during the first 3 d post-weaning than piglets fed on the FM diet (Table 2) and at the same time had higher gastric digesta weights (Table 3). This may indicate that emptying of gastric digesta was faster in piglets fed on FM, as was also found by Sève & Laplace (1975) with early-weaned piglets fed on solid diets containing milk and fish proteins. This could have resulted in a more regular feed intake for piglets fed on the FM diet.

The differences in feed intake between diets did not result in differences in average daily gain during the first 3 d post-weaning. Piglets fed on the diets based on animal proteins (SMP and FM) seemed to gain some live weight during the first 3 d post-weaning although the differences between diets were not significant. Average daily gain agreed with the results of Bark *et al.* (1986), who studied feed intake during the first week post-weaning in piglets weaned at 21 d of age.

Tissue weights

The relative weight of the empty stomach increased gradually after weaning, while the relative weight of the small-intestinal tissue decreased from weaning until 3 d after weaning. The same trends were found by Kelly *et al.* (1991*a*) with piglets weaned at 14 d of age. The initial post-weaning decrease in relative small-intestinal weight may be related to the decline in feed intake in these animals compared with intake during the suckling period. It could also indicate post-weaning morphological gut wall changes, because it was found that all piglets at day 6 had tongue- and leaf-shaped jejunal villi.

The (relative) pancreatic weight of SPC- and SMP-fed piglets increased from weaning until day 10. This is in accordance with the results of Kelly *et al.* (1991*a*) with piglets weaned at 14 d of age and fed on a diet containing skimmed-milk powder, fish meal and soya-bean meal. Piglets fed on the SBM diet had the lowest relative pancreatic weight at day 3 and piglets fed on the FM diet at day 6. The low pancreatic weight may be associated with the relatively (although not always significantly) low enzyme activities with the SBM-and FM-fed piglets on days 3 and 6 respectively.

Digesta pH

The increase in stomach pH after weaning is in accordance with the results of Wilson & Leibholz (1981 b) and Efird *et al.* (1982). This result can be explained by post-weaning feed intake pattern and/or the buffering capacity of the post-weaning diets. A high pH in the stomach could lead to bacterial proliferation (Banwart, 1981) and to disturbance of normal pepsin (*EC* 3.4.23.1) function (Kidder & Manners, 1978).

At day 10, piglets fed on the soya-bean diets had lower pH in gastric contents than piglets fed on the animal protein sources. This could be explained by the buffering capacity of the diets, which was lower for the soya-bean diets (Table 1).

Gastric PP:CP ratio

The changes in gastric PP: CP ratio after weaning indicate that the degree of gastric protein breakdown is higher for solid diets than for sow's milk. This could be explained by the predominance of chymosin (EC 3.4.23.4) compared with pepsin (EC 3.4.23.1) activity in

sucking piglets. Before weaning, coagulation of milk proteins (clot formation) is more important than protein hydrolysis (Cranwell & Moughan, 1989). Between days 3 and 10 an increase in gastric PP:CP ratio was found, indicating a decrease in gastric protein breakdown and/or an increase in gastric emptying rate of soluble protein.

At day 10 the gastric PP:CP ratio was lower for the FM-fed piglets than for the SPCfed piglets, indicating a higher degree of gastric protein breakdown with the FM diet, since it was suggested earlier that gastric emptying rate was not decreased with the FM diet.

It is clear that the extent of gastric protein hydrolysis depends on age (or time after weaning) and dietary composition (protein source). This was also found by Leibholz (1986) who reported that piglets aged 28 d had higher stomach pH and less gastric protein breakdown than older piglets.

Gut wall morphology

The tongue- and leaf-shaped villi at day 6 are a common finding in newly-weaned piglets (Hampson, 1986; Deprez *et al.* 1987; Cera *et al.* 1988). Villus lengths were comparable with those reported by Deprez *et al.* (1987) of piglets at day 6 after weaning onto a dry diet, and by Hampson (1986) with piglets at day 5 after weaning, and by Miller *et al.* (1986) with piglets at 1 week after weaning. Crypt depths were slightly smaller than those reported by Hampson (1986), Miller *et al.* (1986), Deprez *et al.* (1987) and Kelly *et al.* (1991*a*).

