
DISCRETE SPACE-TIME AND INTEGRAL LORENTZ 
TRANSFORMATIONS 

ALFRED SCHILD 

Introduction. Modern physical theory, both classical and quantal, faces 
serious difficulties which arise from the divergence of certain integrals. 
Perhaps the best known of these "infinities" is the self-energy of the point 
electron. Most of the simpler devices used to eliminate the infinities, such 
as the introduction of a finite electron radius, are non-relativistic and must 
therefore be rejected. Relativistic theories1 which do avoid some or all of 
the infinities are very complicated and often suffer from difficulty in physical 
interpretation. 

The idea of introducing discreteness into space and time has occasionally 
been considered.2 It seems likely that a physical theory based on a discrete 
space-time background will be free of the infinities which trouble contemporary 
quantum mechanics. The objection which is usually raised against such 
discrete schemes is that they are not invariant under the Lorentz group. 
The purpose of this investigation is to show that there is a simple model of 
discrete space-time which, although not invariant under all Lorentz transformations, 
does admit a surprisingly large number of Lorentz transformations. This group 
of transformations is, in fact, sufficiently large to make doubtful the validity 
of most physical objections raised against discrete space-times. 

Apart from the physical speculations in the introduction, this paper is of a 
purely mathematical nature. We consider all events in Minkowski space-time 
whose four coordinates t, x, y, z are integers. (The velocity of light is taken 
as unity.) These events form a "cubic lattice"3 in space-time. We first 
investigate the null lines which join lattice points, then the Lorentz transforma­
tions which leave the cubic lattice as a whole invariant. We shall call these 
integral null lines and integral Lorentz transformations, respectively. We also 
consider the time-like lines through lattice points which are mapped into 
lines parallel to the /-axis by an integral Lorentz transformation. These 
lines will be called integral time lines. 

It may be noted that our model of discrete space-time involves a. fundamental 
length* €, namely, the least non-zero interval between lattice points. In the 
present investigation this fundamental distance has been chosen as the unit 
of length. In any physical theory based on our model, e would probably be 
of the general order of magnitude of the classical electron radius (approximately 
10~13 cm.). 

Received January 26, 1948. 
*G. Wentzel, Rev. Mod. Phys., vol. 19 (1947), 1-18. 
2V. Ambarzumian and D. Iwanenko, Z. f. Phys., vol. 64 (1930), 563-567; L. Silberstein, 

"Discrete Space-Time," University of Toronto Studies, Physics Series (1936). For a short 
outline of the present paper, see Phys. Rev., vol. 73 (1948), 414-415. 

3"Hypercubic" would be the appropriate adjective—but we shall retain the shorter form. 
4Cf. W. Heisenberg, Ann. Phys., vol. 32 (1938), 20-33. 
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There are two attractive possibilities for making a first rough attempt at 
introducing physical theory on our discrete space-time background. The 
motion of a particle may be assumed to consist of a temporally ordered 
sequence of lattice points such that successive lattice points are joined by 
(a) integral null lines, or (b) integral time lines. In case (a), a particle always 
moves with an instantaneous velocity equal to the velocity of light, but it 
changes direction rapidly so that its average velocity can be quite low. This 
zigzag motion has a striking resemblance to some of the features of the Dirac 
electron.6 Case (b) is rather similar to (a). The main difference is that the 
instantaneous velocity of a particle may now be zero; however it is interesting 
to note that the non-zero velocities associated with integral time lines are 
all very high and exceed 0.86 times the velocity of light (Sec. 8). 

Two of the results which we obtain are particularly striking. The first 
states that the spatial projections of integral null lines are dense (Sec. 4). 
This means that particles, whose motion is of the type (a) above, can have 
instantaneous velocities in practically any direction of space. We shall also 
show that all integral null lines are equivalent in the sense that, given any 
two integral null lines, an integral Lorentz transformation can be found 
which maps one into the other (Sec. 7). 

The second result states that spatial projections of integral time lines are 
dense (Sec. 8). This means that particles, whose motion is of the type (b) 
above, can have instantaneous velocities in practically any direction of space. 

It is obvious that the cubic lattice which we are considering is invariant 
under all translations which map one lattice point into another. In this 
sense our discrete model of space-time is homogeneous. The two results 
stated above show that our model possesses also a large measure of spatial 
isotropy. 

Of any physical theory based on our model of discrete space-time we require 
invariance under integral Lorentz transformations. The integral Lorentz 
transformations are independent of the fundamental length e. Thus in the 
limit when e tends to zero we expect the resulting equations of the physical 
theory to remain invariant under integral Lorentz transformations, although 
the background is now continuous Minkowski space-time. If the limiting 
equations are at all simple they are almost certain to be invariant under all 
Lorentz transformations, since it is difficult to visualize equations in continuous 
space-time which are invariant under as substantial a subgroup of Lorentz 
transformations as that considered here without these equations being 
completely Lorentz invariant. Thus it is reasonable to hope that equations 
based on our discrete space-time model might be found which, in the limit 
€ > 0 , take the form of the equations of "continuous" relativistic physics, 
e.g. Maxwell's equations, Lorentz's equations of motion, and Dirac's equations 
for the electron. These equations of "continuous" physics would be a valid 
approximation for macroscopic phenomena and even for atomic and molecular 

5E. Schrôdinger, Sitz. Ber. Preuss. Akad. Wiss., vol. 24 (1930), 418-428. 
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theory—but they would not be appropriate for the description of nuclear 
phenomena or the theory of elementary particles. 

It is clear that we have merely chosen the simplest discrete model of space-
time. Other regular point lattices in space-time might be considered and 
perhaps found more useful. In most essentials, however, these lattices would 
behave much the same as the cubic lattice studied here. For example, the 
Lorentz transformations which leave any such lattice invariant would all be 
associated with high velocities. 

1. Gaussian Integers. In this section we collect some well-known 
definitions and theorems concerning Gaussian integers which will be used in 
the sequel. 

