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Abstract We construct some cusped finite-volume hyperbolic n-manifolds Mn that fibre algebraically
in all the dimensions 5 ≤ n ≤ 8. That is, there is a surjective homomorphism π1(Mn)→ Z with finitely
generated kernel. The kernel is also finitely presented in the dimensions n = 7,8, and this leads to the

first examples of hyperbolic n-manifolds ˜Mn whose fundamental group is finitely presented but not of

finite type. These n-manifolds ˜Mn have infinitely many cusps of maximal rank and, hence, infinite Betti
number bn−1. They cover the finite-volume manifold Mn. We obtain these examples by assigning some
appropriate colours and states to a family of right-angled hyperbolic polytopes P 5, . . . ,P 8, and then
applying some arguments of Jankiewicz, Norin and Wise [18] and Bestvina and Brady [7]. We exploit
in an essential way the remarkable properties of the Gosset polytopes dual to Pn, and the algebra of
integral octonions for the crucial dimensions n= 7,8.
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Introduction

We prove here the following theorem. Every hyperbolic manifold in this paper is tacitly

assumed to be connected, complete and orientable.

Theorem 1. In every dimension 5 ≤ n ≤ 8, there are a finite volume hyperbolic
n-manifold Mn and a map f : Mn → S1, such that f∗ : π1(M

n) → Z is surjective with

finitely generated kernel. The cover M̃n =H
n/kerf∗ has infinitely many cusps of maximal

rank. When n= 7,8, the kernel is also finitely presented.

We deduce, in particular, the following.

Corollary 2. In dimension n = 7,8, there is a hyperbolic n-manifold with finitely

presented fundamental group and infinitely many cusps of maximal rank. The manifold

covers a finite-volume hyperbolic manifold.
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Table 1. The Euler characteristic, Betti numbers and the number of cusps of each hyperbolic n-manifold

Mn. Each cusp of Mn is toric, that is diffeomorphic to Tn−1× [0,+∞).

Euler b1 b2 b3 b4 b5 b6 b7 Cusps

M5 0 24 120 136 39 0 0 0 40
M6 −64 18 183 411 207 26 0 0 27
M7 0 182 6321 41300 55139 24010 4031 0 4032
M8 278528 365 33670 583290 1783226 1346030 456595 65279 65280

The same assertion holds in the dimensions n= 5,6, with ‘finitely generated’ replacing

‘finitely presented’.

For every 5≤n≤ 8, the group π1(M
n) is a finite-index subgroup of the arithmetic lattice

O(n,1,Z). Recall that a group Γ is of finite type, denoted F, if it has a finite classifying

space, and of type Fm, if it has a classifying space with finite m-skeleton. When m = 1

or 2, being of type Fm is equivalent to Γ being finitely generated or finitely presented,
respectively.

Corollary 3. In dimension n = 7,8, the lattice O(n,1,Z) contains a finitely presented

subgroup Γ without torsion and with infinite Betti number bn−1(Γ). In particular, Γ is F2

but not Fn−1.

Proof. Pick Γ = π1(M̃
n) < π1(M

n) < O(n,1,Z). Since M̃n has infinitely many cusps
of maximal rank, it is homeomorphic to the interior of a manifold with infinitely

many compact boundary components and, hence, has infinite Betti number bn−1(M̃
n) =

bn−1(Γ).

For every 5≤ n≤ 8, all the finitely many cusps of Mn are toric, that is diffeomorphic

to Tn−1× [0,+∞), where we use Tm to denote the m-torus. The cover M̃n has infinitely

many toric cusps, and finitely many cusps of rank n− 2, each diffeomorphic to Tn−2×
R× [0,+∞).
The manifolds Mn and the maps f are constructed explicitly and combinatorially, so

some topological invariants may be calculated. The Euler characteristic, Betti numbers

and number of cusps of Mn are listed in Table 1.

Outline of the construction

We use as building blocks a remarkable sequence of finite-volume right-angled polytopes
Pn ⊂H

n, defined for 3≤ n≤ 8. The reflection group of Pn is a finite-index subgroup of

the integral lattice O(n,1,Z). The polytope Pn has both ideal and real vertices.

These polytopes made their first appearance in a paper of Agol, Long and Reid [1]. Their
combinatorics was then described by Potyagailo and Vinberg [30], and more information

was later collected by Everitt, Ratcliffe and Tschantz [14], who noticed, in particular, that

P 3, . . . ,P 8 are combinatorially dual to the Euclidean Gosset polytopes [16] discovered by
Gosset in 1900 and usually indicated with the symbols −121,021, . . . ,421.

The Gosset polytopes form indeed a remarkable family of semiregular polytopes. The

1-skeleton of 221 is the configuration graph of the 27 lines in a generic cubic [11], while
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321,421 are intimately connected with the integral octonions and the E8 lattice. It has
been a great pleasure to study these beautiful objects for this project.

The hyperbolic manifold Mn is constructed by assembling some copies of Pn by means

of a suitable colouring of its facets. This is a standard procedure that works with any
right-angled polytope and was used (with a different language) by Löbell in 1930 with

the right-angled dodecahedron to build the first compact hyperbolic 3-manifold (see [38]).

For our purposes here, it is important to find a colouring with few colours and many

symmetries. Given the remarkable properties of the dual Gosset polytopes, it is natural
to guess that some nice symmetric colourings for Pn should exist, and we show here

that this is indeed the case. In dimension n= 7,8, we derive a natural colouring from the

algebraic properties of the integral octonions.
Having constructed Mn, we build a map f : Mn → S1 by choosing an appropriate state

for Pn that is a partition of its facets into two sets, In and Out. A state defines a diagonal

map f : Mn → S1, as explained by Jankiewicz, Norin and Wise [18]. The homomorphism
f∗ : π1(M

n)→ Z is often nontrivial, and its kernel may be studied through the Bestvina-

Brady theory of combinatorial Morse functions [7]. This fundamental paper furnishes, in

particular, some conditions that, when satisfied, guarantee that kerf∗ is finitely generated

or, even better, finitely presented. The conditions are the following: If some simplicial
complexes called ascending and descending links are all connected (respectively, simply

connected), then the kernel is finitely generated (respectively, finitely presented).

The choice of an appropriate state for Pn is crucial here, and we have used again
the exceptional properties of the dual Gosset polytope, and of the integral octonions for

n= 7,8, to select a particularly symmetric state for which the abovementioned conditions

are satisfied. We took inspiration from a quaternions-generated state for the 24-cell that
worked very well in [6] to design a similar octonions-generated state for P 7 and P 8 here.

After choosing the states, the conditions on the ascending and descending links have

been verified by hand in the lower dimensions n=3,4,5 and with a computer code written

in Sage in the higher dimensions n= 6,7,8. The code may be downloaded from [39]. The
symmetries of the polytopes, of the colourings and of the states have reduced considerably

the computations involved, to keep them within few hours of process time. Without

all these exceptional symmetries, not only the proof of Theorem 1, but even the more
straightforward calculation of the Betti numbers of Mn would have been problematic.

This is especially in the higher dimensions n = 7,8, where the combinatorics is highly

not trivial, as one can guess by looking at the size of the numbers in Table 1. To the
best of our knowledge, the manifolds M7 and M8 are the first finite-volume hyperbolic

manifolds in dimension n ≥ 7 for which the Betti numbers have been computed. Some

notable examples exist in the literature in dimension 5 and 6 (see [14, 33]). The cover

M̃n =H
n/kerf∗ has a finitely generated fundamental group, and also a finitely presented

one for n= 7,8. It has infinitely many cusps for all 5≤ n≤ 8 because f is homotopically

trivial on some cusp of Mn, which, therefore, lifts to infinitely many copies of itself in M̃n.

Related work

We briefly discuss some works related to the present paper.
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Coherence. The fundamental group of a hyperbolic 3-manifold M satisfies a number of
nice properties (see [4] for a widely comprehensive discussion). In particular, Scott proved

in [35] that π1(M) is coherent : every finitely generated subgroup is also finitely presented.

This is not the case in higher dimensions, as first experienced by Kapovich and
Potyagailo [22], who constructed in 1991, a geometrically finite hyperbolic 4-manifold

with noncoherent fundamental group (see also [23, 29]). A compact example was then

built by Bowditch and Mess [8] in 1994. Later on, Kapovich, Potyagailo and Vinberg [24]
proved noncoherence for every nonuniform arithmetic lattice in Isom(Hn) with n ≥ 6,

and then Kapovich [21] for every arithmetic hyperbolic lattice in dimension n≥ 5,n �= 7.

He also conjectured in [21] that every hyperbolic lattice in dimension n ≥ 4 should be

noncoherent.
Corollaries 2 and 3 describe an even wilder situation: In dimension n = 7,8 there are

finite-volume hyperbolic n-manifolds whose fundamental group contains subgroups that

are F2 but not Fn−1. The first example of a group that is F2 but not Fm for some m≥ 3
was provided by Stallings [37]. It would be interesting to know if such subgroups may

also occur in the intermediate dimensions n= 4,5,6.

Algebraic fibrations. Theorem 1 furnishes some explicit examples of algebraically

fibring fundamental groups of hyperbolic manifolds. We recall that a group G fibres

algebraically if there is a surjective homomorphism G→ Z with finitely generated kernel.
When G= π1(M) is the fundamental group of a 3-manifold, by a well-known theorem

of Stallings [36], this condition is equivalent to the existence of a fibration M → S1. In

higher dimensions this is false in general, and the first examples of algebraic fibrations
on hyperbolic n-manifolds have appeared recently in dimension n = 4 in [2, 18]. The

paper [18] is the main inspiration for our work. In [2], the algebraic fibration is obtained

by constructing a residually finite rational solvable (RFRS) tower and then applying a
recent general theorem of Kielak [25] that transforms the RFRS property into an algebraic

fibration (under some hypothesis).

