A NEW SPACE WITH NO LOCALLY UNIFORMLY ROTUND RENORMING

BY
RICHARD HAYDON AND VACLAV ZIZLER

Abstract

We construct a Banach space X which has no equivalent (wLUR) norm but which has no subspace isomorphic to l_{∞}.

1. Introduction. It was shown by Lindenstrauss [4] that l_{∞} admits no locally uniformly rotund (LUR) renorming. Other known spaces for which this is true (such as l_{∞} / c_{0} and $l_{\infty}(\Gamma)$ with Γ uncountable, which actually admit no rotund renorming) contain isomorphic copies of l_{∞} and the question has been posed whether l_{∞} is in fact the unique obstruction to (LUR) renorming. Similar questions arose in the context of non-reflexive Grothendieck spaces and were answered in [1] and [5]. In this paper, we modify the construction given in [1] to provide an example of a closed sublattice X of l_{∞} which has no subspace isomorphic to l_{∞} but which allows no (LUR) renorming.

Our notation and terminology for Banach spaces are mostly standard; we write ball X for $\{x \in X:\|x\| \leqq 1\}$ and $\operatorname{sph} X$ for $\{x \in X:\|x\|=1\}$. A Banach space X is said to have a locally uniformly rotund (LUR) norm if $\left\|x-x_{n}\right\| \rightarrow 0$ whenever $x, x_{n} \in$ sph X are such that $\left\|\left(x+x_{n}\right) / 2\right\| \rightarrow 1$. If the above hypothesis on x and x_{n} implies only that $x_{n} \rightarrow x$ weakly then X is said to have a (wLUR) norm. The example we give actually has no (wLUR) renorming.

The plan of the paper is simple. Paragraph 2 introduces the class of "tree-complete" sublattices of l_{∞} defined in such a way that argument of [4] may be applied without much modification. In paragraph 3 we follow the methods of [1] to construct a treecomplete sublattice with no subspace ismorphic to l_{∞}.
2. Tree complete sublattices of l_{∞}. Let X be a closed subspace of l_{∞}, equipped with a norm $\|\cdot\|$ which satisfies $\|x\|_{\infty} \leqq\|x\| \leqq M\|x\|_{\infty},(x \in N)$. When x is in $X \cap \operatorname{sph} l_{\infty}$ and A is a subset of \mathbf{N}, let $X(x, A)$ denote the set

$$
\left\{y \in X:\|y\|_{\infty}=1 \quad \text { and } \quad y|(\mathbf{N} \backslash A)=x|(\mathbf{N} \backslash A)\right\}
$$

[^0]and define
\[

$$
\begin{aligned}
& \xi(x, A)=\sup \{\|y\|: y \in X(x, A)\} \\
& \eta(x, A)=\inf \{\|y\|: y \in X(x, A)\}
\end{aligned}
$$.
\]

Lemma 2.1. If x is in $X \cap$ sph l_{∞} and A is an infinite subset of \mathbf{N} then for each. $\epsilon>0$ there exist $x^{\prime} \in \mathcal{X}(x, A)$ and an infinite subset A^{\prime} of A such that

$$
\eta\left(x^{\prime}, A^{\prime}\right) \geqq \xi\left(x^{\prime}, A^{\prime}\right)-\epsilon .
$$

Proof. First choose $x^{\prime} \in X(x, A)$ with $\left\|x^{\prime}\right\| \geqq \xi(x, A)-\epsilon / 2$ and then $x^{*} \in X^{*}$ with $\left\|x^{*}\right\|=1$ and $\left\langle x^{*}, x\right\rangle \geqq \xi(x, A)-\epsilon / 2$. Extend x^{*} to a function $\mu \in\left(l_{\infty}\right)^{*}$.