A Gaussian integer is a complex number a + ib whose real part a and 
imaginary part b are both integers. A real Gaussian integer is an ordinary 
integer. Gaussian integers can be added, subtracted and multiplied to yield 
other Gaussian integers; they form an integral domain. Here and in the 
following we shall refer to Gaussian integers simply as "integers." Sometimes, 
when we are dealing with ordinary integers, we shall add the adjective "real," 
but usually it will be clear from the context whether integers are real or 
complex (Gaussian). 

The complex conjugate of c = a + ib will be denoted by c = a — ib; the 
absolute value of c by |c| = + ( a 2 + b2)\ 

A unit is an integer which divides all integers. There are exactly four 
units in the Gaussian integral domain: ± 1, and ± i. 

A prime p is an integer which is divisible only by the four units zb 1, dbi, 
and by d= p, ± ip. Two integers are relatively prime if their only common 
factors are units. Similarly, a set of integers with units as their only common 
factors will be called primitive; thus a primitive vector is a vector whose 
components form a primitive set of integers. 

One of the most important properties of the Gaussian integral domain is 
that it admits of unique factorization into primes.6 By this is meant the 
following: An integer a can be written in the form 

(1.01) a=pipt...pr, 
where the pi are primes other than units; if it can also be written in the 
form 
(1.02) a = qiq2. . .qs, 

where the qi are primes other than units, then r = s, and, for a suitable 
relabelling of the factors qu • • • , qr we have 

(1.03) pi = uiqu p2 = u2q2, . . . , pr = urqr, 
where U\, u2, . . . , ur are units. 

We shall apply the term real prime to a prime, as defined above, which is 
real. This definition does not agree with the usual one for real integers in 

6G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Oxford, 1938), 
184, Theorem 215. 
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which the criterion is the absence of real non-trivial factors; thus 2 = 
(1 + i)( l — i) and 5 = (2 + i)(2 — i) are not real primes as we have defined 
the term. It is clear that any real integer p can be written in the form 

(1.04) p = qaa, 

where a, a are complex conjugate integers, and where q is the product of those 
real primes, each taken once, which are factors of p an odd number of times. 
This q is the real integer of least magnitude for which a decomposition of p 
in the form (1.04) is possible; apart from sign, q is uniquely determined by 
p. Since 2 is not a real prime, q must be odd. 

Although we shall not require it in the sequel, we add the well-known 
theorem7 that among the numbers 2, 3, 5, 7, . . . (which are usually called 
primes) those and only those of the form An + 3, n being a real integer, 
are real primes. 

An integer a + ib, where a and b are real, will be called even if a and b are 
either both even or both odd in the conventional sense; a + ib will be called 
odd if one of a, b is odd and the other even. It is immediately obvious that 
for real integers our definitions of the terms even and odd coincide with the 
conventional meaning. The following facts are easily proved : 

An even integer is divisible by the prime 1 + i, an odd integer is not. 
(Note that the primes 1 — i, — 1 + i, — 1 — i differ from 1 + i only by the 
unit factors —i, i, — 1, respectively.) The sum of two integers is even if the 
integers are both even or both odd; otherwise the sum is odd. The product 
of two integers is odd only if both factors are odd; otherwise it is even. These 
rules are easy to remember as they are all familiar from the conventional 
properties of even and odd real integers; in the case of Gaussian integers the 
conventional role of 2 is taken over by the prime 1 + i which is a repeated 
factor of 2 : 
(1.05) 2 = - *(1 + i)\ 

We require some further theorems of which the first is a standard result: 
If a and b are relatively prime, then there exist integers / and m such that 

(1.06) la - mb = 1. 
Conversely (1.06) implies that a and b are relatively prime. 

Equation (1.06) may be regarded as a diophantine equation for the unknown 
integers I and m. If l, m is a particular solution, then the general solution is 
I + pby m + pa, where p is an arbitrary integer. Thus the general solution 
of (1.06), if relatively prime integers a and b are assigned, involves one discrete 
complex parameter p or two discrete real parameters. If (1.06) is now regarded 
as a diophantine equation for the four unknown integers a, b, I, m, then there 
is a discrete sixfold infinity of solutions, since the complex integers a and b 
can be chosen arbitrarily except for the restriction that they be relatively prime. 

In (1.06), a and b are either both odd or else one of them is odd and the other 
even. If a and b are both odd, then one oïl, m must be odd and the other 
even, so that a + b + I + m is odd. 

7Hardy and Wright, Theory of Numbers, 219, Theorem 252. 
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In the other case let us, for the sake of definiteness, take a even and b 
odd. Then one of two possibilities can arise: (i) / and m are both odd, so 
that a + b + I + w is odd ; (ii) I is even and m is odd, so that a + b .+ I + m 
is even. Given a solution of (1.06) in which a is even and b, l, m are odd, then 
(1.07) (I + 6)a - (m + a)6 = 1, 
and a,(l + 6) are even, b, (m + a) are odd. We easily deduce the results: 

If two relatively prime integers a and b are assigned, a being even and b 
odd, then there exists an even integer I and an odd integer m, satisfying (1.06). 

Equation (1.06) has a discrete sixfold infinity of solutions in integers, 
such that a -{- b + I -\- ni is even. 

2. Spinors and Tensors. We give here a short survey of the spinor 
calculus8 in the form in which it will be applied to our problem. 

In a complex plane (i.e. a plane with two complex coordinates), called the 
spin space, vectors and tensors are defined by their usual transformation 
properties. Thus 
(2.01) c'a = X / c*, 
where the X "̂ are constants, is the transformation equation of a contravariant 
spinvector ca. Greek suffixes range over 1, 2 and the usual range convention 
and summation convention for repeated suffixes are assumed. The components 
of ca are complex and we denote their complex conjugates by ca. Then, 
obviously, 
(2.02) c'* = X / <*, 

where X$a denotes the complex conjugate of \£. Expressions such as aa^y 

aafi, aafiy, etc., are called contravariant spintensors or spinors if they have, 
respectively, the same transformation equations as cV3, cac&, cac^cy

1 etc. If, 
in a spinor, dots are placed on undotted suffixes and the dots removed from 
dotted suffixes, then the resulting spinor denotes the complex conjugate of 
the original spinor; thus 

(2.03) aaji = aà(i, aàf>7 = aafiy\ etc. 