Perfect circle-valued Morse functions. In dimension 4, the algebraic fibration can

sometimes be promoted to a perfect circle-valued Morse function [6]. The algebraic

fibrations constructed here in dimension 5 ≤ n ≤ 8 cannot be promoted to perfect
circle-valued Morse functions because they are homotopically trivial on some cusps (see

Section 2.14). After writing a first draft of this paper, we could modify the construction

in dimension n= 5 to build a fibration [17].

Infinitely many cusps. Theorem 1 produces some hyperbolic manifolds with finitely

presented fundamental group and infinitely many cusps.
In dimension 3, every hyperbolic manifold with finitely generated fundamental group

has only finitely many cusps. This is yet another nice property of 3-manifolds that fails

in higher dimensions: We already know from [19, 22] that there are some hyperbolic
4-manifolds with finitely generated fundamental group and infinitely many rank-1 cusps.

With Theorem 1, we upgrade these examples by substituting ‘rank-1’ with ‘maximal

rank’ and ‘finitely generated’ with ‘finitely presented’. The reader may consult [20] for a
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comprehensive survey on 3-dimensional theorems that are not valid in higher dimension
(the paper also contains a lot of interesting material).

It is conjectured in [19] that there is no hyperbolic n-manifold with finitely generated

fundamental group and infinitely many cusps, all of maximal rank. We note that
Theorem 1 does not disprove this conjecture, since M̃n also contains finitely many cusps

of rank n−2.

Structure of the paper

We introduce the polytopes Pn and construct the manifolds Mn in Section 1 by means

of some appropriate colourings. Then in Section 2, we introduce the techniques of [18]

and build the diagonal maps f : Mn → S1 via some carefully chosen states. By analysing
the behaviour of f, we finally prove Theorem 1.

1. The manifolds Mn

We recall a general procedure to construct a manifold from a right-angled polytope P by
colouring its facets. This method was first introduced by Vesnin [38] in 1987, inspired by

the 1931 construction of Löbell of the first known compact hyperbolic 3-manifold [28] and

by a paper of Al Jubouri [3]. The method was then applied in dimension 4 by Bowditch
and Mess [8], and more recently by various authors, including Kolpakov and Martelli [26]

and Kolpakov and Slavich [27].

After recalling some general facts, we turn to the polytopes P 3, . . . ,P 8 and choose some

nice colouring to generate the manifolds M3, . . . ,M8. We will use the algebraic properties
of the octonions to build M7 and M8.

1.1. Colours

Let P ⊂X
n be a right-angled finite polytope in some space Xn =H

n,Rn or Sn. We always

suppose that P has finite volume. When X
n =H

n, the polytope P may have both finite

and ideal vertices. We can interpret P as an orbifold P =X
n/Γ, where Γ is the right-angled

Coxeter group generated by the reflections rF along the facets F of P. A presentation for
Γ is

〈 rF | r2F ,[rF ,rF ′ ] 〉,

where F varies among the facets of P and F,F ′ among the pairs of adjacent facets.

A c-colouring of P is the assignment of a colour (taken from some fixed set of c elements)

to each facet of P, such that incident facets have distinct colours. We generally use
{1, . . . ,c} as a palette of colours and suppose that every colour is painted on at least one

facet.

Let e1, . . . ,ec be the canonical basis of the Z2-vector space Z
c
2. A colouring on P induces

a homomorphism Γ→ Z
c
2 that sends rF of to ej , where j is the colour of F. One verifies

that the kernel Γ′ �Γ acts freely on X
n, and, hence, we get a manifold M = X

n/Γ′ that
orbifold-covers P = X

n/Γ with degree 2c.
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Figure 1. A square P with two colours (left). The flat manifold M is constructed by taking four copies

of P and identifying the edges as shown (centre). We get a flat square torus (right).

Remark 4. A more general notion of colouring consists of assigning a vector λF ∈ Z
c
2

to each facet F of P, that is not necessarily a member of the canonical basis. We require

that facets with nonempty intersection are sent to independent vectors (see, for instance,

[27]). We do not need this more general definition here.

The manifold M = X
n/Γ′ is hyperbolic, flat or elliptic, according to the model Xn,

and is tessellated into 2c copies of P. Geometrically, we may see M as constructed by

mirroring P iteratively along facets sharing the same colours 1, . . . ,c.
More precisely, we can describe the tessellation of M into 2c copies of P as follows. For

every vector v ∈ Z
c
2, we denote by Pv an identical copy of P. We identify each facet F of

Pv via the identity map with the same facet of Pv+ej , where j is the colour of F. This

gives the tessellation of M.
We say that two colourings on P are isomorphic if they induce the same partition of

facets, possibly after acting by some isometry of P. Isomorphic colourings yield isometric

manifolds M.
As an example, we can always colour P by assigning distinct colours to distinct facets.

In this case, c equals the number of facets of P and Γ → Z
c
2 is just the abelianisation

homomorphism. With this choice, the resulting manifold M can be quite big and often
intractable (especially in higher dimension n > 3), so it is often preferable to work with

a small number of colours. Another fundamental reason for rejecting this inefficient

colouring will be given below in Corollary 13.

Here are some more interesting examples:

• The Euclidean n-cube has a unique n-colouring up to isomorphisms, where
opposite facets are coloured with the same colour. This colouring produces a flat
torus tessellated into 2n cubes. The case n= 2 is shown in Figure 1 and is easily
generalised to any n. More generally, we will prove below that any colouring on
the n-cube produces a flat torus.
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Figure 2. The minimally twisted chain link with six components.

• The right-angled spherical n-simplex has a unique colouring up to isomorphisms:
It has n+1 colours, and it produces the spherical manifold Sn with its standard
tessellation into 2n+1 right-angled simplexes.

• Every ideal hyperbolic polygon is right-angled in a vacuous sense (it has no finite
vertices) and can be 1-coloured! Indeed, the edges are pairwise disjoint and, hence,
can all be given the same colour. The construction produces the double of the
polygon, a hyperbolic punctured sphere.

• Every right-angled hyperbolic hexagon can be 2-coloured, and the result is the
double of a geodesic pair-of-pants, that is a genus-2 hyperbolic surface, tessellated
into four hexagons.

• The ideal octahedron in H
3 has a unique 2-colouring up to isomorphisms. The

colouring produces a cusped hyperbolic 3-manifold which is the complement of
the minimally twisted chain link with six components shown in Figure 2 (see [26]
for more details).

• The ideal 24-cell in H
4 has a unique 3-colouring, that produces a hyperbolic

4-manifold with 24 cusps with 3-torus sections (see [26]).

Remark 5. When P is compact, it has some finite vertex incident to n pairwise incident
facets. These facets must have distinct colours and, hence, we necessarily have c ≥ n.

When c= n, the covering M → P has the minimum possible degree and is called a small

cover. These were studied in [13]. Our examples will not be small covers because the
polytopes that we consider have some ideal vertices, and, moreover, we will often have

c > n.

Remark 6. The manifold M is always orientable: It suffices to orient Pv like P if and

only if v1+ · · ·+vc is even (see an example in Figure 1). We note that M is not guaranteed
to be orientable if one uses the more general notion of colouring of Remark 4. The crucial

fact here is that all the vectors ej ∈ Z
c
2 colouring the facets have an odd number of 1’s in

their entries.

1.2. Cusp sections

When P ⊂ H
n has some ideal vertex, the resulting manifold M has some cusps, and

there is a simple and straightforward procedure to derive its shape directly from the

combinatorics of P and its colouring, that we now explain.
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Let v be an ideal vertex of P ⊂H
n. The link of v in P is by definition the intersection

of P with a small horosphere centered at v. It is a right-angled Euclidean (n− 1)-

parallelepiped C. We use the letter C because a parallelepiped is combinatorially a cube,

and, in fact, it will also be isometric to a cube in all the cases that are of interest here.
The parallelepiped C inherits a colouring from that of P : it suffices to assign to every

(n− 2)-facet of C the colour of the (n− 1)-facet of P that contains it. The induced

colouring on C generates an abstract compact flat (n− 1)-manifold N that orbifold-

covers C by the procedure explained above. The manifold N is tessellated into 2c
′
copies

of C, where c′ ≤ c is the number of colours of C.

By construction, the preimage of C in M consists of some copies of N. The number of

copies is equal to 2h, where h = c− c′ is the number of colours in {1, . . . ,c} that are not
assigned to any facet incident to v, that is that are not assigned to any facet of C. The

preimage of C in M consists of 2c = 2h ·2c′ copies of C in total.

Summing up: There are 2h cusps in M lying above v, each with section N derived
directly from C and its induced colouring. Here are some examples:

• If P ⊂ H
2 is a 1-coloured ideal polygon, the link C at each ideal vertex v is a

1-coloured 1-cube (that is, a segment). Here, h= 0, the preimage of C is a circle
and there is one cusp above each v. The punctured sphere M has one cusp above
each ideal vertex of P.

• If P ⊂H
2 is a 2-coloured ideal triangle, there are two types of ideal vertices. Two

ideal vertices have a 2-coloured 1-cube as a link C, while the third ideal vertex has
a 1-coloured 1-cube C. We have h = 0 for the first two ideal vertices, and h = 1
for the third. Therefore, the counterimage of C consists of one circle for each of
the first two ideal vertices and two circles for the third. The manifold M has four
cusps overall, two above the first two vertices and two above the third. It is a
four-punctured sphere tessellated into four copies of P (see Figure 3).