If A_{1}, A_{2}, \ldots are disjoint infinite subsets of A then

$$
\|u\| \geqq \sum_{n=1}^{\infty}\left\|\mathbf{1}_{A_{n}} \cdot \mu\right\|
$$

because l_{∞}^{*} is an (AL)-space. Hence there exists n such that $\left\|\mathbf{1}_{A_{n}} \cdot \mu\right\|<\epsilon / 4$. Take $A^{\prime}=A_{n}$. Now let y be in $X\left(x^{\prime}, A^{\prime}\right)$. We have

$$
\begin{aligned}
\left\langle x^{*}, y\right\rangle & =\left\langle x^{*}, x^{\prime}\right\rangle+\left\langle x^{*}, y-x^{\prime}\right\rangle \\
& =\left\langle x^{*}, x^{\prime}\right\rangle+\left\langle\mathbf{1}_{A_{n}} \cdot \mu, y-x^{\prime}\right\rangle .
\end{aligned}
$$

Since $\left\|y-x^{\prime}\right\|_{\infty} \leqq 2$, this leads to

$$
\begin{aligned}
\left\langle x^{*}, y\right\rangle & \geqq \xi(x, A)-\epsilon / 2-2 \cdot \epsilon / 4 \\
& =\xi(x, A)-\epsilon .
\end{aligned}
$$

This gives the result since $\xi\left(x^{\prime}, A^{\prime}\right) \leqq \xi(x, A)$.
We now introduce some notation for the dyadic tree T. We define T to be $\cup_{n \in \mathbf{N}}\{0,1\}^{n}$; its elements are finite (possible empty) strings of 0 's and 1 's. The empty string () is the unique string of length 0 ; more generally, the length $|t|$ of a string t is n if $t \in\{0,1\}^{n}$. The tree-order is defined by $s \prec t$ if $|s|<|t|$ and $t(m)=s(m)(m<|s|)$. Each $t \in T$ has exactly two immediate successors, which we shall denote by $t .0$ and t. 1. For each infinite sequence of 0 's and 1 's, that is to say, for each $b \in\{0,1\}^{\mathbf{N}}$, there is a unique branch of T,

$$
B(b)=\{b \mid n: n \in \mathbf{N}\}
$$

We shall say that a sub-lattice X of l_{∞} is tree-complete if, whenever $\left(y_{t}\right)_{t \in T}$ is a bounded, disjoint family in X, there exists $b \in\{0,1\}^{\mathbf{N}}$ such that the (pointwise) sum

$$
\sum_{n \in \mathbf{N}} y_{b \mid n}
$$

is in X.

Notice that if X contains c_{0} and is tree-complete then, for every infinite subset B of \mathbf{N}, there is an infinite subset C of B with $\mathbf{1}_{C} \in X$. Thus when we apply Lemma 2.1 to such an X we may always arrange that $\mathbf{1}_{A^{\prime}} \in X$ and $x^{\prime} \mid A^{\prime}=0$. (Replace A^{\prime} by an infinite $A^{\prime \prime} \subset A^{\prime}$ with $\mathbf{1}_{A^{\prime \prime}} \in X$ and replace x^{\prime} by $x^{\prime \prime}=\left(x^{\prime} \wedge \mathbf{1}_{A^{\prime \prime}}\right) \vee\left(-\mathbf{1}_{A^{\prime \prime}}\right)$.)

Theorem 2.2. If X is a tree-complete sublattice of l_{∞} and X contains c_{0} then X admits no equivalent ($w L U R$) norm.

Proof.. Let $\|\cdot\|$ be an equivalent norm on X. We shall give a recursive definition of a family $\left(x_{t}\right)_{t \in T}$ in $X \cap \operatorname{sph} l_{\infty}$, a family $\left(A_{t}\right)_{t \in T}$ of infinite subsets of \mathbf{N} and a family $\left(m_{t}\right)_{t \in T \backslash\{()\}}$ of natural numbers. These will have the following properties:
(i) $A_{t} \subset A_{s}$ if $s \prec t$;
(ii) $A_{t} \cap A_{s}=\phi$ if s, t are incomparable;
(iii) $m_{t \cdot i} \in A_{t}(t \in T, i \in\{0,1\})$;
(iv) $x_{t} \mid A_{t}=0, x_{t . i}\left(m_{t . i}\right)=1$;
(v) $\xi\left(x_{t}, A_{t}\right)-\eta\left(x_{t}, A_{t}\right)<2^{-|t|}$;
(vi) $x_{t} \in X\left(x_{s}, A_{s}\right)$ if $s \prec t$.