The positive relationship between jejunal villus lengths and feed intake has been described previously by Kelly *et al.* (1991*b*). These authors used intragastric-tube feeding to establish different feeding levels in newly-weaned piglets. Villus lengths and crypt depths were positively related to feed intake (Kelly *et al.* 1991*b*) as also found in the present experiment. This relationship could indicate a stimulatory effect of feed intake on development of the gut wall.

It was proposed by Gall & Chung (1982) in rabbits and by Cera *et al.* (1988) in pigs that low feed intake during the early post-weaning period may be a contributing factor to reduced villus height. However, Kelly *et al.* (1991*b*) also found reductions in villus height in piglets fed through gastric intubation to maintain continuous nutrient supply.

Enzyme activities

The development of trypsin and chymotrypsin activities in pancreas and jejunum after weaning strongly depended on dietary protein source and post-weaning feed intake. At day 3, 'non-eaters' apparently stored large amounts of trypsin and chymotrypsin in their pancreatic tissue without substantial secretion into the gut. Intestinal substrate availability seems to be involved in the stimulation of pancreatic trypsin and chymotrypsin secretion as was suggested by DiMagno et al. (1973), Niederau et al. (1986) and Valette et al. (1992). This mechanism is stimulated through the digestive endproducts of intestinal protein digestion (Grendell & Rothman, 1981; Valette et al. 1992). DiMagno et al. (1973) found that essential amino acids infused into the duodenum or jejunum of humans stimulated pancreatic enzyme secretion. They postulated that the products of protein digestion after absorption inhibit pancreatic enzyme secretion through glucagon release. The study of Niederau et al. (1986) showed that arginine and lysine (the sites of tryptic cleavage) specifically caused the release of trypsinogen in a pancreatic tissue homogenate whereas phenylalanine and tryptophan (sites of chymotryptic cleavage) caused release of trypsinogen and chymotrypsinogen. Valette et al. (1992) found in experiments with pancreas-cannulated growing pigs fed on diets based on either casein or rape-seed that dietary protein source influences pancreatic enzyme secretion.

365

Skimmed-milk powder appeared to be the strongest stimulant of trypsin synthesis and secretion during the first 3 d post-weaning. At day 6, high pancreatic and jejunal trypsin activities were found with the SPC-fed piglets, while at day 10 the effect of dietary protein source on trypsin activities had disappeared. Feed intake was positively related to pancreatic trypsin activity and therefore might have affected trypsin synthesis.

The interaction between dietary protein source and feed intake during the first 3 d postweaning with respect to pancreatic chymotrypsin activities is striking. Only piglets fed on FM (i.e. piglets consuming on average more than 100 g feed/d during the first 3 d postweaning showed a positive relationship between feed intake and pancreatic chymotrypsin activity.

Piglets fed on the SMP diet had low feed intakes but higher gastric digesta weights compared with piglets fed on the FM diet. This suggests a higher rate of gastric emptying when FM was fed. A faster gastric emptying combined with a higher gastric pH leads to a more regular supply of more alkaline digesta to the duodenum. From this it can be expected that the pancreas is less challenged to secrete bicarbonate into the gut lumen. This hypothesis is supported by the finding that pancreatic tissue weight was also lower for piglets fed on the FM diet. The low enzyme activities in the jejunum of piglets fed on FM could reflect a lower need for pancreatic enzymes when gastric emptying occurs more gradually (i.e. when the FM diet is fed). It is evident that piglets fed on the FM diet had the highest feed intake during the first 3 d post-weaning. This could imply a more regular development of feed intake of newly-weaned piglets fed on the FM diet. This regular increase in feed intake after weaning may also imply a better development of the enzyme system, reflected by the positive relationship between feed intake and enzyme activities associated with the FM diet. At day 6 the lowest chymotrypsin activities were found with the FM diet and the highest with the SMP and SPC diets. By day 10 the differences between diets had disappeared, while feed intake was still related to total pancreatic chymotrypsin activity. The trypsin: chymotrypsin ratio in pancreas and jejunum was lower for 'noneaters' than for 'eaters'. This is in accordance with the findings of Corring et al. (1978), Efird et al. (1982), Owsley et al. (1986) and Lindemann et al. (1986) who state that chymotrypsin is the predominant pancreatic protease during the suckling period, while trypsin increases specifically after weaning. Our results indicate that the shift from chymotrypsin to trypsin may be related to post-weaning solid feed intake rather than to weaning itself.