• If P is a 2-coloured ideal octahedron, it has six ideal vertices, and the link of each
is a 2-coloured square C. We have h= 0 on each ideal vertex, so the counterimage
of C in M is a unique torus. The hyperbolic 3-manifold M has six cusps overall,
one above each ideal vertex of P. As already stated, M is the complement of the
link in Figure 2.

• If P is a 3-coloured ideal 24-cell in H
4, it has 24 ideal vertices, and the section of

each is a 3-coloured 3-cube C (see [26]). We have h = 0 on each ideal vertex, so
the counterimage of C is a single 3-torus. The hyperbolic 4-manifold M has 24
toric cusps, one above each ideal vertex of P.

1.3. The Euclidean parallelepiped

One basic example is the Euclidean right-angled n-parallelepiped

C = [0,l1]×·· ·× [0,ln]⊂ R
n.

Fix a c-colouring of C. Only opposite facets are disjoint and, hence, may share the same
colour. Therefore, we have n ≤ c ≤ 2n, there are 2n− c pairs of opposite facets with the

same colour and the remaining 2(c−n) facets with distinct colours. Let M be the flat

manifold produced by the c-colouring of C.
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Figure 3. When P is an ideal triangle with one or two colours, the manifold M is a sphere with three or

four punctures, respectively.

Proposition 7. The resulting flat manifold M is an n-torus isometric to a product of

circles of lengths a1l1, . . . ,anln. Here, ai equals 2 or 4 depending on whether the i-th pair
of opposite facets share the same colour or not.

Proof. Recall that M = R
n/Γ′, where Γ is the reflection group of C and Γ′ �Γ is the

kernel of the map Γ→ Z
c
2 induced by the colouring.

Let ri,1 and ri,2 be the reflections along the opposite facets of C that are orthogonal

to the i -th axis, for i = 1, . . . ,n. The composition ri,1ri,2 is a translation along the axis
of distance 2li. If the facets share the same colour, we have ri,1ri,2 ∈ Γ′, while if they do

not, we have ri,1ri,2ri,1ri,2 ∈ Γ′. This shows that

a1l1Z×·· ·×anlnZ< Γ′,

where ai equals 2 or 4 depending on whether the i -th pair of opposite facets share the

same colour. These two subgroups have the same index in Γ since

22n−c ·4c−n = 2c.

Therefore, Γ′ = a1l1Z×·· ·×anlnZ and M is as stated.

The proof also shows that M is tessellated into 22n−c ·4c−n = 2c copies of C. The two

extreme cases are the following: If c= n, then M is tessellated into 2c copies of C, while
if c= 2n, then M is tessellated into 4c copies.

A cusp in a hyperbolic n-manifold is toric if its section is a flat (n− 1)-torus. We

summarise our discussion as follows.

Corollary 8. If P ⊂ H
n is right-angled with some ideal vertices, every colouring on P

produces some hyperbolic n-manifold M whose cusps are all toric.
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Table 2. The number of facets, ideal vertices and finite vertices of Pn, the isometry group Isom(Pn)

expressed as a Weyl group and its order |Isom(Pn)|, and the dual Euclidean polytope.

Facets Ideal Finite Isom(Pn) Order Dual

P 3 6 3 2 A1×A2 12 Triangular prism
P 4 10 5 5 A4 120 Gosset 021
P 5 16 10 16 D5 1920 Gosset 121
P 6 27 27 72 E6 51840 Gosset 221
P 7 56 126 576 E7 2903040 Gosset 321
P 8 240 2160 17280 E8 696729600 Gosset 421

If P has c colours and v is an ideal vertex, there are 2c−c′ toric cusps in M above v,

where c′ is the number of distinctly coloured facets incident to v.

Remark 9. If we use the more general notion of colouring of Remark 4, nontoric cusps

may also appear (see, for instance, [15]).

1.4. A program in Sage

We have written a general program in Sage, available from [39], that may be used to study
a coloured right-angled polytope P and the resulting manifold M. The program takes as

an input the incidence graph of the facets of P and their colouring, and produces as an

output some information on P and, more importantly, on M. It calculates, in particular,
the Betti numbers of M via the formula stated in [9, Theorem 1.1], also explained in [15,

Section 2.2], and the number of cusps of M using Corollary 8.

1.5. The right-angled hyperbolic polytopes

We refer to the excellent papers [14] and [30] for an introduction to the sequence of right-
angled hyperbolic polytopes P 3, . . . ,P 8. These have many beautiful properties that we

now briefly summarise.

Each Pn ⊂ H
n is a finite volume right-angled polytope with both finite and ideal

vertices. The link of a finite or ideal vertex is a right-angled spherical (n− 1)-simplex

or a Euclidean (n−1)-cube, respectively. The numbers of facets, ideal vertices and finite

vertices of Pn are listed in Table 2, together with the isometry group of Pn and its

order. The isometry group acts transitively on the facets, so, in particular, these are all
isometric: In fact, every facet of Pn is isometric to Pn−1 when n≥ 4. The quotient of Pn

by its isometry group is a simplex.

1.6. Euler characteristic

Recall that the orbifold Euler characteristic of a hyperbolic right-angled polyhedron P
is zero in odd dimension, while in even dimension it can be calculated via the simple

formula

χ(P ) =

n∑
i=0

(−1)i
fi

2n−i
,
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where fi is the number of i -dimensional faces of P, including P itself (so fn = 1). Only

real vertices (not the ideal ones) contribute to f0. From this formula, we deduce the

well-known [14] values

χ(P 4) = 1/16, χ(P 6) =−1/8, χ(P 8) = 17/2.

In even dimension, the Euler characteristic and the volume are roughly the same thing,

up to a constant that will be recalled below.

1.7. The dual Gosset polytopes

Combinatorially, the polytopes Pn are dual to the Gosset polytopes listed in the last
column of Table 2 and discovered by Gosset [16] in 1900 (see [14]). Every Gosset polytope

is a Euclidean polytope with regular facets, whose isometry group (which is the same as

Isom(Pn)) acts transitively on the vertices. The regular facets of the Gosset polytope are

of two types: some (n−1)-simplexes (dual to the real vertices of Pn) and some (n−1)-
octahedra (dual to the ideal vertices of Pn). A k-octahedron, here, is the regular polytope

dual to the k -cube (sometimes also called k -orthoplex).

We will describe a colouring of Pn as a colouring of the vertices of the dual Gosset
polytope, where we require, of course, that two vertices adjacent connected by an edge

must have distinct colours (so only the 1-skeleton of the dual Gosset polytope is important

at this stage). We would like to find some colouring with a reasonably small number of
colours, and possibly a high degree of symmetry: We are confident that some natural

choices should arise from the exceptional properties of Pn and their dual Gosset polytopes,

and this is indeed the case as we will see.

We now analyse the polyhedra P 3, . . . ,P 8 individually. For each Pn, we define a
colouring and study the resulting hyperbolic manifold Mn.

1.8. The manifold M3

The hyperbolic polyhedron P 3 ⊂ H
3 is the right-angled double pyramid with triangular

base shown in Figure 4. The three vertices of the triangular base are ideal, while the two

remaining vertices are real. Each of the six faces F of P 3 is a triangle with a right-angled
real vertex and two ideal vertices.

The dual Gosset polytope is a triangular prism, whose faces are two base equilateral

triangles and three lateral squares. Its 1-skeleton is shown schematically in Figure 5. It can

be coloured with three colours in a unique way (shown in the figure) up to isomorphism.
Therefore, P 3 has a unique 3-colouring up to isomorphism. The polyhedron cannot be

coloured with less than three colours.

We equip P 3 with this 3-colouring. This produces a hyperbolic 3-manifold M3,
tessellated into 23 = 8 copies of P 3.

The link of each ideal vertex v of P 3 is a square C, that is dual to a square face of the

Gosset prism. We see from Figure 5 that C is 3-coloured: two opposite edges of C have
distinct colours, and the other two opposite edges have the same colour. By Corollary 8,

the counterimage of C consists of a single (because 23−3 = 1) torus cusp section in M3.

The hyperbolic manifold M3 has therefore three cusps, one above each vertex v of P.
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Figure 4. The polyhedron P 3 is a right-angled bipyramid with three ideal vertices along the horizontal

plane and two real ones (top and bottom in the figure).

1

1

2

2 3

3

Figure 5. The 1-skeleton of the triangular prism has a unique 3-colouring up to isomorphism, shown

here.

Using Sage, we have calculated the Betti numbers of M3:

b0 = 1, b1 = 3, b2 = 2.

We get of course, χ(M3) = 0.

1.9. The manifold M4

The hyperbolic polytope P 4 ⊂ H
4 is fully described in [30, 32], and we refer to these

sources for more details. It has 10 facets, each isometric to P 3. It has also five real

vertices and five ideal vertices.
The dual Gosset polytope 021 is the 4-dimensional rectified simplex. That is, it is the

convex hull of the midpoints of the 10 edges of a regular 4-dimensional simplex. Its

10 vertices may be seen in R
5 as the points obtained by permuting the coordinates of

(0,0,0,1,1). Two such vertices are adjacent if they differ only in two coordinates. The

Gosset polytope 021 has 10 facets; of these, five are regular tetrahedra (created by the

rectification) dual to the finite vertices of P 4, and five are regular octahedra (the rectified
facets of the original regular 4-simplex) dual to the ideal vertices of P 4.

A convenient orthogonal plane projection of the 1-skeleton of 021 is shown in Figure 6.

We assign to 021, and, hence, to P 4, the 5-colouring depicted in Figure 7. This produces
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00011

00101 10010 1000100110

01010 01001

10100

01100 11000

Figure 6. The orthogonal projection of the 1-skeleton of the rectified simplex 021 on the plane in R5

generated by (1,ε,−ε,−1,0) and its cyclic permutations, where ε= (
√
5−1)/2= 2cos(2π/5) is the positive

root of ε2 + ε− 1. The image of the vertex (0,0,0,1,1) is indicated as 00011, and so on. Some edges are

superposed along the projection, so two vertices that are connected by an edge on the plane projection

may not be so in 021. To clarify this ambiguity, we have chosen a blue vertex and painted in red the six

vertices adjacent to it, in two cases (all the other cases are obtained by rotation).