A spintensor aa" which has the symmetry property 

(2.04) akfi = a?% 

or, equivalently, 

(2.05) a " = oT\ ah = aï1, ah = a5", 

is said to be Hermitian. 
Let us now consider Minkowski space-time which is a flat real 4-space with 

coordinates 
(2.06) (/, x, y, z) s (x°, x\ x\ x3), 

and with metric tensor 

80. Laporte and G. E. Uhlenbeck, Phys. Rev., vol. 37 (1931), 1381; L. Infeld, Phys. Zeit-
sckrift, vol. 33 (1932), 475. For an early use of a similar technique see also E. Goursat, Ann. 
École Norm. (3), vol. 6 (1889), 20, § 5. 

https://doi.org/10.4153/CJM-1949-003-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-003-4


34 ALFRED SCHILD 

(2 .07) goo = 1, gll = g22 = g33 = ~ 1, grs = 0 for f ^ 5. 

Latin suffixes range over 0, 1, 2, 3 and the range and summation conventions 
are assumed. The Lorentz transformations are the linear transformations of 
the coordinates xr which leave the components of the metric tensor grs 

invariant and which do not interchange past and future. We shall henceforth 
consider only transformations which leave the origin xr = 0 fixed, i.e. homo­
geneous linear transformations. Then 

(2.08) x'r = Ls
rxs 

is a Lorentz transformation if 

(2.09) gmn Lr
m L&

n = grs, L0° > 0. 
It immediately follows that the determinant of a Lorentz transformation is 
+ 1 or — 1 . Lorentz transformations with determinant + 1 are called proper. 

We associate a real 4-vector Ar with a Hermitian spintensor aa0 by the 
relations : 

a11 = A°+ A3, A» = § ( a h + a22), 

(2.10) 
ai2 = A1 - iA2, 

02i = A1 + iA2, 

A* = i ( a i 2 + a«) , 

A2 = i j (c i 2 - a21), 

a22 = A° - A\ A* = i ( a h -a22). 
We then have 
(2.11) gmn Am An = a'11 a22 - a12 a21 = det(a ;"). 
From this identity it follows that spin-transformations X^a, which leave the 
determinant of an arbitrary Hermitian spintensor aafi invariant, induce 
transformations L/ of Minkowski space-time which leave gmn Am An invariant, 
i.e. Lorentz transformations. Now 

det (a^) = det (a*p A / \ / ) = det (aàfi) \ det (X/) j 2 . 
Thus we obtain the result: A spin-transformation X^ induces a Lorentz 
transformation if and only if the absolute value of its determinant is unity, i.e. 

(2.12) | det (X,') | = 1. 
It is easily seen that the two spin-transformations X̂ * and \pae*9 (0 any real 

number) induce the same Lorentz transformation. It follows that we may 
limit the spin-transformations to those with determinant + 1 , without 
reducing the set of Lorentz transformations which are induced by them. 
It can also be shown9 that every proper Lorentz transformation can be 
obtained from a spin-transformation. We summarize our conclusions as 
follows : 

A proper Lorentz transformation determines a spin-transformation, which 
satisfies (2.12), uniquely to within an arbitrary phase factor etd. 

Every spin-transformation \pa> satisfying 

(2.13) det (X/) = 1, 
induces a proper Lorentz transformation. To every proper Lorentz 

9 0 . Veblen and J. von Neumann, "Geometry of Complex Domains," Insti tute for 
Advanced Study mimeographed notes (Princeton, 1936). 
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t ransformation there correspond exactly two spin-transformations which 
satisfy (2.13) and which differ in sign only. 

Spin-transformations which satisfy (2.13) leave invar iant the components 
of the real skew-symmetric spintensor ca^, defined by : 

(2.14) e11 = e22 = 0, €12 = - € 2 1 = 1, eà/§ = ea/s. 

Th i s spintensor may be used to lower the suffixes of other spinors, and thus 
to introduce covariant spinors cai a i /S , e tc . as follows: 

(2.15) ca = e o / % , 

c1 = c2, c2 = — ci ; 

(2.16) a * = € * * / * a*a , 

a11 = a22, a12 = — ah , a21 = — ai2 , #è2 = a i i • 

In part icular , we find t h a t 

(2 .17) €n = €22 = 0, €12 = — €21 = 1. 

If the vector Ar is associated with the Hermit ian spintensor att^ by the 

relations (2.10), and the vector Br associated similarly with the spintensor 

bafi, we deduce easily t h a t 

(2.18) Am Bm = gmn AmBn = | a* bà0. 

3. The Cubic Lattice, Integral Null Vectors, Integral Spinvectors. Consider 
the points in Minkowski space whose coordinates /, x, y, z are all real integers. 
T h e set of these points will be called the cubic lattice. 

T h e coordinates of a point P of the lattice may be regarded as the components 
of the vector OP which joins the origin 0 to P . Such a vector will be called 
an integral vector since its components are integers. For most purposes i t 
suffices t o restrict ourselves to primitive integral vectors, whose components 
have no common factor, as all other integral vectors are multiples of these. 

As in the previous section, we can associate with an integral vector 
/, x, y, z a Hermit ian spintensor aa^ by the relations 

a11 = / + z, a12 — x — iy , 

= x + iy, a22 = t—z , 
(3.01) 

a21 

and 
/ = | (ah + a22), 

(3 02) X = H ^ + a«), 
(3-°2) y - f r V - a " ) , 

2 = | ( a h - a2 2) . 

I t immediately follows from (3.01) t h a t the components of aa/5 are Gaussian 
integers. We also see from (3.01) t h a t any common factor of t, x, yy z mus t 
be a factor of all aafi. Equat ion (3.02) shows t h a t any factor common to the 
ad^, other than a factor of 2, mus t be a factor of t, x,'y, z. In part icular , if 
the vector /, x, y, z is to be primitive, any common factor of aa& mus t be a 
factor of 2. 
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We shall now study integral null vectors, whose components satisfy the 
equation 
(3.03) t2 - x2 - y2 - z2 = 0. 