To start, we apply Lemma 2.1 with $A=\mathbf{N}, \epsilon=1$ and x any element of $X \cap$ $\operatorname{sph} l_{\infty}$. We obtain $x_{()}$and $A_{()}$, with

$$
\left.\xi\left(x_{(}\right), A_{()}\right)-\eta\left(x_{()}, A_{()}\right)<1
$$

and may assume that $\left.x_{(}\right) \mid A_{()}=0$.
If x_{s}, A_{s} have been obtained already, we choose distinct $m_{s .0}, m_{s .1}$ in A_{s} and disjoint infinite subsets $B_{s .0}, B_{s .1}$ of $A_{s} \backslash\left\{m_{s .0}, m_{s .1}\right\}$. By inductive hypothesis, $\left\|x_{s}\right\|_{\infty}=1$ and $x_{s} \mid A_{s}=0$; so $\left\|x_{s}+e_{m_{s . i}}\right\|_{\infty}=1$ for $i \in\{0,1\}$. Moreover, $x_{s}+e_{m_{s . i}}$ is in X since X contains c_{0}. We apply Lemma 2.1 with $\epsilon=2^{-|s|-1}, x=x_{s}+e_{m_{s . i}}, A=B_{s . i}$ and obtain $x_{x . i}, A_{s . i}$ as required.

It is easy to check that this construction does produce families satisfying all of (i) to (vi). Notice that for each $b \in\{0,1\}^{\mathbf{N}}$ there is a positive real number $\rho(b)$ such that $\xi\left(x_{b \mid n}, A_{b \mid n}\right)$ decreases to $\rho(b)$ and $\eta\left(x_{b \mid n}, A_{b \mid n}\right)$ increases to $\rho(b)$ as $n \rightarrow \infty$. Thus, if $z_{n} \in X\left(x_{b \mid n}, A_{b \mid n}\right)$ for all $n \in \mathbf{N}$, we have $\left\|z_{n}\right\| \rightarrow \rho(b)$ as $n \rightarrow \infty$.

We now define a bounded, disjoint family $\left(y_{t}\right)_{t \in T}$ in X by putting

$$
\begin{aligned}
y_{()} & =x_{()} \\
y_{t, i} & =x_{t, i}-x_{t}=\mathbf{1}_{A_{t}} \cdot x_{t, i} .
\end{aligned}
$$

By tree-completeness, there exists $b \in\{0,1\}^{\mathbf{N}}$ such that the pointwise sum

$$
x=\sum_{n \in \mathbf{N}} y_{b \mid n}
$$

is in X. We note that x is in $X\left(x_{b \mid n}, A_{b \mid n}\right)$ for all n so that $\|x\|$ must equal $\rho(b)$. Moreover, for each $n, x_{b \mid n}$ and $\left(x+x_{b \mid n}\right) / 2$ are in $X\left(x_{b \mid n}, A_{b \mid n}\right)$ so that $\left\|x_{b \mid n}\right\| \rightarrow \rho(b)$ and $\left.\| x+x_{b \mid n}\right) / 2 \| \rightarrow \rho(b)$.

We can now see immediately that $(X,\|\cdot\|)$ is not (LUR) since $\left\|x-x_{b \mid n_{\infty}}\right\| \geqq 1$ for all n. (We have $x_{b \mid n}\left(m_{b \mid(n+1)}\right)=0, x\left(m_{b \mid(n+1)}\right)=1$.)