1

1

2

2 3

3 4

4 5

5

Figure 7. A 5-colouring of the 1-skeleton of 021 and hence of P 4.

a hyperbolic 4-manifold M4, tessellated into 25 = 32 copies of P 4. We have χ(M4) =

32/16 = 2.
The polytope P 4 has five ideal vertices v1, . . . ,v5. Each vi is dual to the octahedral facet

of 021 contained in the coordinate hyperplane xi = 0, whose six vertices in Figure 6 are

precisely those with xi = 0. The case i= 1 is shown in Figure 8. We can see on the figure
that the octahedron is 5-coloured. The other four octahedra are obtained from this one

by rotating the plane projection diagram, and they are also 5-coloured.

We have discovered that the link of each ideal vertex of P 4 is a 5-coloured cube C. By
Corollary 8, the counterimage of C consists of a single (since 25−5 = 1) toric cusp section

in M4. Therefore, the hyperbolic manifold M4 has five cusps overall, one above each ideal

vertex of P 4.
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1

2

2

3

4

5

Figure 8. An octahedral facet of P 4. This is a subgraph of the 1-skeleton in Figure 7. Some edges are

superposed.

Using Sage, we have calculated the Betti numbers of M4:

b0 = 1, b1 = 5, b2 = 10, b3 = 4.

We get χ(M4) = 2 again.

1.10. The manifold M5

The hyperbolic polytope P 5 ⊂ H
5 is fully described in [30, 33], and we refer to these

sources for more details. It has 16 facets, each isometric to P 4. It also has 16 real vertices

and 10 ideal vertices. Every real vertex is opposed to a facet.

The dual Gosset polytope 121 has 16 vertices. We can represent these in R
5 as the

vertices (±1, ± 1, ± 1, ± 1, ± 1) with an odd number of minus signs. Two vertices are

connected by an edge if they differ only in two coordinates. The Gosset polytope 121 has

26 facets; of these, 16 are regular 4-simplexes dual to the finite vertices of P 5, and 10 are
regular 4-octahedra dual to the ideal vertices of P 5.

A convenient planar projection of its 1-skeleton is shown in Figure 9. We assign to

121, and, hence, to P 5, the 8-colouring depicted in Figure 10. This produces a hyperbolic
5-manifold M5 tessellated into 28 = 256 copies of P 5.

The polytope P 5 has 10 ideal vertices. Each ideal vertex is dual to a 4-octahedral facet

of 121 contained in a hyperplane xi = ±1. We deduce then that there are two types of

4-octahedral facets, depicted in Figure 11. Eight facets are of the left type, and two of
the right type (all obtained by rotating the graphs shown in the figure). The vertices of

the facets of the first type inherit an 8-colouring, while those of the facets of the second

type inherit a 4-colouring.
We have discovered that there are eight ideal vertices of the first type and two ideal

vertices of the second type in P 5. The link of an ideal vertex of the first type of P 5 is an

8-coloured 4-cube C, while the link of an ideal vertex of the second type is a 4-coloured
4-cube C. Note that four and eight are precisely the minimum and maximum number

of colours on a 4-cube. By Corollary 8, the counterimage of C consists of a single (since

28−8 = 1) toric cusp section in the first case, and of 28−4 = 24 = 16 toric cusp sections in
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Figure 9. The orthogonal projection of the 1-skeleton of 121 on the plane spanned by the vectors

(
√
2,
√
2,2−

√
2,2−

√
2,0) and (2−

√
2,
√
2−2,

√
2,−

√
2,0). The string ±±±±± indicates the projection

of the vertex (±1, ± 1, ± 1, ± 1, ± 1). Some edges are superposed along the projection, so two vertices

that are connected by an edge on the plane projection may not be so in 121. To clarify visually, for this

ambiguity, we have chosen a blue vertex and painted in red the 10 vertices adjacent to it, in two cases

(all the other cases are obtained by rotation).

1

1

6

2

8
6

2

8

4

7

3

5
4

7

3

5

Figure 10. The chosen colouring for P 5.
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Figure 11. The ten 4-octahedral facets of 121 are of two types. Eight are obtained by rotating the type

shown on the left, and two by rotating the type shown on the right. These are subgraphs of the 1-skeleton

in Figure 10. Some edges are superposed.

the second case. Therefore, the hyperbolic manifold M4 has 8 ·1+2 ·16= 40 cusps overall.
The first eight cusps lie above the eight vertices of the first type, and the remaining 32

cusps lie above the two vertices of the second type, distributed as 16 above each.

Using Sage, we have calculated the Betti numbers of M5:

b0 = 1, b1 = 24, b2 = 120, b3 = 136, b4 = 39.

We get of course, χ(M5) = 0.

1.11. The manifold M6

The hyperbolic polytope P 6 ⊂ H
6 is fully described in [14, 30], and we refer to these

sources for more details. It has 27 facets, each isometric to P 5. It also has 72 finite
vertices and 27 ideal vertices. Every ideal vertex is opposed to a facet.

The dual Gosset polytope 221 has 27 vertices. We can represent them in the affine

hyperspace of R7 of equation x1+ · · ·+x6−3x7 =−1, as the vertices

(−1,0,0,0,0,0,0), (1,1,0,0,0,0,1), (0,1,1,1,1,1,2)

and all the other vertices obtained from these by permuting the first six coordinates, so
we get 6+15+6 = 27 vertices in total (see [14, Table 2]. Two vertices are connected by

an edge if their Lorentzian product in R
7 with signature (++++++−) is zero. The

Gosset polytope 221 has 99 facets; of these, 72 are regular 5-simplexes dual to the finite
vertices of P 6, and 27 are regular 5-octahedra dual to the ideal vertices of P 6.

Both P 6 and 221 have many remarkable properties. To mention one, the 1-skeleton of

221 is the configuration graph of the 27 lines in a general cubic surface (see [11]). A planar
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Figure 12. An orthogonal projection of the 1-skeleton of 221 on the plane. Some edges are superposed.

There are nine lines intersecting in the centre of the figure, each line containing three vertices that are

mutually non incident.

projection of the 1-skeleton of 221 taken from [11] is shown in Figure 12. In the figure, we

see that there are nine lines that intersect in the centre, containing each three mutually

nonadjacent vertices. This suggests that the polytope may have a nice 9-colouring.

Inspired by the figure, we describe a 9-colouring for 221. The three vertices

(−1,0,0,0,0,0,0), (1,1,0,0,0,0,1), (1,0,1,1,1,1,2)

are mutually non connected by any edge since their Lorentzian products are not zero.
We assign them the colour 1. If we permute cyclically the first six entries of these three

vertices, we get five more triplets of mutually non connected vertices, and we assign them

the colours 2, . . . ,6. Finally, we assign the colours 7,8,9 to the following remaining triplets

of mutually disjoint vertices:

(1,0,1,0,0,0,1), (0,1,0,0,1,0,1), (0,0,0,1,0,1,1);

(0,1,0,1,0,0,1), (0,0,1,0,0,1,1), (1,0,0,0,1,0,1);

(0,0,1,0,1,0,1), (1,0,0,1,0,0,1), (0,1,0,0,0,1,1).
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We equip P 6 with this 9-colouring. Each triple of facets with the same colour is called

a triplet. The colouring produces a hyperbolic 6-manifold M6, tessellated into 29 = 512
copies of P 6. We have χ(M6) =−512/8 =−64.

The polytope P 6 has 27 ideal vertices. Using our program in Sage [39], we discover

that the link of each of the 27 ideal vertices of P 6 is a 9-coloured 5-cube C. We show one

explicit example. Every facet F of P 6 is opposite to an ideal vertex, which is incident
precisely to those facets that are not incident to F. Correspondingly, every vertex v in

221 is opposite to a 5-octahedral facet, whose vertices are precisely those that are not

connected to v. The 5-octahedral facet opposite to the vertex v = (−1,0,0,0,0,0,0) has the
following vertices:

(1,1,0,0,0,0,1),(1,0,1,0,0,0,1),(1,0,0,1,0,0,1),(1,0,0,0,1,0,1),(1,0,0,0,0,1,1),

(1,0,1,1,1,1,2),(1,1,0,1,1,1,2),(1,1,1,0,1,1,2),(1,1,1,1,0,1,2),(1,1,1,1,1,0,2).

The two vertices that lie in the same column are not connected. Their colours are

1, 7, 9, 8, 6,

1, 2, 3, 4, 5.

All the nine colours are present. As we said above, using our Sage program, we discover
that a similar configuration holds at every vertex v. Therefore, by Corollary 8, the

counterimage of C consists of a single (since 29−9 = 1) toric cusp section. We deduce

finally that the hyperbolic manifold M6 has 27 cusps, one above each vertex of P 6. The
Betti numbers of M6, calculated by our program, are:

b0 = 1, b1 = 18, b2 = 183, b3 = 411, b4 = 207, b5 = 26.

We get χ(M6) =−64 again.

1.12. The manifold M7

The hyperbolic polytope P 7 ⊂H
7 is described in [14, 30]. It has 56 facets, each isometric

to P 6. It also has 576 finite vertices and 126 ideal vertices.
The dual Gosset polytope 321 has 56 vertices. We will discover below that the 56

vertices can be partitioned into 14 sets of four mutually disjoint vertices, called quartets.

