
Canad. Math. Bull. Vol. 53 (3), 2010 pp. 564–570
doi:10.4153/CMB-2010-061-6
c©Canadian Mathematical Society 2010

On 6-Dimensional Nearly Kähler
Manifolds

Yoshiyuki Watanabe and Young Jin Suh

Abstract. In this paper we give a sufficient condition for a complete, simply connected, and strict

nearly Kähler manifold of dimension 6 to be a homogeneous nearly Kähler manifold. This result was

announced in a previous paper by the first author.

1 Introduction

An almost Hermitian manifold (M, g, J) is said to be nearly Kähler (NK) if

(∇X J)(X) = 0 is satisfied for all vector fields X on M, where ∇ denotes the Levi-

Civita connection associated with the metric g. An NK manifold is called strict if

∇X J 6=0 for any nonvanishing vector field X ∈ TM, where TM denotes the tangent

bundle of M.

Nearly Kähler manifolds are characterized as almost Hermitian manifolds such

that the canonical Hermitian connection ∇̄ has parallel torsion tensor.

On the other hand, Nagy proved in [10, 11] that, in the compact case, his study

amounts to that of quaternion-Kähler manifolds with positive scalar curvature (see

Alexandrov, Grantcharov, and Ivanov [1]) and nearly Kähler manifolds of dimen-

sion 6. Thus our focus on the study of such manifolds of dimension 6 can be justified

by his results.

In dimension 6, the only known examples of compact NK manifolds are the

3-symmetric spaces S6, S3 × S3, CP3, and the complex flag manifold

F(1, 2) = U (3)/[U (1) ×U (1) ×U (1)].

Moreover, Butruille [2] proved that there are no other homogeneous examples.

Recently, Moroianu, Nagy, and Semmelmann [9] proved that if a compact NK

manifold (M6, g, J) admits a Killing vector field of constant length, then, up to a

finite cover, (M6, g, J) is isomeric to S3×S3 endowed with its canonical NK structure.

We also remark that in dimension 6, NK manifolds are related to the existence of a

Killing spinor (see Grunewald [6]).

Motivated by above facts, in this paper we prove the following theorem.
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Main Theorem Let (M, g, J) be a strict, simply connected, complete nearly Kähler

manifold of dimension 6. If ‖∇R‖2
=

S
15
‖Z‖2, then M is a homogeneous nearly Kähler

manifold, where R, S, and Z denote the curvature tensor, the scalar curvature, and the

concircular tensor of M respectively.

2 Preliminaries

In this section, we explain our notation and write down some important curvature

identities. Let (M, g, J) be a connected almost Hermitian manifold. Then we have

g( JX, JY ) = g(X,Y ) for all X,Y ∈ TM. Throughout this paper we shall assume that

(M, g, J) is nearly Kähler, that is, (∇X J)(X) = 0 for all X ∈ TM.

Let R denote the curvature tensor defined by R(X,Y )Z = ∇[X,Y ]Z − [∇X,∇Y ]Z

for any vector fields X and Y in TM. Let R(X,Y, Z,W ) = g(R(X,Y )Z,W ) denote

the value of the curvature tensor for every X,Y, Z, and W in TM. Then we have the

following identities (see [3, 5, 12, 13, 15]):

(∇X J)(Y ) + (∇ JX J)( JY ) = 0;(2.1)

(∇X J)( JY ) + J((∇X J)(Y )) = 0;(2.2)

R(W, X,Y, Z) − R(W, X, JY, JZ) = g((∇W J)(X), (∇Y J)(Z)),(2.3)

and

R(W, X,Y, Z) = R( JW, JX, JY, JZ).(2.4)

We now define linear transformations R1 and R1
∗ by

Ric(X,Y ) = g(R1(X),Y ) =

2n
∑

i=1

R(X, ei ,Y, ei) and

Ric∗(X,Y ) = g(R1
∗(X),Y ) =

1

2

2n
∑

i=1

R(X, JY, ei , Jei)

respectively, where {e1, . . . , e2n} denotes a local orthonormal frame field on M. We

shall call Ric the Ricci tensor of the metric and Ric∗ the Ricci* tensor respectively.

Then by using (2.3), the following formulas are easy to prove :

(2.5) R1 J = JR1, R∗

1 J = JR∗

1 .