By (2.11), this implies 
(3.04) ah a22 = a12 a21. 
Making use of the unique factorization theorem for Gaussian integers, 
a11 must split into two factors, of which one is a factor of a12, the other being 
a factor of a21. Since a11 is real, those factors can be written in the form 
mcl and nc1, where m and n are real and relatively prime, and where c1 = c1. 
Similarly, a22 splits into factors re2 and sc2, re2 being a factor of a21 and sc2 

a factor of a12, where r and s are real and relatively prime, and where c2 = c2. 
Thus we have 

a11 = mn clcl , a}2 — ms cxc2, 
#21 = f n c2cl ^ a22 = r s C2C2 ^ 

Since a12 = a21, we have ms = rn. It follows that m — r, n — s, or 
m = —r,n= — s. Then 

a11 = ww c1^:1, a12 = ± w« c^2 , 

a21 = ± ww c2cl, «22 = ww c2c2 . 
The factor ± 1 in the second and third of these expressions can be removed 
by absorbing it in cl or in c2. Doing this and writing p for ww, we have 

(3.05) a* = pcàcf, 
where p is a real integer. Decomposing p in the form (1.04), i.e. p = qaâ, 
we can absorb the complex integer a in both c1 and c2, thus reducing (3.05) 
to the form 
(3.06) aifi = gcV, 
where, as is easily seen, q is the product of those real primes, each taken 
once, which are contained an odd number of times in the greatest common 
factor of t, x, y, z. 

Let us now consider primitive integral null vectors. Since the square of a real 
integer leaves a remainder of 1 or 0 on division by 4, according as the integer 
is odd or even, it is easily seen from (3.03) that, of the components of a 
primitive integral null vector, t and one of x, y, z must be odd, while the 
two remaining components (two of x, y} z) must be even. 

For a primitive integral null vector, q in (3.06) must be ± 1 , and we arrive 
at the following result: 

Each primitive integral null vector determines a spinvector ca with integral 
components c1, c2, such that 
(3.07) aà* = db c V , 
where the upper or lower sign must be taken throughout. Since cxcx and 
c2c2 are both positive, we see from (3.02) that t is positive or negative 
according as the plus or minus sign is chosen in (3.07). For primitive integral 
null vectors pointing into the future we have t > 0, and thus 

(3.08) akfi = c«â. 
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Some non-primitive null vectors pointing into the future can also be 
represented in the form (3.08). Whether this is possible or whether the 
representation takes the more complicated form (3.06), with q > 1, depends 
only on the properties of the greatest common factor of the components of 
the null vector. 

From (3.08) and (3.02) it is seen that a spinvector ca with integral 
components determines an integral null vector (t, x, y> z) if and only if 
c1, c2 are both odd or both even. Such a spinvector will be called an integral 
spinvector. Note that, even if c1, c2 are integers, ca is not an integral spinvector 
if c1 + c2 is odd. 

The sum and difference of integral spinvectors are again integral spinvectors ; 
the product of an integer and an integral spinvector is an integral spinvector. 
Thus the integral spinvectors form a two-dimensional complex vector space 
with coefficients in the ring of complex integers. It is easy to see that the 
independent integral spinvectors 

(3.09) ea) s ( l + * \ 0 ) , e ( 2 ) E E ( l , l ) 

form a basis; this means that any integral spinvector c can be written in 
the form 
(3.10) c = aeoi) + &e(2), 

where a and b are integers, and that conversely any spinvector of this form 
is integral. 

The following theorem can be derived: 
The null vector associated, by (3.08), (3.02), with an integral spinvector 

ca is integral and primitive if and only if one or other of the following two 
conditions is satisfied: 

I c \ c2 are both odd and relatively prime. 

(3.11) II ca = (1 + i)d\ 
where d1, d2 are relatively prime and one of them is even, the 
other odd. 

In the first case t is odd, z is even, and one of x, y is odd, the other even; in 
the second case /, z are odd and x, y are even. By (3.08), ±ca and db ica 

determine the same null vector. 
The criterion which we have just stated solves our basic problem of 

determining all primitive integral null vectors. 
If we drop the requirement that c1, c2 be integers, we may enquire to what 

extent the spinvector ca is determined by a null vector in space-time. By 
(3.01), a null vector determines a unique Hermitian spintensor aap. Let 

(3.12) a^ = cac* = c ' V ' , 
or, equivalently, 

cV = c V 1 , c2c2 = c%12, 

c*c2 = c'{c'2 , c2cx = c 'V 1 . 
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The first two of these equations show that cn = cletd, c12 = c2e%4> (0, <f> real), 
and the last two equations imply 6 = <j>. Hence 

(3.13) c,a = cae*. 

Thus a null vector t, x, y, z, determines a spinvector ca uniquely to within an 
arbitrary phase factor etd. 

4. Integral Null Vectors are Spatially Dense. In (3.08) let us write 

(4.01) c1 = (1 + i) {p + iq) , c2 = (1 + i)r, 

where £, ç, r are real integers. By (3.02) the spinvector ca determines a null 
vector with components 
(4.02) t = p2 + q2 + r\ 

(4.03) x = 2pr, y = 2qr, z = p2 + q2 - r2. 

Equations (4.02), (4.03) determine a discrete three parameter set of integral 
null vectors which are not necessarily primitive. We shall now show that 
the spatial projections of these null vectors, i.e. the directions defined by 
(4.03), are everywhere dense. 