To see that X is not (wLUR) we need to find $x^{*} \in X^{*}$ such that $\left\langle x^{*}, x_{b \mid n}\right\rangle \rightarrow\left\langle x^{*}, x\right\rangle$. Let \mathcal{U} be a non-principal ultrafilter on \mathbf{N} and define $\mu \in l_{\infty}^{*}$ by

$$
\langle\mu, z\rangle=\lim _{n \rightarrow \mathcal{U}} z\left(m_{b \mid n}\right) .
$$

We have $\left\langle\mu, x_{b \mid n}\right\rangle=0$ for all n while $\langle\mu, x\rangle=1$, so that $x^{*}=\mu b i g m \mid X$ will do.
3. The construction. Our aim now is to construct a closed, tree-complete sublattice X of l_{∞} which contains c_{0} but which has no subspace isomorphic to l_{∞}. Our sublattice X will be the closed linear span of the indicator functions $\mathbf{1}_{A}$ of sets A in a certain subalgebra \mathfrak{U} of the power set $\mathfrak{\$}$ of the natural numbers. In order to exclude l_{∞} as a subspace of X, we ensure that for every infinite subset N of \mathbf{N} there is a subset M of N which is not in the trace $\{A \cap N: A \in \mathfrak{X}\}$ of \mathfrak{U} on N. In the lemma that follows, which shows how to carry out the inductive step in a construction by transfinite recursion, we suppose that each of a certain family of subsets N_{γ} of \mathbf{N} has already been assigned a "forbidden" subset M_{γ}. The lemma shows how to extend a given subalgebra, in a way that will eventually lead to tree-completeness of X, while not going against any of the existing assignments of forbidden subsets.

Lemma 3.1. Let $\gamma<\mathrm{c}$ be an ordinal and let \mathfrak{U} be a Boolean subalgebra of $\gamma \mathbf{N}$ with $\# \mathfrak{U}<\mathrm{c}$. Let $\left(M_{\beta}, N_{\beta}\right)_{\beta<\gamma}$ be a family of pairs of subsets of \mathbf{N}, with $M_{\beta} \subset N_{\beta}$, such that $M_{\beta} \neq A \cap N_{\beta}$ for all $A \in \mathfrak{X}, \beta<\gamma$. For each $k \in \mathbf{N}$, let $\left(A_{t}^{k}\right)_{t \in T}$ be a family of elements of \mathfrak{U} and assume that $A_{t}^{k} \cap A_{s}^{l}=\emptyset$ if s, t are distinct elements of T and k, l are in \mathbf{N}. Then there exists $b \in\{0,1\}^{\mathbf{N}}$ such that $M_{\beta} \neq B \cap N_{\beta}$ for all $\beta<\gamma$ and all B in the algebra generated by

$$
\mathfrak{X} \cup\left\{\bigcup_{n \in \mathbf{N}} A_{b \mid n}^{k}: k \in \mathbf{N}\right\} .
$$

Proof. For $b \in\{0,1\}^{\mathbf{N}}$ and $k \in \mathbf{N}$ let $B_{b}^{k}=\bigcup_{n \in \mathbf{N}} A_{b \mid n}^{k}$, let \mathfrak{B}_{b} be the algebra generated by $\left\{B_{b}^{k}: k \in \mathbf{N}\right\}$ and let \mathfrak{U}_{b} be the algebra generated by $\mathfrak{\mathscr { U }} \cup \mathfrak{B}_{b}$. Note that any element of \mathscr{U}_{b} may be written in the form $\left(A_{1} \cap B^{1}\right) \cup \ldots \cup\left(A_{r} \cap B_{r}\right)$ with $B_{1}, \ldots, B_{r} \in \mathfrak{B}_{b}$ and A_{1}, \ldots, A_{r} disjoint elements of \mathfrak{U}.

If the assertion of the lemma is false, then by a cardinality argument, there exist disjoint $A_{1}, \ldots, A_{r} \in \mathfrak{U}$, an ordinal $\beta<\gamma$ and distinct $b, c, d \in\{0,1\}^{\mathbf{N}}$ such that

$$
\begin{aligned}
M_{\beta} & =N_{\beta} \cap\left[\left(A_{1} \cap B_{1}\right) \cup \ldots \cup\left(A_{r} \cap B_{r}\right)\right] \\
& =N_{\beta} \cap\left[\left(A_{1} \cap C_{1}\right) \cup \ldots \cup\left(A_{r} \cap C_{r}\right)\right] \\
& =N_{\beta} \cap\left[\left(A_{1} \cap D_{1}\right) \cup \ldots \cup\left(A_{r} \cap D_{r}\right)\right]
\end{aligned}
$$