This partition will be induced from a colouring of P 8, that is in turn easily described

using octonions. The precise description of the partition is given below in Section 1.14.
We equip P 7 with the 14-colouring induced by the partition into 14 quartets. This

produces a hyperbolic 7-manifold M7, tessellated into 214 = 16,384 copies of P 7.

The polytope P 7 has 126 ideal vertices. Using our Sage program, we discover that,
similarly as with P 5, there are two types of ideal vertices with respect to the chosen

14-colouring of P 7. The first type consists of 112 vertices, and the second type only 14.

The link of an ideal vertex of the first type is a 12-coloured 6-cube C, while the link of an
ideal vertex of the second type is a 6-coloured 6-cube. Note that, as with P5, the numbers

6 and 12 are the minimum and maximum number of colours in a 6-cube. From Corollary

8, we deduce that M7 has 14 ·214−6+112 ·214−12 = 4,032 cusps overall.
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Using Sage, we have calculated the Betti numbers of M7:

b0 = 1, b1 = 182, b2 = 6321, b3 = 41300, b4 = 55139, b5 = 24010, b6 = 4031.

We get of course, χ(M7) = 0.

1.13. The manifold M8

The hyperbolic polytope P 8 ⊂H
8 is described in [14, 30]. It has 240 facets, each isometric

to P 7. It also has 17,280 finite vertices and 2,160 ideal vertices.
The dual Gosset polytope 421 has 240 vertices. This beautiful albeit complicated

polytope can be described elegantly using octonions, much in the same way as the

4-dimensional 24-cell may be defined using quaternions. This viewpoint is crucial in this

paper, so we introduce it carefully.

A 3-colouring for the 24-cell. To warm up, we start by recalling that the 24 vertices

of the 24-cell are the quaternions

±1, ± i, ± j, ±k, 1
2 (±1± i± j±k).

Two such vertices are adjacent along an edge if and only if their Euclidean scalar

product is 1
2 (we identify the quaternions space with the Euclidean R

4, as usual). Every

vertex is adjacent to eight other vertices.

We can assign three colours to the 24 vertices, by subdividing them into three sets of
eight vertices each, that we call octets. These are:

(1) ±1,± i,± j,±k;

(2) the elements 1
2 (±1± i± j±k) with an even number of minus signs;

(3) the elements 1
2 (±1± i± j±k) with an odd number of minus signs.

The scalar product of two vertices lying in the same octet is an integer, so it is never 1
2 .

Therefore, this indeed defines a 3-colouring of the vertices of the 24-cell. Since the dual

of a 24-cell is another 24-cell, we also get a 3-colouring of the facets of the dual 24-cell.
This colouring was heavily employed in [26].

Here is an algebraic description of this 3-colouring that will be useful below. The

24 vertices of the 24-cell described above form a group called the binary tetrahedral

group. The eight elements ±1,± i,± j,±k form a normal subgroup of index 3, called the
quaternion group and indicated with the symbol Q8. The octets are just the three lateral

classes of Q8.

Octonions. We now turn to the Gosset polytope 421 and the octonions. For a nice
introduction to the subject, we recommend [5]. We describe an octonion as a linear

combination of 1,e1,e2, . . . ,e7. We have e2i = −1, and the multiplication of two distinct

elements, ei and ej , is beautifully described by the Fano plane shown in Figure 13. The
Fano plane is the projective plane over Z2, and it contains seven points and seven oriented

lines: every line is a cyclically ordered triple of points as in the figure. For every i �= j, we

have eiej =±ek, where ek is the third vertex in the unique line containing ei and ej , and
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e1

e2 e5e3

e4

e6

e7

Figure 13. The Fano plane. The circle should be interpreted as a line.

the sign is positive if and only if the line is cyclically oriented like ei → ej → ek. So, for
instance, e1e2 = e4 and e1e6 =−e5. In general, we get

enen+1 = en+3,

where the subscripts run modulo 7. The product is neither commutative nor associative:
for every i,j,k, we have

(eiej)ek =±ei(ejek),

where the sign is +1 if and only if ei,ej,ek belong to the same line in the Fano plane
(which is always the case, if i,j,k are not distinct).

A 15-colouring for the Gosset polytope 421. The 240 vertices of the Gosset polytope

421 are the octonions

±1, ± e1, ± e2, ± e3, ± e4, ± e5, ± e6, ± e7,
1
2 (±1± en± en+1± en+3),

1
2 (±en+2± en+4± en+5± en+6),

where n runs modulo 7. Although we will not need this information, we mention that

these are (up to rescaling) precisely the 240 nontrivial elements of smallest norm in the

E8 lattice.
We have 16 elements of type ±1 or ±ei. Each line l in the Fano plane contains three

vertices en,en+1,en+3 and determines 16 elements of type 1
2 (±1± en± en+1± en+3) and

16 elements of type 1
2 (±en+2±en+4±en+5±en+6), so we indeed get 16+7 ·16+7 ·16 =

15 ·16 = 240 vertices overall. Two vertices of 421 are connected by an edge if and only if

their Euclidean scalar product is 1
2 . One can check that every vertex is adjacent to 56

other vertices (its link is dual to P 7 that has 56 facets).
Similarly to what we did with the 24-cell, we can assign a 15-colouring to 421 by

subdividing the 240 vertices into 15 sets of 16 elements each; we call each such set a

hextet. The hextets are:
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(1) ±1,± e1,± e2,± e3,± e4,± e5,± e6,± e7;

(2) the elements 1
2 (±1±en±en+1±en+3) and

1
2 (±en+2±en+4±en+5±en+6) with an

even number of minus signs;

(3) the elements 1
2 (±1±en±en+1±en+3) and

1
2 (±en+2±en+4±en+5±en+6) with an

odd number of minus signs.

The hextets of type (2) and (3) depend on the choice of n modulo 7. So we get 1+2 ·7= 15

hextets overall. One can check that the scalar product of two vertices lying in the same
hextet is always an integer, so it is never 1

2 . Therefore, we can assign the same colour

to all the 16 members of a given hextet, and, hence, obtain a 15-colouring for 421 as

promised.

Algebraic description. There is an algebraic interpretation for the 15-colouring of 421
analogous to that for the 3-colouring of the 24-cell. We warn the reader that some caution

is needed when passing from quaternions to octonions: first, the product of octonions is

notoriously nonassociative; second, contrary to a common mistake (see [10, Chapter 9]
for a discussion), and as proved by Coxeter [12], the 240 vertices of 421 are not closed

under multiplication! Indeed, the product of the two vertices

1

2
(1+ e1+ e3+ e7) ·

1

2
(1+ e1+ e2+ e4) =

1

2
(e1+ e3+ e4+ e6)

is not a vertex. We could fix this via a single reflection that transforms the 240 vertices

into a multiplicatively closed set (this is explained in [10, Section 9.2]), thus obtaining
another isometric description of 421, but we do not really need this here, so we just keep

them as they are. The only thing that we need here is that the 240 octonions are closed

under left multiplication by each of the 16 elements in the hextet S = {±1,± ei}, a fact
that can be verified easily. The set S is closed under multiplication, but it is not a group

since it is not associative. One can also verify that the left multiplication by each element

of S preserves each hextet, and that this ‘action’ of S is free and transitive, in the sense

that for very pair of distinct elements in a hextet, there is a unique element of S that
sends the first to the second by left-multiplication.

Summing up, the 15 hextets that we have constructed are the orbits of the action of S

by left-multiplication on the set of 240 vertices of 421. This is analogous to the 3-colouring
of the 24-cell, where the three octets are the orbits of the action of the quaternion group

Q8 by left multiplication.

The manifold M8. We equip P 8 with the 15-colouring just defined. This produces a

hyperbolic 8-manifold M8, tessellated into 215 = 32,768 copies of P 8. We have χ(M8) =
215 ·17/2 = 27,8528.

The polytope P 8 has 2,160 ideal vertices. Using our Sage program, we discover a

phenomenon that was already present with P 5 and P 7. The ideal vertices are of two
types: the first type contains 1,920 of them, and the second type 240. The link of a vertex

of the first type is a 14-coloured 7-cube, while the link of a vertex of the second type is

a 7-coloured 7-cube. As with P 5 and P 7, we note that 7 and 14 are the minimum and
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Table 3. The colouring type of each P 3, . . . ,P 8.

P 3 P 4 P 5 P 6 P 7 P 8

3 pairs 5 pairs 8 pairs 9 triplets 14 quartets 15 hextets

maximum possible number of colours in a 7-cube. From Corollary 8, we deduce that M8

has 240 ·215−7+1,920 ·215−14 = 65,280 cusps.
Using Sage, we have calculated the Betti numbers of M8:

b0 = 1, b1 = 365, b2 = 33,670, b3 = 583,290,

b4 = 1,783,226, b5 = 1,346,030, b6 = 456,595, b7 = 65,279.

We get χ(M8) = 278,528 again.

1.14. Back to the polytope P 7

The polytope P 7 is a facet of P 8. We think of P 7 as the facet dual to the vertex 1 of 421.
As we already said, we equip P 7 with the colouring induced by the 15-colouring of P 8

just introduced.

We study this inherited colouring of P 7. We think of 321 as the link figure of the vertex
1 of 421. The vertices of 421 adjacent to 1 are precisely those of the form

1
2 (1± en± en+1± en+3),

where n runs modulo 7. So we get 7 · 8 = 56 vertices, as required. These vertices are

contained in the hyperplane x0 =
1
2 , and their convex hull is 321. Two such vertices are

connected by an edge in 321 if and only if their scalar product is 1
2 .

The 15-colouring of 421 induces a 14-colouring of 321 that partitions the 56 vertices into

14 sets of four vertices each, that we call quartets. Each quartet consists of the vertices
1
2 (1± en± en+1± en+3) that share the same n and the same parity of the minus signs.