Consider an arbitrary direction Do in space, and let /o, w0, no be its direction 
cosines. We can then define real numbers a0, &o> Co by the equations 

(4.04) Z0 = 2aoCo, m0 = 2&0Co, ^o = #o2 + &o2 — Co2. 
We obtain, by virtue of /o2 + mo2 + no2 = 1, 
(4.05) a0 = Z0[2(l - no)]"1, b0 = m0[2(l - »0)]"*, c0 = [|(1 - n0)]\ 

It is obvious that a0, &0, ô can be approximated by rational fractions a, b, c 
such that /, m, », defined by10 

(4.06) I = 2ac, w = 26c, » = a2 + b2 - c2, 

are arbitrarily close to /o, Wo, »o, respectively. Thus the direction D, with 
direction ratios Z, m, », makes an arbitrarily small angle with Z>0. Let the 
integer d be the least common denominator of the rational fractions a, bt c. 
Then p, q, r, defined by 
(4.07) p — ad, q = bd, r = cd, 

are real integers. If we substitute these integers into (4.02) and (4.03) we 
obtain an integral null line whose spatial component (x, y, z) is immediately 
seen to have the direction D. Since D approximates Do, our assertion is 
proved. 

Having shown that a subset of all integral null vectors is spatially dense, 
it follows, a fortiori, that the same is true for the set of all integral null vectors. 
Since every integral null vector is codirectional with a primitive integral 
null vector, the set of all primitive integral null vectors is spatially dense.11 

10 I2 + m2 -J- n2 is not necessarily 1. 
uBy saying that a set of vectors is spatially dense, we mean, more precisely, that the 

directions of the spatial projections of the vectors in the set are dense. This remark applies 
also to Sec. 8. 
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5. Integral Lorentz Transformations. A Lorentz transformation 

(5.01) x ' r = L / x s 

is integral if it maps into itself, i.e. leaves invariant as a whole, the cubic 
lattice which consists of all points with integral coordinates xr. 

Consider the integral vector xs = 5m*, where m is 0, 1, 2, or 3, and where 
dm

s is 1 if 5 = m and 0 if s 9e m. The transformation (5.01) maps this vector into 
%J r == Lm

r. If (5.01) is an integral Lorentz transformation then x'r must 
be an integral vector; thus the components Lm

r must be real integers. It is 
obvious that then x'r is always integral whenever xr is. 

Since the determinant of a Lorentz transformation is ± 1, the components 
(L~~l)8

r of the inverse Lorentz transformation will be real integers if Ls
r are 

real integers. Thus a Lorentz transformation with integral components Ls
r 

maps the set of all integral vectors into the set of all integral vectors, and 
not into a proper subset of the latter. The following conclusion is immediate: 

A Lorentz transformation Ls
r is integral if and only if all its components Ls

r 

are real integers. 
Thus, by (2.09), our problem of determining all integral Lorentz 

transformations reduces to the solution of 10 quadratic diophantine equations 
in 16 unknown integers. This rather formidable mathematical problem can 
be approached indirectly by considering integral null vectors, spinvectors 
and spin-transformations, as will be shown in this section and the next. 

We shall now prove the following theorem: A necessary and sufficient 
condition for a Lorentz transformation to be integral is that the Lorentz 
transformation, as well as its inverse, map primitive integral null vectors into 
integral null vectors. The necessity of the condition is trivial; we shall 
therefore consider only its sufficiency. 

Consider the four independent primitive integral null vectors 
N(o) === (1,-- 1 , 0, 0), 

(5.02) N(l) 
N o 

== (1, 
(1. 

1, 
0, 

0, 
1, 

0), 
0), 

N(8) = (1. 0, 0, 1). 
We have 

E(o) ~ (1. 0, 0, 0) = KN(o)+N ( l)), 

(5.03) E(D == (0, 1, 0, 0) = K-N(„) + N(l)), (5.03) 
E(2) == (0, 0, 1, 0) = N(2) - |(N(„) + N ( l )), 
E(3) = (0, 0, o, 1) = N( 3 ) -KN(o)+N ( l ) ) . 

A Lorentz transformation, satisfying the hypothesis of our theorem, maps 
the vectors N(r> into integral null vectors 
(5.04) N'( r) = (t(T), X(r), y(r), S(r)), f = 0, 1, 2, 3, 
and it maps the vectors E(r) into 

E'(o) = KN ' (o )+N ' ( 1 ) ) , 
«n«H E ' ( 1 ) = K - N ' ( o ) + N ' ( 1 ) ) , 
K0'W} E'(2) = N * t 2 ) - ! ( N ' ( o ) + N ' ( l ) ) , 

E'(3) = N ' w - K N ' w + N ' d ) ) . 
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If N'( r) = M'( r)d, where d is an integer and M'( r) an integral null vector, 
then, by hypothesis, the inverse of the Lorentz transformation considered 
here maps M'( r) into an integral null vector M( r) , and therefore maps N'( r) 
into N(r> = M( r)d. But, by (5.02), the vectors N(r> are all primitive. It 
follows that d must be a unit. Hence the integral null vectors N'(r> must 
be primitive. Then by Sec. 3, t(r) and one of X(r), y(r), Z(r) must be odd, 
the other two being even. 

Since the scalar product of two vectors is an invariant, we have 

gw nN'(o)mN' ( l)» = gm»N(0)mN<i)n, 
or 
(5.06) /(o) /(i) — X(o) x(i) — y(o) yd) — Z(0) 2d) = 2. 
Thus the left-hand side of this equation is even. Combining this fact with 
the last statement of the preceding paragraph, we see that /(0) td) and one 
of the three products x(0) #(i), 3>(o) ̂ d), 3(0) 3d) must be odd. In order to be 
definite, let us take x(o) Xd) odd. Then /<0), J a), #(o), #(i) are odd, and ^(o), 
y(i)y S(o), 3d) are even. It follows that td) ± £(o), #(i) ± #(o), yd) ± ^(o), 
3d) db 3(o) are all even integers. Hence E'( r), defined in (5.05), are integral 
vectors. 

Applying the Lorentz transformation (5.01) to the vectors E( r), given by 
(5.03), we obtain 
(5.07) E ' ( r )

s = Lr
8 . 

Thus Lr
s are integers and the sufficiency of our condition is demonstrated. 