There are two invariants of the curvature tensor of a NK manifold, namely

S =

2n
∑

i=1

g(R1(ei), ei), S∗ =

2n
∑

i=1

g(R∗

1 (ei), ei),

called the scalar curvature (resp. the scalar * curvature). Here we also write

‖R‖2
=

2n
∑

i=1

R2
i jkl, ‖Ric‖2

=

2n
∑

i=1

R2
i j , ‖Ric∗‖2

=

2n
∑

i=1

R∗2
i j , etc.,

where Ri j = Ric(ei , e j) and R∗

i j = Ric∗(ei , e j).
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3 Nearly Kähler Geometry

First, note that Ric−Ric∗ is given by the formula

(3.1) (Ric−Ric∗)(X,Y ) =

2n
∑

i=1

g((∇X J)ei , (∇Y J)ei)

for all vector fields X,Y on M (see [7]). Furthermore, the first author and K. Taka-

matsu [15] proved that

(3.2)

2n
∑

i, j=1

(Ric−Ric∗)(ei , e j)(R(X, ei ,Y, e j) − 5R(X, ei , JY, Je j)) = 0

(see Gray [5] for another proof).

An object of particular importance is the canonical Hermitian connection defined

by

(3.3) ∇̄XY = ∇XY +
1

2
(∇X J) JY.

It is easy to see (Yano [18]) that ∇̄ is the unique linear connection on M, satisfying

(3.4) ∇̄g = 0, ∇̄ J = 0,

from which in particular, we have

(3.5) ∇̄(∇ J) = 0.

Therefore, note that the torsion of ∇̄ given by N(X,Y ) = (∇X J) JY satisfies

(3.6) ∇̄N = 0.

Nagy remarked in [11] that Ric−Ric∗ has strong geometric properties. To begin

with, we have

(3.7) ∇̄(Ric−Ric∗) = 0.

By making use of (3.1) and (3.7), he proved the following theorem.

Theorem 3.1 Let (M, g, J) be a complete, strict, nearly Kähler manifold. Then it holds

that

(i) if g is not an Einstein metric, the canonical Hermitian connection has reduced

holonomy;

(ii) the metric g has positive Ricci curvature, hence M is compact with a finite funda-

mental group;

(iii) the scalar curvature S of the metric g is a positive constant.
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4 New Curvature Identities in 6-Dimensional NK Manifolds

In lower dimensions, the nearly Kähler manifolds are widely determined. If M is

nearly Kählerian with dim M ≤ 4, then M is Kählerian. If dim M = 6, then we have

the following (see [3, 5, 8, 17]).

Proposition 4.1 Let (M, g, J) be a 6-dimensional, strict, nearly Kähler manifold.

Then we have

(i) ∇ J has constant type [4]; that is,

(4.1) ‖(∇X J)Y‖2
=

S

30
{‖X‖2‖Y‖2 − g(X,Y )2 − g( JX,Y )2}

for all vector fields X and Y ,

(ii) the first Chern class of (M, J) vanishes, and

(iii) M is an Einstein manifold;

(4.2) Ric =

S

6
g, Ric∗ =

S

30
g.

Furthermore, from this proposition we can prove the following lemma (see [3, 5,

17]).

Lemma 4.2 For vector fields W , X, Y , and Z, we have

(4.3) g((∇W J)X, (∇Y J)Z) =

S

30
{g(W,Y )g(X, Z) − g(W, Z)g(X,Y )

− g(W, JY )g(X, JZ) + g(W, JZ)g(X, JY )}

and

(4.4) g((∇W∇Z J)X,Y ) =

S

30
{g(W, Z)g( JX,Y ) − g(W, X)g( JZ,Y ) + g(W,Y )g( JZ, X)}.

On the other hand, it can be easily seen from (4.2) and the proof of Lemma 3.3 in

[15] that

(4.5)
2n
∑

i, j=1

g( Jei , e j)R(ei , e j , X,Y ) =

S

15
g( JX,Y )

and

(4.6)
2n
∑

i, j=1

g((∇X J)ei , e j)R(ei , e j ,Y, Z) =

S

15
g((∇X J)Y, Z).

Operating ∇ to the last equation and using (4.2), we have

(4.7)
2n
∑

i, j=1

g((∇X J)ei , e j)(∇Y R)(ei , e j , Z,W ) = −
S

15
Z( JX,Y, Z,W ),

where the concircular tensor Z is defined by

(4.8) Z(X,Y, Z,W ) = R(X,Y, Z,W ) −
S

30
{g(X, Z)g(Y,W ) − g(X,W )g(Y, Z)}.
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5 Homogeneity in 6-Dimensional NK Manifolds

In this section, we will use the natural frame as a local frame field and adopt the

so-called Einstein summation convention with respect to repeated indices for a long

computation using the identities from (2.1) to (4.8).

In the terminology of [14], we shall show that the tensor field T, given by

(5.1) T(X,Y ) =

1

2
(∇X J) JY,

is a homogeneous structure. Then T has the local components

(5.1 ′) Ti j
k
= −

1

2
(∇i J j

s) Js
k.