for appropriately chosen $B_{j} \in \mathfrak{B}_{b}, C_{j} \in \mathfrak{B}_{c}, D_{j} \in \mathfrak{B}_{d}$. For some natural number l we have

$$
\begin{aligned}
& B_{j} \in \operatorname{alg}\left\{B_{b}^{k}: k<l\right\} \\
& C_{j} \in \operatorname{alg}\left\{B_{c}^{k}: k<l\right\} \\
& D_{j} \in \operatorname{alg}\left\{B_{d}^{k}: k<l\right\}, \quad(1 \leqq j \leqq r) .
\end{aligned}
$$

Let m be the smallest natural number such that $b|m, c| m, d \mid m$ are distinct and define

$$
E=\bigcup_{\substack{k<l \\|t|<m}} A_{t}^{k} .
$$

Notice that $E \in \mathscr{U}$ and that $E \cap F \in \mathscr{U}$ whenever $F \in \mathfrak{B}_{b}$ (or \mathfrak{B}_{c} or \mathfrak{B}_{d}). It follows from this observation that there exists $A^{\prime} \in \mathfrak{N}$ such that $M_{\beta} \cap E=N_{\beta} \cap A^{\prime}$.

We now have to consider $M_{\beta} \backslash E$. Notice that $B_{b}^{i} \backslash E, B_{c}^{j} \backslash E, B_{d}^{k} \backslash E$ are disjoint whenever $i, j, k<l$. For any fixed $j \leqq r$ we have $A_{j} \cap B_{j} \cap N_{\beta}=A_{j} \cap C_{j} \cap N_{\beta}=A_{j} \cap D_{j} \cap N_{\beta}=$ $A_{j} \cap N_{\beta}$ (recall that the A_{j} are disjoint).

We claim that, for each j, either

$$
\left(A_{j} \cap M_{\beta}\right) \backslash E=\left(A_{j} \cap N_{\beta}\right) \backslash E \text { or }\left(A_{j} \cap M_{\beta}\right) \backslash E=\phi .
$$

If this is not the case, there exist $p \in\left(A_{j} \cap M_{\beta}\right) \backslash E$ and $q \in\left(A_{j} \cap\left(N_{\beta} \backslash M_{\beta}\right)\right) \backslash E$. Consequently, $p \in B_{j} \backslash E, q \in\left(\mathbf{N} \backslash B_{j}\right) \backslash E$ which means that, for some $i<l$, one of p, q is in B_{b}^{i} and the other not. Similarly, for some $j, k<l, B_{c}^{j} \cap\{p, q\} \neq \phi$ and $B_{d}^{k} \cap\{p, q\} \neq \phi$. This contradicts the disjointness of $B_{b}^{i} \backslash E, B_{c}^{j} \backslash E, B_{d}^{k} \backslash E$.

Finally, we see that M_{β} can be written as

$$
M_{\beta}=N_{\beta} \cap\left[A^{\prime} \cup \bigcup_{j \in J}\left(A_{j} \backslash E\right)\right]
$$

for a suitable subset J of l. This contradicts our original hypothesis.
Proposition 3.2. There exists a subalgebra \mathfrak{H} of $\mathfrak{\$ N}$, containing the finite subsets and satisfying the following two properties:
(i) for no infinite $N \subset \mathbf{N}$ do we have $\mathfrak{~}\} N=\{N \cap A: A \in \mathfrak{X}\}$;
(ii) whenever $A_{t}^{k}(k \in \mathbf{N}, t \in T)$ are elements of \mathfrak{U} such that

$$
A_{t}^{k} \cap A_{s}^{j}=\phi \quad(k, j \in \mathbf{N} ; s \neq t),
$$

there exists $b \in\{0,1\}^{\mathbf{N}}$ such that

$$
\bigcup_{n \in \mathbf{N}} a_{b \mid n}^{k} \in \mathscr{U} \quad \text { for all } k \in \mathbf{N} .
$$

The proof of this proposition uses the preceding lemma in the same way that $1 E$ was used for $1 D$ in [1].