6. Integral Spin-Transformations. It seems legitimate to deduce from 
the preceding theorem that a spin-transformation is associated with an 
integral Lorentz transformation if and only if both the spin-transformation 
and its inverse map integral spinvectors into integral spinvectors. It must 
be pointed out, though, that this statement is not a priori obvious and that 
we must proceed with caution. The reason is that a spin vector is not 
uniquely determined by a primitive null vector in space-time, but is 
determined only to within an arbitrary phase factor. However, we shall 
show now that the statement made above is true if the spin-transformation 
is taken with a suitable phase factor. 

If a spin-transformation and its inverse map integral spinvectors into 
integral spinvectors, then the corresponding Lorentz transformation is integral 
since it and its inverse map primitive integral null vectors into integral null 
vectors. It is therefore sufficient to show that, given an integral Lorentz 
transformation, a spin-transformation can be found which represents it and 
which, as well as its inverse, maps integral spinvectors into integral spinvectors. 

Let Ls
r be an arbitrary integral Lorentz transformation. Since Ls

r are 
integers, it is clear, by (5.01), that the greatest common factor of the 
components of an integral vector xr is a common factor of the components 
of the transform x'r of xr under the integral Lorentz transformation. Since 
xr can also be obtained from x'r by the integral Lorentz transformation 
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(L"1)a
r
1 it follows that the xr and the x'r have the same greatest common 

factor. In particular, we have that, if an integral null vector can be represented 
in the form (3.08), the transform of this null vector under any integral 
Lorentz transformation can again be so represented. The following is easily 
deduced : 

If Apa is a spin-transformation which represents an integral Lorentz 
transformation Ls

r then \pa maps any integral spinvector into a spinvector 
which differs from an integral spinvector by at most a phase factor. 

Therefore, if we introduce the two spinvectors 
(6.01) e ( 1 ) ^ ( l + i , 0 ) , ©(2)^(1 ,1) , 
we must have 
(6.02) X , W = c- 'Va)* , Xfeof = e~iee\2)

a , 
where e'eo, e'(2), are integral spinvectors. Since A/ is determined by Ls

r 

only to within an arbitrary phase factor, we can choose this phase factor 
so that, in (6.02), <j> — 0. We can then write: 

(6.03) ( X - V V = *(Da > ( X - V « V = eide(2)
a , 

where (X-1)^" is the inverse spin-transformation which exists, by (2.12), 
and which represents the integral Lorentz transformation (L~1)S

T. 
From (6.03) we obtain, on addition, 

(6.04) ( X ~ V ( « V + e'vfi) = e(1)
a + eide{2)

a . 
Since e\\f + e\2f is integral, ed)a + etee{2)

a must be of the form e^(piq)1 

p and q being integers and \p real. Thus, by (6.01), we have 

(6.05) 1 + i + eie = e*p , 
(6.06) eid = e*q . 

From (6.06) it follows that \q\ = 1 and hence that q and u = 1/q are units. 
Then (6.05) can be written 

(6.07) 1 + * = é\up - 1). 
Taking absolute values, we find that \up — lj = 2* and thus up — 1 must 
be one of 1 + i, 1 — i, — 1 + i, or — 1 — i, since these are the only integers 
of absolute value 2\ In either of these cases e"te is a unit, by (6.07). Then 
e"(2)fi = e~t9 ef(2)fi is an integer and we can rewrite (6.03) as follows: 

(6.08) X , W = c" d)a , V « ^ = *" (2)a , 
where e"a)a = e\i)a. Since an arbitrary integral spinvector can be written 
in the form (3.10), we immediately see that \pa maps integral spinvectors 
into integral spinvectors. Similarly, corresponding to (L~"1)s

r, there must 
exist a spin-transformation ^ a which maps integral spinvectors into integral 
spinvectors. But npa can differ from (X""1)/ by at most a phase factor e%x and, 
since (X - 1)^ maps e"(2) into e(2), M/sa maps e"(2) into an integral spinvector 
elX e(2). It follows that exX is a unit and that therefore (X-1)^0 maps integral 
spinvectors into integral spinvectors. This establishes our assertion.. * 

Let us denote by v the determinant of X/ ; we know, by (2.12), that \v\ = 1. 
Writing (6.08) in the form 
(6.09) X,a*(7)' = e"(7)a, 
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and taking determinants on both sides, we have 

(6.10) v(l+i) =det(e"( 7) a) , 

by (6.01). The right-hand side of (6.10) is obviously an integer. By the 
same argument as that applied to (6.07), it follows that v is a unit, i.e. 
v — 1, v = i, or v = — 1 , 2 = —i. In the latter two cases we can absorb 
the phase factor i in X/, thus reducing these cases to the first two. 

It is now clear that every proper integral Lorentz transformation is 
represented by two spin-transformations, differing in sign only, which satisfy 
the condition 
(6.11) det (X/) = l o r i , 
and which are such that both the spin-transformation and its inverse map 
the two integral spinvectors ea> and e(2), given by (6.01), into integral 
spinvectors. Conversely, the conditions just imposed on a spin-transformation 
are sufficient to insure that the spin-transformation corresponds to an integral 
Lorentz transformation. 

Spin-transformations which satisfy the above conditions will be called 
integral spin-transformations. We shall now obtain the conditions on integral 
spin-transformations in a more explicit form. 

If det ( V ) = 1, (6.11), we have 

(6.12) (X-1)!1 = X2
2, ( X - V = - X,1, (X-1)!2 = - Xx2, ( X - V = Xi1. 

On transforming ea> and e(2) by \$a and by (X""1)/sa w e obtain the following 
four spinvectors: 

(6 13) ( ( 1 + *')Xl1 ' ( 1 + i ) X l 2 ) ' ( V + X s l ' X l ' + V ) ' 
((1 + *)X2

2, - (1 + i)Xx2), (X2
2 - X,1, - Xi2 + Xi1). 