For this purpose, let us consider the tensor field ∇̄R, given by

(5.2) (∇̄W R)(X,Y )Z = (∇W R)(X,Y )Z − T(W, R(X,Y )Z)

+ R(X,Y )T(W, Z) + R(T(W, X),Y )Z + R(X, T(W,Y ))Z.

Then ∇̄R has the local components

(5.2 ′) ∇̄ℓRk jih = ∇ℓRk jih +
1

2
Rs jih(∇ℓ Jk

a) Ja
s +

1

2
Rksih(∇ℓ J j

a) Ja
s

+
1

2
Rk jsh(∇ℓ Ji

a) Ja
s +

1

2
Rk jis(∇ℓ Jh

a) Ja
s.

Here we set α =
S

30
. Then by using the identities from (2.1) to (4.8), we have the

following four kinds of formulas ((5.3)–(5.6)):

Making use of the Bianchi’s identities, (2.1), (4.7), and (4.2), we have

(∇ℓRk jih)Rs
jih(∇ℓ Jk

a) Jas
= − (∇kR jℓih + ∇ jRℓkih)(∇ℓ Jk

a) Ja
sR

s jih

=

1

2
Js

a∇a Jℓk(∇ jRℓkih)Rs jih

= − α
{

Rs jih −
S

30
(g jigsh − g jhgsi)

}

Rs jih

= − α
(

‖R‖2 −
S2

15

)

.

In a similar way, we have

(∇ℓRk jih)Rs
jih(∇ℓ Jk

a) Jas
= (∇ℓRk jih)Rksih(∇ℓ J ja) Jas

= (∇ℓRk jih)Rk jsh(∇ℓ Jia) Jas

= (∇ℓRk jih)Rk jis(∇ℓ Jha) Jas

= − α‖Z‖2,

(5.3)
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Taking into account (3.1) and (4.2), we have

Rt jih(∇ℓ Jkb) Jbt Rs jih(∇ℓ Jk
a) Ja

s
= Rt jihRs

jih(Rba − R∗ba) Jbt Jas

= 4α‖R‖2.
(5.4)

Making use of Lemma 4.2, (2.2), (2.3), and (4.2) , we have

RksihRt jih(∇ℓ Jkb) Jbt (∇ℓ J j
a) Ja

s
= Rt jihRks

ih∇
ℓ Jkt∇ℓ J js

= αR jibaRkh
ba(gkig jh − gkhg ji − Jki J jh + Jkh J ji)

= 2α(−‖R‖2 + Sα + 6α2).

By using a similar method, we have

RksihRt jih(∇ℓ Jkb) Jbt (∇ℓ J j
a) Ja

s
= Rk jthRk jis(∇ℓ Ji

b) Jb
t (∇ℓ Jha) Jas

= 2α(−‖R‖2 + Sα + 6α2).
(5.5)

By (2.3) and (4.3), we need the following for the proof of formula (5.6),

R jtis Ji
k J j

hRkths = Rt jih Jh
k{ Ji

bRk jtb + α(gki J jt − g ji Jkt + Jkig jt − J jigkt )}

= −
1

2
‖R‖2 + 2Sα.

Hence, by using (4.3) again, we have

Rt jihRk jsh(∇ℓ Jkb) Jbt (∇ℓ Ji
a) Ja

s
= Rt jih∇ℓ Jkt (∇

ℓ Jis)Rk
j
s
h

= αR jtis{gkig jh − gkhg ji − Jki J jh + Jkh J ji}Rk
t
h

s

= α(
1

2
‖R‖2 −

S2

6
+ R jtis Ji

k J j
hRkths + 6α2)

= α(−
S2

6
+ 2Sα + 6α2).

In a similar way, we have the following

Rt jihRk jsh(∇ℓ Jkb) Jbt (∇ℓ Ji
a) Ja

s
= Rt jihRk jis(∇

ℓ Jkb) Jbt (∇ℓ Jh
a) Ja

s

= RktihRk jsh(∇ℓ J jb) Jbt (∇ℓ Ji
a) Ja

s

= RktihRk jis(∇
ℓ J jb) Jbt (∇ℓ Jh

a) Ja
s

= α(−
S2

6
+ 2Sα − 6α2).

(5.6)

Lemma 5.1 Let M be a strict nearly Kähler manifold with dim M = 6. Then we have

(5.7) ‖∇̄R‖2
= ‖∇R‖2 −

S

15
‖Z‖2 ≥ 0.
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Thus by (3.4) and (5.1), the Theorem of Ambrose and Singer (see Tricerri and

Vanhecke [14, page 14]) gives the following theorem.

Theorem 5.2 Let (M, g, J) be a strict nearly Kähler manifold with dim M = 6. If

‖∇R‖2
=

S
15
‖Z‖2, then M is locally homogeneous.

Then by using the result of Nagy (see [11, page 500]) we complete the proof of our

Main Theorem in the introduction.
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