CONCLUSIONS

During the first 3 d post-weaning, feed intake was affected by dietary protein source. Dietary FM had a stimulatory effect on the development of post-weaning feed intake, probably related to modifications of gastric emptying patterns which may in turn be related to intestinal protein digestion. SPC diet was associated with high pancreatic tissue weight. Dietary protein source affected the development of trypsin and chymotrypsin activities in pancreatic tissue and jejunal digesta after weaning. Dietary FM generally resulted in low enzyme activities, while SMP and SPC were associated with high enzyme activities. Feed intake during the early post-weaning period clearly stimulated the development of the pancreas and the gut wall.

Dietary buffering capacity, gastric protein hydrolysis and gastric emptying seem to be important factors in the digestion of different protein sources by newly-weaned piglets. From the results presented herein it can be derived that feed intake as well as dietary composition are important factors for the development of the digestive organs of newlyweaned piglets. The authors wish to thank Mr H. Schipper of the Department of Experimental Animal Morphology and Cell Biology for the assistance with the measurement of villus heights and crypt depths.

REFERENCES

- Banwart, G. J. (1981). Basic Food Microbiology. Westport, Connecticut: The AVI Publishing Company.
- Bark, L. J., Crenshaw, T. D. & Leibbrandt, V. D. (1986). The effect of meal intervals and weaning on feed intake of early weaned pigs. *Journal of Animal Science* 62, 1233–1239.
- Bergmeyer, H. U. (1974). Methoden der Enzymatischen Analyse, 3rd ed. Weinheim: Verlag Chemie.
- Cera, K. R., Mahan, D. C., Cross, R. F., Reinhart, G. A. & Whitmoyer, R. E. (1988). Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. *Journal of Animal Science* 66, 574-584.
- Corring, T., Aumaitre, A. & Durand, G. (1978). Development of digestive enzymes in the piglet from birth to 8 weeks. Nutrition and Metabolism 22, 231-243.
- Cranwell, P. D. & Moughan, P. J. (1989). Biological limitations imposed by the digestive system to the growth performance of weaned pigs. In *Manipulating Pig Production. II. Proceedings of the Biennial Conference of the Australasian Pig Science Association*, pp. 140–159 [J. L. Barnett and D. P. Hennessy, editors]. Albury, New South Wales: APSA.
- Deprez, P., Deroose, P., Van der Hende, C., Muylle, E. & Oyaert, W. (1987). Liquid versus dry feeding in weaned piglets: the influence on small intestinal morphology. *Journal of Veterinary Medicine* **B34**, 254–259.
- DiMagno, E. P., Go, V. L. W. & Summerskill, W. H. J. (1973). Intraluminal and postabsorptive effects of amino acids on pancreatic enzyme secretion. Journal of Laboratory and Clinical Medicine 82, 241–248.
- Efird, R. C., Armstrong, W. D. & Herman, D. L. (1982). The development of digestive capacity in young pigs: effects of age and weaning system. *Journal of Animal Science* 55, 1380–1387.
- Gall, D. G. & Chung, M. (1982). Effect of body weight on postnatal development of the proximal small intestine of the rabbit. *Biology of the Neonate* 42, 159–165.
- Grendell, J. H. & Rothman, S. S. (1981). Digestive end products mobilize secretory proteins from subcellular stores in the pancreas. American Journal of Physiology 241, G67-G73.
- Hampson, D. J. (1986). Alterations in piglet small intestinal structure at weaning. Research in Veterinary Science 40, 32-40.
- Jensen, A. H. (1966). Pelleting rations for swine. Feedstuffs 38, 24-27.
- Jones, E. E. (1986). Biological development and nutritional requirement of the neonatal pig. Proceedings of the Georgia Nutrition Conference 1986, pp. 145-162. Georgia, USA: University of Georgia.
- Kelly, D., Smyth, J. A. & McCracken, K. J. (1991 a). Digestive development of the early-weaned pig. 1. Effect of continuous nutrient supply on the development of the digestive tract and on changes in digestive enzyme activity during the first week post-weaning. *British Journal of Nutrition* 65, 169–180.
- Kelly, D., Smyth, J. A. & McCracken, K. J. (1991b). Digestive development of the early-weaned pig. 2. Effect of level of food intake on digestive enzyme activity during the immediate post-weaning period. *British Journal of Nutrition* 65, 181–188.
- Kidder, D. E. & Manners, M. J. (1978). Digestion in the Pig. Bristol: Scientechnica.
- Kik, M. J. L., Huisman, J., Van der Poel, A. F. B. & Mouwen, J. M. V. M. (1990). Pathological changes of the small intestinal mucosa of piglets after feeding of *Phaseolus vulgaris* beans. *Veterinary Pathology* 27, 329–334. Leibholz, J. (1986). Some aspects of digestion in the pig from birth to 56 days of age. *Proceedings of the Nutrition*
- Society (Australia) 11, 32-39. Lindemann, M. D., Cornelius, S. G., El Kandelgy, S. M., Moser, R. L. & Pettigrew, J. E. (1986). Effect of age,
- weaning and diet on digestive enzyme levels in the piglet. *Journal of Animal Science* 62, 1298–1307. Liptrap, D. O. & Hogberg, M. G. (1991). Physical forms of feed : feed processing and feeder design and operation.
- In Swine Nutrition pp. 373–386 [E. R. Miller, D. E. Ullrey and A. J. Lewis, editors]. Boston: Butterworth-Heinemann.
- Miller, B. G., James, P. S., Smith, M. W. & Bourne, F. J. (1986). Effect of weaning on the capacity of pig intestinal villi to digest and absorb nutrients. *Journal of Agricultural Science, Cambridge* 107, 579–589.
- Niederau, C., Grendell, J. H. & Rothman, S. S. (1986). Digestive end products release pancreatic enzymes from particulate cellular pools, particularly zymogen granules. *Biochimica et Biophysica Acta* 881, 281–291.
- Owsley, W. F., Orr, D. E. & Tribble, L. F. (1986). Effects of age and diet on the development of the pancreas and the synthesis and secretion of pancreatic enzymes in the young pig. Journal of Animal Science 63, 497-504.
- Sève, B. & Laplace, J. P. (1975). Influence de la substitution des protéines du lait par des protéines de poisson sur quelques charactéristiques du contenu gastrique chez le porcelet sevré à 12 jours (Influence of the substitution of milk proteins by fish proteins on some characteristics of the gastric content in the piglet weaned at 12 days). Annales de Zootechnie 24, 43-57.
- Souffrant, W. B. (1991). Endogenous nitrogen losses during digestion in pigs. In Proceedings of the Vth International Symposium on Digestive Physiology in Pigs. EAAP Publication no. 54, pp. 147–166. [M.W. A. Verstegen, J. Huisman and L. A. Den Hartog, editors] Wageningen: European Association for Animal Production.