1.15. Volumes

We have constructed a colouring on each polytope P 3, . . . ,P 8, and, hence, obtained a list
of manifolds M3, . . . ,M8. Table 3 summarises the colouring type of each polytope.

The volumes of the hyperbolic manifolds M3, . . . ,M8 are listed in Table 4. In even

dimension n= 2m, we have used the Gauss-Bonnet formula

Vol(P ) = (−2π)m/(n−1)!! ·χ(P ).

In odd dimension, we have

Vol(P 3) = L(2)∼ 0.91, Vol(P 5) = 7ζ(3)/8∼ 1.05, Vol(P 7) = 8L(4)∼ 7.92.

The symbols ζ and L indicate the Riemann and Dirichlet functions (see [14, 31]).

1.16. The chosen colourings are all minimal

Although we will not need it, we mention the following fact.
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Table 4. The volume, the Euler characteristic and the number of cusps of each

hyperbolic n-manifold Mn.

Volume χ Cusps

M3 8L(2)∼ 7.28 0 3
M4 8π2/3∼ 26.3 2 5
M5 224ζ(3)∼ 269 0 40
M6 512π3/15∼ 1.06 ·103 −64 27
M7 131072L(4)∼ 1.30 ·105 0 4032
M8 4456448π4/105∼ 4.13 ·106 278528 65280

Proposition 10. The colourings for P 3, . . . ,P 8 defined in the previous sections have the

smallest possible number of colours for each polytope.

Proof. We can verify by hand when n≤ 5 and, using our Sage program, when 6≤ n≤ 8

that the maximum number of pairwise disjoint facets in Pn is equal to 2, 2, 2, 3, 4, 16

when n= 3,4,5,6,7,8. These are precisely the cardinalities of the facets sharing the same
colour for all n (see Table 3). Therefore, we cannot find a more efficient colouring than

the one listed in the table.

1.17. The last nonzero Betti number

The Betti numbers bi and the number c of cusps of each Mn were listed in Table 1. In
all the cases, we have bn−1 = c−1. Since Mn is the interior of a compact manifold with c

boundary components, in general, we must have bn−1 ≥ c−1. Therefore, here, the Betti

number bn−1 is as small as possible, given the number c of cusps.

2. The algebraic fibrations

We have constructed some hyperbolic manifolds M3, . . . ,M8, and our aim is now to build

some nice maps f : Mn → S1 for all n= 3, . . . ,8. We produce these maps by assigning to

each Pn an appropriate state (as prescribed by [18]). We then study the maps by applying
some fundamental results of [7].

2.1. States

Let P ⊂ X
n be a right-angled polytope in some space X

n =H
n,Rn or Sn. Following [18],

a state is a partition of the facets of P into two subsets, that we denote as I (in) and O
(out). Every facet thus inherits a status I or O.

Let P be equipped with a colouring with c colours. This induces a free action of Zc
2

on the set of all the states of P, in the following way. For every j ∈ {1, . . . ,c}, the basis
element ej acts by reversing the I/O status of every facet of P coloured by j, while leaving

the status of the other facets unaffected. The action is free, hence, each orbit consists of

2c distinct states.
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2.2. Diagonal maps

As discovered in [18], the choice of a colouring and a state for a right-angled polytope

P induce both a manifold M and a diagonal map M → S1. (The construction of [18] is

actually more general than this, but this interpretation is enough here.) Shortly:

colouring + state on P =⇒ manifold M + diagonal map f : M → S1.

We explain how this works. We already know how a colouring on P produces a manifold
M, so it remains to explain how a state induces a map f : M → S1.

The manifold M is tessellated into the 2c polytopes Pv with varying v ∈Z
c
2. Since these

are right-angled, the tessellation is dual to a cube complex C with 2c vertices. We work
in the piecewise-linear category (see [34] for an introduction) and think of C as piecewise-

linearly embedded inside M. If P has some ideal vertices (as it will be the case with all

the polytopes Pn ⊂ H
n that we consider here), the complement M \C consists of open

cusps, so there is a deformation retraction r : M → C. The cube complex C is a spine
of M.

We indicate the vertex of C dual to Pv simply as v, so the vertices of C are identified

with Z
c
2. Here, v stands both for a vector of Zc

2 and a vertex of C.
The edges of C are dual to the facets of the tessellation: an edge of C connects v and

v+ ej if the dual facet F is coloured as j. So, in particular, there are k distinct edges

connecting v to v+ ej , where k is the number of facets in P coloured with j. In all the
colourings that we have chosen for the polytopes Pn, the number k does not depend on

the colour j. The 1-skeleton of C for P = P 3 is shown in Figure 14.

Example 11. If we consider P = P 8 with its 15-colouring, there are 215 vertices in C,

and 16 edges connecting v to v+ ej for every v and every j.

Let now s be a fixed state for P. The state s induces an orientation on all the edges

of C, in the simplest possible way: consider an edge connecting v and v+ ej , where

the j -th component of v is zero, that is vj = 0. The edge is dual to some facet of the
tessellation that is a precise identical copy of a facet F of P. If the status of F is O,

we orient the edge outward, that is from v to v+ ej , while if it is I, we orient it inward,

from v+ ej to v.
By construction, this orientation is coherent, that is on every square of C (and, hence,

on any k -cube), the orientations of two opposite edges match as in Figure 15. This

crucial fact allows us to apply the Bestvina-Brady theory [7]. We identify every k -cube

of C with the standard k -cube [0,1]k ⊂ R
k, so that the orientations on the edges of

C match with the orientations of the axis in R
k. The diagonal map on the standard

k -cube is

[0,1]k −→ S1 = R/Z, x −→ x1+ · · ·+xk.
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Figure 14. The 1-skeleton of the dual cubulation C for M3, tessellated into eight polyhedra P 3
v . The

polyhedron P 3 is 3-coloured, and each colour is painted on two faces. The vertices of C are identified

with Z3
2. There are two edges connecting v and v+ej corresponding to the two faces in Pv with the same

colour j, for each j = 1,2,3.

Figure 15. Every square (and, hence, every k -cube) of the cubulation has its opposite edges oriented

coherently as shown here.

The diagonal maps on the k -cubes of C match to give a well-defined continuous piecewise-

linear map C → S1. By precomposing it with the deformation retraction r : M → C, we
finally get a diagonal map

f : M → S1.

This is the main protagonist of our construction. The diagonal map induces a homomor-

phism f∗ : π1(M)→ π1(S
1) = Z. A dichotomy arises here:

Proposition 12. Precisely one of the following holds:

(1) The facets of P with the same colour also have the same status. In this case, f is
homotopic to a constant.

(2) There are at least two facets in P with equal colour and opposite status. In this case,

the homomorphism f∗ : π1(M)→ π1(S
1) = Z is nontrivial with image 2Z.

Proof. If (1) holds, all the edges joining two given vertices of C are oriented in the same

way, and we may lift the map f : M → S1 to a map f̃ : M → R as follows: send every
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Figure 16. We assign a state to P 3, where faces with the same colours have opposite status. We get the

orientation of the 1-skeleton of C shown here.

vertex v ∈ Z
c
2 of C to the maximum number of edges entering in v and pointing inward

from distinct vertices, then extend f̃ diagonally to cubes. Since f can be lifted, it is

homotopic to a constant.
If (2) holds, there are two edges joining the same pair of vertices with opposite

orientation that form a loop that is sent to ±2 along f∗. Moreover, 1 �∈ Im(f∗) because

the 1-skeleton of C is naturally bipartited into even and odd vertices, according to the

parity of v1+ · · ·+vc.

The case (1) is not so interesting: All the examples that we construct here on the

hyperbolic manifolds Mn will be of type (2). In (2), since Imf∗ = 2Z, one may decide to

replace f with a lift along a degree-2 covering of S1 to get a surjective f∗.

Corollary 13. If all the facets of P have distinct colours, the diagonal map f is always

homotopically trivial, for every choice of a state.

This inefficient colouring is therefore of no use here.

Example 14. For the 3-coloured P 3, we will choose the following state: For every pair

of faces with the same colour, assign I to one face and O to the other (the choice of

which face gets I and which face gets O will not affect the result much, as we will see).
The resulting 1-skeleton of C is then oriented as in Figure 16. By Proposition 12, the

homomorphism f∗ is not trivial.

2.3. States and orbits

Let a right-angled P ⊂ X
n be equipped with a colouring and a state s. These determine

a diagonal map f : M → S1 as explained above. We now would like to study f and how

it depends on s. A powerful machinery is already available for this task and is described

by Bestvina and Brady in [7].
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We call s the initial state. Recall that s induces a coherent orientation of the edges of
the dual cubulation C. It also induces a state on every polytope Pv of the tessellation, as

follows: Every facet F of Pv is dual to an edge e of C, and, hence, inherits a transverse

orientation from that of e. We assign the status O or I to F according to whether the
transverse orientation points outwards or inward with respect to Pv. It is easy to see that

the state induced on Pv is precisely v(s), the result of the action of v on the initial state

s (as described in Section 2.1).

Summing up, the polyhedron P0 has the initial state s, while Pv inherits the state v(s)
for each v ∈ Z

c
2. The following proposition says that the states that lie in the same orbits

produce equivalent diagonal maps.

Proposition 15. Two states s,s′ that lie in the same orbit with respect to the Z
c
2 action

produce two diagonal maps f,f ′ : M → S1 that are equivalent up to some isometry of M,

that is there is an isometry ψ : M →M with f = f ′ ◦ψ.

Proof. If s′ = w(s) for some w ∈ Z
c
2, we pick the isometry ψ : M →M that sends Pv to

Pv+w via the identity map. We get f = f ′ ◦ψ.