If det (\fia) = h (6.11), we obtain by the same procedure four spinvectors 
which differ from those in (6.13) by unit factors only. Thus, in either case, 
each of the spinvectors (6.13) must be integral, i.e. the two components must 
be integers, both odd or both even. We easily deduce the following result: 

A spin-transformation X^a is integral if and only if one of the following four 
conditions is satisfied: 

I \pa are integers such that 

(6.14) X^X,2 - X^Xi2 = 1, 

and such that Xi1 + X2
X + Xi2 + X2

2 is even. 

(6.15) II V 3 = / * 7 ( l + * ' ) , 
where nf are odd integers such that 

(6.16) M I W - M21Mi2 = 2i. 

Ill X£a are integers such that 

(6.17) Xi1 X2
2 - X,1 Xx2 = i, 

and such that Xi1 + X21 + Xi2 + X2
2 is even. 
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iv v = /*7(i+*), 
where npa are odd integers such that 

(6 .18 ) Mi1 M22 - M21 MI2 = - 2 . 

In cases II and IV, (6.16) and (6.18) are, by (6.15), equivalent respectively 
to (6.14) and (6.17). In these cases the condition that the sum of the X^ be 
an even integer need not be stated separately since it follows from the other 
requirements, as can be seen by examining the possible remainders of iif on 
division by 2. 

The integral spin-transformations of types III and IV can be replaced by 
spin-transformations of determinant + 1 if the phase factor e~~lir/é = 
2 7 ( 1 + i) is introduced. This procedure has the disadvantage of intro­
ducing the irrationality 2% but it has the advantage that the resulting 
spin-transformations together with those of types I and II form a group. 

From the discussion of the diophantine equation (6.14) in Sec. 1 we see 
that there is a discrete sixfold infinity of integral spin-transformations of the 
type I. Similarly, it can be shown for each of the types II, III, and IV, that 
there is a discrete sixfold infinity of integral spin-transformations. Since 
there is a 2 - 1 correspondence between integral spin-transformations and 
proper integral Lorentz transformations, we have: 

The group of proper integral Lorentz transformations is a discrete, sixfold 
infinite set. 

We have not hesitated to "count'' the order of infinity of the integral 
Lorentz group because this emphasizes the large number of integral Lorentz 
transformations. However, since we are dealing with an enumerably infinite 
discrete group of transformations without infinitesimal elements, the statement 
that the group is sixfold infinite has no invariant significance and must not 
be taken too literally. A different parametrization of the elements of the 
group may easily result in an order of infinity other than six. 

7. Equivalence of Primitive Integral Null Vectors. We shall now prove 
that, given two primitive integral null vectors, an integral Lorentz transformation 
can be found which maps the one into the other. Thus all primitive integral 
null vectors are equivalent in the sense that no single such vector possesses 
an invariant property which is not shared by all others. 

In Sec. 3 we saw that if the vector (t, x, y, z) is a primitive integral null 
vector, then / is odd and one of x, y, z is odd, the remaining two components 
being even. A primitive integral null vector with y or x odd is mapped into 
a vector with z odd by the proper integral Lorentz transformation which 
cyclicly permutes the x —, y —, and z — axes once or twice. It follows that 
it is sufficient to prove the italicized statement for the case where the two 
assigned primitive integral null vectors have odd z — components. Then, 
by Sec. 3, the two null vectors are represented by spinvectors of the form (3.11) : 
(7.01) cl = (1 + i)d\ c2 = (1 + i)d\ 
where dl and d2 are relatively prime integers of which one is even and one 
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odd. It is obviously sufficient to show that there always exists an integral 
spin-transformation mapping an integral spinvector of the type considered 
into the spinvector ea> = (1 + i, 0). 

Consider the spin-transformation 

(7.02) X/ (? = e{1)\ 
By (7.01), we can write this 

(7.03) Xi1^1 + Xa
1d2 = 1, 

(7.04) Xi2 dl + X2
2 d2 = 0. 

The last equation is satisfied if we put 

(7.05) Xi2 = - d\ X2
2 = d\ 

Then equation (7.03) is identical with the condition (6.14). Since, by (7.05), 
Xi2 and X2

2 are relatively prime integers and Xi2 + X2
2 is odd, we can, by Sec. 1, 

find integers Xi1 and X2
X satisfying (7.03), or equivalently (6.14), and such that 

Xi1 + X2* is odd. It follows that Xi1 + X2
X + Xi2 + X2

2 is even. Thus conditions 
I (Sec. 6) for integral spin-transformations are satisfied by X/ and our proof 
is complete. 

8. Integral Time Lines are Spatially Dense. Integral time lines are the 
transforms of the /-axis (x = y = z = 0) under integral Lorentz transforma­
tions. A primitive integral vector having the direction of an integral time 
line will be called a primitive integral time vector-, it is the transform under an 
integral Lorentz transformation of the vector 

(8.01) E(o) s (1, 0, 0, 0). 

Thus far integral Lorentz transformations have been regarded as mappings 
of space-time into itself, which map the points of the cubic lattice into other 
lattice points. However, an integral Lorentz transformation can also be 
regarded as a change to a new coordinate system, such that the points of the 
cubic lattice have again integral coordinates with respect to the new coordinate 
axes. Such a coordinate system will be called an integral Lorentz frame. 
Integral time lines are merely the /-axes of integral Lorentz frames. 

Before we investigate the main theorem of this section we shall consider 
briefly the velocities associated with integral time lines. By * Velocity* * 
is meant the velocity of a particle whose world line coincides with the integral 
time line, or, equivalently, the velocity of a particle at rest in the corresponding 
integral Lorentz frame. 

The components t, x, y> z of a primitive integral time vector satisfy the 
diophantine equation 
(8.02) t2 - x2 - y2 - z2 = 1. 

The velocity v associated with this integral time vector is given by 

(,03) . - (?+?+£) ' • 
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By (8.02), this reduces to 

(8.04) v = ( l - £ ) ' = \ {? - 1)* . 

Since t must be an integer we see that the only possible velocities are, for 
/ = 1, 2, 3, 4, . . . , 
(8.05) * = 0, ^ 3 % f 2 % ± ( 1 5 ) * , . . . . 
Remembering that we have chosen the velocity of light c equal to unity, 
we see that the velocities {other than zero) associated with integral time lines 
are very high, the smallest velocity being | 3 * = 0.866 times the velocity of light. 