Theorem 3.3. There is a closed sublattice X of l_{∞} which admits no equivalent (wLUR) norm but which has no subspace isomorphic to l_{∞}.

Proof. We construct \mathfrak{U} as in 3.2 and take X to be the closed linear span of $\left\{\mathbf{1}_{A}: A \in \mathfrak{X}\right\}$. That X has no subspace isomorphic to l_{∞} follows from the argument used in [1]. On the other hand, X contains c_{0} so that we only need to show that X has the tree-completeness property.

Let $\left(Y_{t}\right)_{t \in T}$ be a a disjointly supported family in $X \cap$ ball l_{∞}. For each $t \in T$ we can write y_{t} in the form

$$
y_{t}=\sum_{k=1} 2^{-k}\left(\mathbf{1}_{A_{t}^{k}}-\mathbf{1}_{B_{t}^{k}}\right)
$$

with $A_{t}^{k}, B_{t}^{k} \in \mathscr{U}$ and $A_{t}^{k}, B_{t}^{k} \subseteq \operatorname{supp} y_{t}$. If we apply property (ii) of 3.2 we find $b \in\{0,1\}^{\mathbf{N}}$ such that

$$
\bigcup_{n \in \mathbf{N}} a_{b \mid n}^{k} \in \mathfrak{U} \quad \text { and } \quad \bigcup_{n \in \mathbf{N}} B_{b \mid n}^{k} \in \mathfrak{H} \text { for all } k .
$$

But this means that the pointwise sum

$$
\sum_{n \in \mathbf{N}} y_{b \mid n}
$$

is in X, since we can write it as

$$
\sum_{k=1}^{\infty} 2^{-k}\left(\mathbf{1}_{A_{k}}-\mathbf{1}_{B_{k}}\right)
$$

with $A_{k}=\bigcup_{n \in \mathbf{N}} A_{b \mid n}^{k}$ and $B_{k}=\bigcup_{n \in \mathbf{N}} B_{b \mid n}^{k}$
4. Final remarks. Considerably more is known about the structure of nonreflexive Grothendieck spaces than about that of spaces without (LUR) renormings. The question of whether a non-reflexive Grothendieck space necessarily has l_{∞} as a quotient depends upon special set-theoretic axioms ([3]) and [5]); but the dual of such a space always contains $L_{1}\left(\{0,1\}^{\omega_{1}}\right)$ [2]. It is not clear whether the similarity between the example given here and the one in [1] is coincidental or whether results analogous to the above may hold for spaces without (LUR) renormings.

Added in Page-Proofs: G. A. Alexandrov and V. D. Babev [Comptes Rendus de l'Académie Bulgare des Sciences, 41 (1988), 29-32.] have shown that subsequential completeness of \mathfrak{U} is enough to guarantee that $X=X_{\mathfrak{U}}$ has no (wLUR)-renorming. Thus the example constructed in [1] fulfills the conditions of Theorem 3.3.

References

1. R. G. Haydon, A non-reflexive Grothendieck space which does not contain l_{∞}, Israel J. Math. 40 (1981), 65-73.
2. - An unconditional result about Grothendieck spaces, Proc. Amer. Math. Soc. 100 (1987), 511-516.
3. -_, M. F. Levy and E. Odell, On sequences without weak* convergent convex block subsequences, Proc. Amer. Math. Soc. 100 (1987), 94-98.
4. J. Lindenstrauss, Weakly compact sets - their topological properties and the Banach spaces they generate, Ann. of Math. Studies, 69 (1972), 235-273.
5. M. Talagrand, Un nouveau $\mathcal{C}(K)$ qui possède la propriété de Grothendieck, Israel J. Math., 37 (1980), 181-191.

Brasenose College

Oxford, England

University of Alberta
Edmonton, Alberta, Canada

[^0]: Received by the editors June 16, 1987 and, in revised form, March 24, 1988.
 AMS Subject Classification (1980): 46B20.
 © Canadian Mathematical Society 1988.