2.4. Ascending and descending links

Let a right-angled P ⊂ X
n be equipped with a state s. Let Q be a Euclidean polytope

combinatorially dual to P. When P = P 3, . . . ,P 8, of course Q is a Gosset polytope. The

state s induces a dual state on Q, that is the assignment of a status I or O to each vertex

of Q.
If we remove the interiors of the (n−1)-octahedral facets from ∂Q (that correspond to

the ideal vertices of P), we are left with a flag simplicial complex Q̇. This holds because P

is right-angled, and, hence, simple; as a consequence, every face of Q is a simplex, except
the (n−1)-octahedral facets dual to the ideal vertices of P.

Following [7], we define the ascending link (respectively, descending link) as the

subcomplex of Q̇ generated by the vertices with status O (respectively, I). Since Q̇ is
a flag complex, these subcomplexes are determined by their 1-skeleton.

Let now P be equipped with both a colouring and a state. We get a manifold M and a

diagonal map f : M → S1. For every vertex v ∈ Z
c
2 of the dual cubulation C, the link of v

in C is precisely the simplicial complex link(v) = Q̇, and it inherits the state v(s) of Pv.
The status of a vertex of link(v) is I or O according to whether the corresponding oriented

edge of C points inward or outward with respect to v. The ascending and descending links

at v are denoted, respectively, as link↑(v) and link↓(v), and they are disjoint subcomplexes
of link(v).

The diagonal map f : M → S1 induces a homomorphism f∗ : π1(M) → Z. We are

interested in its kernel H.

Theorem 16 [7, Theorem 4.1]. The following holds:

• If link↑(v), link↓(v) are connected for every v, then H is finitely generated.
• If link↑(v), link↓(v) are simply connected for every v, H is finitely presented.
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2.5. Legal states

Following [18], a state s on P is legal if the ascending and descending links that it

determines on the dual flag simplicial complex Q̇ are both connected. The group Z
c
2 acts

on the set of all states of P, and an orbit is legal if it consists only of legal states. As

noted in [18], Theorem 16 implies the following.

Corollary 17. A legal orbit defines a diagonal map f : M → S1 with finitely generated

H = kerf∗.

The chase of a legal orbit is the combinatorial game introduced in [18]. After introducing
the rules of the game, the authors exhibited some legal orbits on two remarkable right-

angled polytopes in H
4, namely, the ideal 24-cell and the compact right-angled 120-cell

[18], so providing the first algebraically fibring hyperbolic 4-manifolds. Here, we play with

the right-angled polytopes Pn and find some legal orbits on all of them. More than that,
we find some even better kind of orbits in the cases n= 3,7,8, that we call 1-legal.

2.6. 1-legal states

We extend the nomenclature of [18] by saying that a state s is 1-legal if its ascending

and descending links are both simply connected. An orbit is 1-legal if it consists only of
1-legal state. Here is a consequence of Theorem 16.

Corollary 18. A 1-legal orbit defines a diagonal map f : M → S1 with finitely presented

H = kerf∗.

2.7. The Euler characteristic check

In the following pages, we will double count the Euler characteristic of our manifolds as

a safety check. If a colouring and a state on P produce a manifold M and a diagonal

function f : M → S1, we always have

χ(M) =
∑
v∈Z

c
2

(
1−χ(link↑(v))

)
. (1)

The same formula holds with the descending link link↓(v). We say that the integer

1− χ(link↑(v)) is the contribution of v to the Euler characteristic of M. Note that
a contractible ascending link contributes with zero, while a k -sphere contributes with

(−1)k+1.

We now construct a legal orbit on each individual polytope P 3, . . . ,P 8. We have used
a code written with Sage to analyse all these cases; both the code and the resulting data

are available from [39].

2.8. A 1-legal orbit for P 3

In the 3-colouring of P 3, the facets are partitioned into three pairs. For every pair, we
assign the status O to one facet and I to the other, arbitrarily. The orbit of this state s

is independent of this choice and consists precisely of all the 23 = 8 states that can be

constructed in this way.
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Figure 17. We exhibit a state by colouring the vertices in black and white, with black (white)

corresponding to the status I (O). There are only two states in the orbit of P 3 up to isomorphism,

and in both cases, the ascending and descending links are contractible: they are a triangle and two

segments joined along an endpoint.

By direct inspection, we find that the eight states reduce to two up to isomorphism, and

they are shown in Figure 17. The ascending and descending links are both either a triangle

or two segments connected along an endpoint. In both cases, they are contractible. One
can, in fact, verify that the conditions of [6, Theorem 15] are satisfied, and, hence, the

diagonal map f : M3 → S1 can be smoothened to become a fibration (we will not need

this here).
The ascending and descending links are simply connected, and, hence, the orbit is

1-legal. By Corollary 18, the kernel H of f∗ : π1(M
3)→ Z is finitely presented: It is the

fundamental group of the surface fibre of the fibration f : M3 → S1.
The formula (1) holds since χ(M3) = 0 and each contractible link contributes with zero

to the sum.

2.9. A legal orbit for P 4

In the 5-colouring of P 4, the facets are partitioned into five pairs. As in the previous case,

we assign the statuses O and I arbitrarily to each pair. The orbit consists of all the states

that assign distinct statuses to each pair. We get 25 = 32 states.
By direct inspection, we find that these states reduce to four up to isomorphism,

depicted in Figure 18. As shown in the figure, the ascending and descending links are

always connected, so the orbit is legal. However, we note that the orbit is not 1-legal,
since in the first case, both the ascending and descending links are circles. The first case

occurs only in two of the 32 states.

In fact, one can verify that the ascending and descending links in the first case form
a Hopf link in S3, if considered in the boundary of the Gosset polytope, and that the

conditions of [6, Theorem 15] are satisfied, so the diagonal function f : M4 → S1 can be

smoothened to a circle-valued Morse function with two index-2 critical points. This is the
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Figure 18. We exhibit a state by colouring the vertices in black and white, with black (white)

corresponding to the status I (O). There are only four states in the orbit of P 4 up to isomorphism.

We show here the descending link, generated by the black vertices. In the first case, we get a circle, while

in the other cases, we always get a contractible complex made of three triangles, two triangles and one

tetrahedron and one triangle, respectively. The ascending links are of the same types.

best that we can get in dimension 4, since no fibrations may occur on an even-dimensional
hyperbolic manifold (we will not need these facts here, for more details see [6]).

By Corollary 17, the kernel H of f∗ : π1(M
4)→ Z is finitely generated. The formula (1)

holds since χ(M4) = 2 and the two states of the first kind contribute each with 1, while
all the others contribute with 0.

2.10. A legal orbit for P 5

In the 8-colouring for P 5, the facets are partitioned into eight pairs. As in the previous
cases, we assign the statuses O and I arbitrarily to each pair. The orbit consists of all the

states that assign different statuses to each pair. We get 28 = 256 states.

Each state produces a pair of ascending and descending links. Since these are flag
simplicial complexes, they are determined by their 1-skeleta. Either using our program

with Sage or by direct inspection, we find that the resulting 512 graphs reduce to only

seven up to isomorphism. These seven graphs are those generated by the black vertices
in Figure 19.

We can check by hand (or with our Sage program) that the first four graphs in the figure

generate a contractible simplicial complex. The remaining three generate a simplicial

complex that collapses, respectively, to S2, a wedge of three circles ∨3S
1 and S3. The

complexes that collapse to S2 and ∨3S
1 are shown in Figure 20. The complex that

collapses to S3 is actually homeomorphic to S3, and it is the boundary of a 4-octahedron,

decomposed into 16 tetrahedra. It corresponds dually to an ideal vertex of P 5.
In all the cases, the simplcial complex is connected, so the orbit is legal. It is not

always simply connected, so the orbit is not 1-legal. By Corollary 17, the kernel H of

f∗ : π1(M
5)→ Z is finitely generated.

The formula (1) holds since χ(M5) = 0, and using Sage, we find that we get 32

occurrences of S2, eight of ∨3S
1 and eight of S3. Their contributions to the Euler

characteristic are 32 · (−1)+8 ·3+8 ·1 = 0.
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Figure 19. Every ascending or descending link for P 5 is isomorphic to one of the seven descending links

shown here.
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Figure 20. Two simplicial complexes that collapse to S2 and ∨3S1. The first is the boundary of an

octahedron with two tetrahedra attached to a pair of opposite faces. The second consists of two tetrahedra

and four edges joining them.

2.11. A legal orbit for P 6

In the 9-colouring for P 6, the 27 facets are partitioned into nine triplets. As opposite to

the previous cases, there does not seem to be a natural choice of a state here. However,
a brute computer search shows that there are many legal orbits for P 6. For instance, we

may take s as the state where the first vertex in each triple listed in Section 1.11 is O

and the remaining two are I. By using our Sage program, we find that the orbit of this
state is legal. By Corollary 17, the kernel H of f∗ : π1(M

6)→ Z is finitely generated.

As we said, a computer search shows that many initial states s yield legal orbits. We

could not find a single 1-legal orbit, but, admittedly, we have not checked all the possible

initial states.

2.12. A 1-legal orbit for P 7

In the 14-colouring for P 7, the 56 facets are partitioned into 14 quartets. We see P 7 as
the facet of P 8 dual to the vertex 1 in 421. We will define below a state for P 8, and this

will induce one s for P 7 in the obvious way: every facet of P 7 inherits the status of the

adjacent facet in P 8.
The state s inherited in this way turns out to be balanced with respect to the colouring,

in the following sense: There is an even number 2m of facets sharing the same colour,

and precisely half of them m are given the status I, and the other half m the status O. If

a state is balanced, then every other state in the orbit is also balanced. The states that
we have chosen for P 3,P 4 and P 5 are balanced: For these polyhedra, we have m= 1, and

there was, in fact, a unique orbit of balanced states. Here, m= 2, so in each quartet, two

facets receive the status I and two the status O.
The orbit of s consists of 214 states, each contributing with an ascending and descending

link. Using Sage, we are pleased to discover that the resulting 215 = 32,768 graphs reduce

to only 106 up to isomorphism (this is probably due to the many symmetries of s that
are inherited from P 8).