An example of an integral time line, associated with the minimum non-zero 
velocity §3% is given by the transform of the £-axis under the integral Lorentz 
transformation 

' 2 1 1 1 

(8.06) U* = \ \ \ \ \ 

1 0 1 1 

We now proceed to show that integral time lines are spatially dense. 
The vector E(0) (8.01) is associated with the Hermitian spintensor a(o)a^, 
given by 
(8.07) ai0)

h = <*(o)22 = 1, a(0)
i2 = a(o)

21 = 0. 
The integral spin-transformation X/ of type I (Sec. 6) maps a(0)a" into the 
spintensor aa^, given by 

an = Xx1 Xx1 + X2
X X21, a i2 = Xx1 Xx

2 + X21 X2
2, 

(8.08) a 2 1 = ~ i2 X i l + -2 2 ^ a22 ^ ~ i2 Xi2 + -2 2 ^ 

and aa? is in turn associated with the primitive integral time vector whose 
components /, xf y, z are given by 

t = KM1 Xx1 + X21 X21 + Xx
2 X12 + X2

2 X2
2), 

(8.09) x + iy = Xx
2 Xx1 + X2

2 X21, 
z = JCXi1 Xx1 + X21 X21 - X12 Xx2 - X2

2 X22). 
We shall now show that the spatial projections of the integral time vectors 
(8.09) are dense, or, equivalently, that the expression 

* , . ? _ _ 2(jr» Xi1 + _ y X21) 
( 8 . 1 0 ) z z Xx1 Xx1 + X2

X X21 - Xx2 Xx2 - X22 X2
2 

can be made to approximate to an arbitrary degree any preassigned complex 
number 0, which we may assume to be non-zero. 

Given an arbitrary non-zero complex number /3, we define a by the equation 

<8-n) ^ = ^ h -
We may take a to be 
(8.12) ' a = [l + ( l + f l 8 ) * ] / 0 , 
so that \a\ > 1, and therefore âa — 1 > 0. 
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It is obvious that, given a small positive e, we can find complex integers 
Xi1, and Xi2, which are relatively prime, such that 

2 

Then, by Sec. 1, non-zero integers X22, X21, can be 

(8.13) 

and such that Xi1 is even. 
found, satisfying 
(8.14) Xi1 X22 - Xi1 Xi2 = 1, 

and such that Xi1 + X21 + Xi2 + X22 is even. Then X̂ ° are the components 
of an integral spin-transformation of type I (Sec. 6). From (8.14) we obtain 

X2
2 (8.15) 

by the second inequality of (8.13) 

(8.16) 

1 

Xi2 X2 2 ' 

Combining (8.13) with (8.15), we have 

X2 1 ! 

X22 
< 

Thus both X1VX12 and X27X2
: approximate a. Substituting in (8.11), we see 

that the number ft is approximated by the two fractions 

2Xi2 Xi1 2X2
2 X2

X 

(8.17) and 
Xi 1 X i 1 - X i 2 X i 2 X21 X21 - X2

2 X2
2 ' 

the two denominators being positive, since âa — 1 > 0. I t follows that & is 
approximated by the fraction which is obtained by adding the numerators 
and denominators of the fractions (8.17), i.e. (3 is approximated by (8.10). 
This completes the proof that wTe can find integral time lines whose spatial 
projections approximate any preassigned direction in space. 

Since every integral time line is codirectional with a primitive integral 
time vector, we deduce the following theorem: 

The set of all primitive integral time vectors is spatially dense. 
We add, without proof, the statement of a more general theorem which 

can be verified by arguments more complicated than, but quite similar to 
those just given above. 

Consider an integral Lorentz frame and any integral vector. The transforms 
of the integral vector under all integral Lorentz transformations form a set which 
is spatially dense. 

The preceding theorem is a special case of this. So also is the theorem of 
Sec. 4, once the equivalence of primitive null vectors (Sec. 7) is established. 
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APPENDIX 

Professor H. S. M. Coxeter was kind enough to show me some independent 
work of his which is essentially equivalent to our problem of finding all integral 
Lorentz transformations. He considers a lattice in hyperbolic 3-space consisting 
of the points of our cubic lattice which lie on the unit "sphere" 
(A) t2 - x2 - y2 - z2 = 1. 

The congruent transformations of hyperbolic space which leave this lattice 
invariant as a whole are exactly our integral Lorentz transformations. 

Coxeter chooses as his basic operation the reflection in 4-space which 
consists of adding the quantity t — x — y — z to each of the four coordinates 
t, x, y, z of a point. In our notation this transformation is given by 

^-(i-ï :i:î\ 
\ l - 1 - 1 0 / 

This is easily seen to be an integral Lorentz transformation. Combining 
iteration of this transformation with the trivial operations of permuting the 
spatial coordinates x, y, z and of changing the signs of any of the coordinates 
ty x, y, zf all integral Lorentz transformations (including reflections) are 
obtained. 

This procedure may simplify slightly some of the proofs in this paper. 
For example, to show that primitive integral null vectors are equivalent, 
take such a vector (t, x, y, z) and by changing signs make certain that t, x, y, z 
are all positive or zero. Then so long as t > 1 at least two of x, y, z must 
be non-zero since (t, x, yy z) is assumed primitive. Hence we have 

t = (x2 + y2 + z2)h < x + y + z ^ {3(x2 + y2 + z2)}h < 2t. 
It follows that — t < t — x — y — z < 0. Thus performing (B) and changing 
signs again, we obtain an integral null vector whose ^-component has been 
decreased. Repeating this process it is clear that we must finally arrive at 
one of the forms (1, 1, 0, 0), (1, 0, 1, 0), or (1, 0, 0, 1). Permuting the spatial 
coordinates we can reduce the given primitive integral null vector to the 
standard form 
(C) (1, 1, 0, 0). 
This establishes the theorem of Sec. 7. 

University of Toronto 
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