C. A. MAKKINK AND OTHERS

Statistical Analysis Systems (1990). SAS Procedures Guide, Version 6, 3rd ed. Cary, NC: SAS Institute Inc.

- Ternouth, J. H., Roy, J. H. B. & Siddons, R. C. (1974). Concurrent studies of the flow of digesta in the duodenum and of exocrine pancreatic secretion of calves. 2. The effects of addition of fat to skim-milk and of 'severe' preheating treatment of spray-dried skim-milk powder. *British Journal of Nutrition* 31, 13-26.
- Valette, P., Malouin, H., Corring, T., Savoie, L., Gueugneau, A. M. & Berot, S. (1992). Effects of diets containing casein and rapeseed on enzyme secretion from the exocrine pancreas in the pig. *British Journal of Nutrition* 67, 215-222.
- van Baak, M. J., Rietveld, E. C. & Makkink, C. A. (1991). Determination of trypsin and chymotrypsin activity in pancreatic juice: the effect of freeze-drying and storage. In *Proceedings of the Vth International Symposium* on Digestive Physiology in Pigs. EAAP Publication no. 54, pp. 356–360 [M.W. A. Verstegen, J. Huisman and L. A. den Hartog, editors]. Wageningen: European Association for Animal Production.
- Wilson, R. H. & Leibholz, J. (1981a). Digestion in the pig between 7 and 35 days of age. 1. The performance of pigs given milk and soya-bean proteins. British Journal of Nutrition 45, 301-319.
- Wilson, R. H. & Leibholz, J. (1981 b). Digestion in the pig between 7 and 35 days of age. 2. The digestion of dry matter and the pH of digesta in pigs given milk and soya-bean proteins. British Journal of Nutrition 45, 321-336.
- Wilson, R. H. & Leibholz, J. (1981c). Digestion in the pig between 7 and 35 days of age. 3. The digestion of nitrogen in pigs given milk and soya-bean proteins. *British Journal of Nutrition* **45**, 337–346.

Printed in Great Britain