Using Sage, we also see that all the simplicial complexes generated by the 106 graphs

are simply connected. Therefore, the orbit is 1-legal. With Sage, we have also checked (1).
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All the data can be found in [39]. By Corollary 18, the kernel H of f∗ : π1(M
7)→ Z is

finitely presented.

2.13. A 1-legal orbit for P 8

In the 15-colouring for P 8, the 240 facets are partitioned into 15 hextets. How can we find

a good initial state s for P 8? The numbers are overwhelming: the polytope P 8 has 240

facets, so there are 2240 possible states to choose from. Each orbit consists of 215 distinct
states, and we would like to find one orbit where all these 215 states are legal, or even

better, 1-legal. A brute force computer search is out of reach.

To define a legal state, we take inspiration from the 24-cell sitting inside quaternions
space, since this has some strong analogies with the Gosset polytope 421 sitting in

octonions space as we already noticed above. We have already exploited this analogy when

we fixed a convenient colouring for P 8, and we do it again now to design a convenient

state.

A state for the 24-cell. A nice legal state for the 24-cell was constructed in [6] as

follows. Recall that its 24 vertices are divided into three octets: these are ±1,± i,±j,±k,

the elements 1
2 (±1± i±j±k) with an even number of minus signs and those with an odd

number of minus signs.

Consider the group G= {±1,±i} and its action on the 24 vertices by left-multiplication.

We can verify easily that each octet is invariant by this action, and is subdivided into

two orbits of four elements each. We assign arbitrarily the status I to one orbit, and O
to the other. The resulting state s is balanced (see the definition above), and also legal,

as it was, in fact, already observed in [18]. The ascending and descending links are each

homeomorphic to a G-invariant annulus as in Figure 21, so they are connected but not
simply connected (the state is not 1-legal). The two G-invariant annuli form altogether

a banded Hopf link in S3.

The orbit of s along the action of Z
3
2 consists of the 23 states obtained from s by

reversing the I/O status of some octet. The geometry of the 24-cell is so extraordinary

that these 23 states are all isomorphic [6]. In particular, the orbit is legal (but it is not

1-legal). The choice of which orbit is I and which is O inside each octet is irrelevant, since

different choices lead to the same orbit.

A state for 421. We now try to mimic the above construction for 421. The 240 vertices are

partitioned into 15 hextets, that is ±1,±e1,±e2,±e3,±e4,±e5,±e6,±e7, the elements
1
2 (±1± en ± en+1 ± en+3) and 1

2 (±en+2 ± en+4 ± en+5 ± en+6) with an even number of
minus signs, and those with an odd number of minus signs, with the integer n varying

modulo 7.

It is now natural to consider the quaternion group Q = {±1,± e1,± e2,± e4} and its
‘action’ on the 240 vertices of 421 by left-multiplication. This is the analogue of the group

G = {±1,± i} defined above, roughly because taking quaternions inside octonions looks

like taking complex numbers inside quaternions. However, this is not really a group action

https://doi.org/10.1017/S1474748022000536 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000536


642 G. Italiano et al.

Figure 21. The ascending and descending links are both an annulus decomposed into 12 triangles, and

altogether, they form two annuli that collapse onto a Hopf link in S3. The figure (taken from [6]) shows

the vertices of the 24-cell, with their 3-colouring (Blue / Red / Yellow) and their state (the vertices with

a O status have an additional black circle). Only some edges of the 24-cell are shown for the sake of

clarity: more edges should be added that connect each yellow vertex and its eight neighbours.

because octonions are not associative, and, hence, we may have that e1(e2(x)) �= (e1e2)(x).
Therefore, some caution is needed.

We already know that the set S = {±1,± e1, . . . ,± e7} acts freely and transitively by

left-multiplication on every hextet (that is, for every pair of elements in the hextet, there
is a unique element in S whose left-multiplication sends the first to the second). We pick

the following 15 base elements, one inside each hextet:

1, 1+ en+ en+1+ en+3, −1+ en+ en+1+ en+3,

where n runs modulo 7. We consider inside each hextet the eight elements obtained by

left-multiplying the base element by the elements of Q. We assign to these eight elements

the status O, and the status I to the remaining eight of the hextet. We have defined a

balanced state s. The orbit consists of 215 balanced states.

Remark 19. By analogy with the 24-cell, it would be tempting to guess that the 215

states in the orbit are all isomorphic, and maybe that the ascending and descending links

are homotopic to two copies of S3 linked in S7. This is, however, impossible by a Euler

characteristic argument, due to the fact that the 24-cell has χ = 1, while χ(P 8) = 17/2
is much bigger. In general, one should not push the analogies too far: The situation is

intrinsically more complicated here. We will come back to this point below.

Using our Sage code, we have determined the ascending and descending links of each

of the 215 = 32,768 states. Note that each graph can have up to 240 vertices, and we have
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216 = 65,536 graphs to analyse. Luckily, these graphs reduce up to isomorphism to only

185. This is probably due to the extraordinary symmetries of both the colouring and the
state that we have chosen for P 8. Our Sage program says that each of the 185 simplicial

complexes generated by these graphs is connected and simply connected. Therefore, the

orbit is 1-legal. By Corollary 18, the kernel H of f∗ : π1(M
8)→ Z is finitely presented.

Remark 20. We also checked (1). Both sides give (quite reassuringly) the same number
278,528. The formula (1) also explains a fact we alluded to in Remark 19. Since

χ(P 8) = 17/2, the average contribution to the Euler characteristic of an ascending link

is 17/2, which is a relatively big number if compared to the Euler characteristic of the
other polytopes considered above. Referring to Remark 19, we note that it is certainly

impossible that all the ascending links be S3, since their individual contribution would

be 1. The ascending links that we find with Sage are indeed quite complicated (they are

typically some wedges of spheres of various dimensions k ≥ 2), much more than those
discovered with P 3, . . . ,P 7. They can be found in [39].

2.14. The restriction of f to the cusps

In our analysis, we have briefly mentioned the fact that when n= 3,4, the chosen orbits

satisfy the conditions of [6, Theorem 15] and, hence, f : Mn → S1 can be smoothened to

become a perfect smooth circle-valued Morse function (for n= 3, this is a fibration).
One may wonder if this is also the case when n≥ 5, and, indeed, this was our hope at

the beginning of our study: It would be extremely interesting to find a fibration on an

odd-dimensional hyperbolic manifold of dimension 5 or 7. We show that this is not the
case, for any possible choice of initial state, a serious obstruction being the restriction of

f to the cusps of Mn.

Proposition 21. For n= 5, . . . ,8, there is some cusp X ∼= Tn−1× [0,+∞)⊂Mn, where

the restriction f |X is homotopic to a constant. This holds for any possible choice of a
state for Pn.

Proof. Let s be any initial state for Pn. In our discussion above, we have said that when

n = 5,7,8, there is always some ideal vertex v of Pn whose link C is an (n− 1)-cube

coloured with 2(n−1) distinct colours. Let T ⊂Mn be a torus section that lies above C.
The restriction of f to T is determined by the restriction of the state s of Pn to T. No

matter what the restriction of s looks like, by Corollary 13, the restriction of f to T is

homotopically trivial, and, hence, it is so on the cusp X = T × [0,+∞) that it bounds.
The case n= 6 is a bit more involved. When n= 6, each of the 27 ideal vertices v has a

9-coloured 5-cube link C. This implies that there exists exactly one pair of opposite facets

sharing the same colour. In each of the nine triplets of P 6, every pair is an opposite pair

of facets of this kind, for some ideal vertex v (we get 3×9 = 27 pairs for 27 ideal vertices).
For any choice of a state, there will be one such pair with the same status, because the

three statuses on a triple cannot be all distinct. By Proposition 12, the restriction of f to

this cusp is null-homotopic.

After writing a first draft of this paper, we found a fibration for M5 with a more

elaborated construction that overcomes this problem (see [17]).
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2.15. The geometrically infinite coverings

For every n = 3, . . . ,8, the kernel of f∗ : π1(M
n) → π1(S

1) = Z is a normal subgroup

H �π1(M
n) of infinite index. We summarise our discoveries.

Theorem 22. The normal subgroup H is finitely generated, and also finitely presented
when n= 3,7,8. The limit set of H is the whole sphere ∂Hn = Sn−1.

The limit set is the whole sphere because H is normal in π1(M
n) and Mn has finite

volume. In particular, the hyperbolic n-manifold

M̃n =H
n/H

that covers Mn is geometrically infinite. The dimension n = 4 was investigated in [6].

Here, we are particularly interested in the dimensions n= 5, . . . ,8.

Theorem 23. When 5 ≤ n ≤ 8, the hyperbolic manifold M̃n has infinitely many toric

cusps. In particular, the Betti number bn−1(M̃
n) =∞ is infinite and π1(M̃

n) =H is not

Fn−1.

Proof. The restriction of f to some cusp is null-homotopic by Proposition 21. Therefore,

the cusp lifts to infinitely many copies of itself in M̃n.

Recall that a group H is of type Fm if there exists a K(H,1) with finite m-skeleton [7].

If H is Fm, the Betti number bm(H) is obviously finite.

Corollary 24. When n = 7,8, the fundamental group of the hyperbolic manifold M̃n is
finitely presented but not Fn−1.

Competing Interests. None.
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