
Can. J. Math., Vol. XXI I I , No. 5, 1971, pp. 771-790 

FINITE LINEAR GROUPS OF DEGREE SIX 

J. H. LINDSEY, II 

1. I n t r o d u c t i o n . In this paper we classify finite groups G with a faithful, 
quasiprimitive (see Nota t ion) , unimodular representation X with character x 
of degree six over the complex number field. There are three gaps in the proof 
which are filled in by [16; 17]. These gaps concern existence and uniqueness of 
simple, projective, complex linear groups of order 604800, |LF(3 , 4) | , and 
|PSL4(3) | . By [19], X is a tensor product of a 2-dimensional and a 3-dimen-
sional group, or a subgroup thereof, or X corresponds to a projective represen­
tat ion of a simple group, possibly extended by some automorphisms. T h e 
tensor product case is discussed in section 10. Otherwise, we assume t h a t 
G/Z(G) is simple. W e discuss which automorphisms of G/Z(G) extend the 
representat ion X ( tha t is, lift to the central extension G and fix the character 
corresponding to X) jus t after we find X(G). All cases where the simple groups 
G/Z(G) have an irreducible projective complex representation of degree 2, 3, 
4, 5, or 7 are discussed in section 11, where we use the corresponding classifi­
cations of Blichfeldt, Brauer, and Wales. Otherwise, we assume t h a t no such 
projective representations exist. By section 6, we are allowed to assume t h a t 
no prime greater than 7 divides |G|. By [18], if 72 divides \G\, then G has a 
nontrivial , normal 7-group, or X is reducible, or G has a subgroup of index 2, 
all contrary to the simplicity of G/Z{G). T h e case where 7 does not divide 
\G/Z(G)\ is discussed in section 5. Otherwise, we assume t h a t 7 divides 
\G/Z(G)\ to the first power. As we principally use the degree equation of [4] 
for the prime 7, we break this case up into subcases for [N(S^ : C ^ ) ] . 
These cases are treated in sections 7 and 8. 

2 . N o t a t i o n . Let x, g G G, where G is a finite group, let H be a subgroup 
of G, let 7T be a set of primes, and let n be an integer. We make the following 
set of definitions: | 5 | denotes the cardinali ty of S, N(S) denotes the normalizer 
of S, C(S) denotes the centralizer of S, Z(G) or Z denotes the centre of G, 
xd = g~lxg, H° = g~lHg, HG is the smallest normal subgroup of G containing 
H, QviG) is the largest normal 7r-subgroup of G, 0T'(G) is the smallest normal 
subgroup of G of index relatively prime to the primes in ir, \_g\T is the element 
obtained by projecting g into 07r((^)) in (g) = 0x((g)) X 0T ' ((g)), nT is the 
largest factor of n divisible only by primes in T, i*(G) = \G\ir/\0ir(G)\. 

Fur ther , let X be a representation of G on the vector space V. We define 
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X(G) to be {X(h)\h £ G}, a linear group operat ing on V. For v £ V, let gv 
be the image of v under X(g). If a is a complex number , define Cv(ag) = 
{v\v Ç V, gv = a""1^}. W e say t h a t PF is a homogeneous space of F for G if, for 
some irreducible representat ion Y oî G, W is the sum of all the spaces on which 
const i tuents equivalent to Y act . T h e number of homogeneous spaces is called 
the var ie ty of the representat ion X on G. If X is irreducible and for any normal 
subgroup N of G, X\N has var ie ty one, then we say t h a t X is quasiprimit ive. 

W e use Sp to denote a ^-Sylow subgroup and 5^w to denote a group iso­
morphic to the symmetr ic group on n let ters . Our use of C does not exclude 
equali ty. T h e symbol || means divides exactly. If p is a prime and p || |G|, 
then wp denotes a generator of Sp, qp denotes [N(SP) : C(SP)]} and 

After section 3, we assume t h a t G is a finite group with a faithful, quasi-
primitive, irreducible, unimodular representat ion X with character % of degree 
six over the complex numbers , and we let co, e, and ft denote primit ive third, 
fifth, and seventh roots of uni ty , respectively. Finally, a(X, Y, Z) is the 
coefficient of the conjugacy class containing Z in the product of classes con­
taining X and Y. 

W e frequently refer to the theorem of Blichfeldt t h a t a quasiprimit ive, 
complex linear group contains no non-scalar element which has an eigenvalue 
within 60 degrees of all its other eigenvalues. This is [1, Theorem 8, page 96]. 
T h e s t a t emen t given there is for primit ive groups, bu t the proof uses only 
quasiprimit ivi ty. 

W e mus t also make extensive use of the classification of linear groups of 
degrees 2, 3, and 4 given in [1]. In [1, Chapte r I I I ] , the linear groups of degree 2 
are listed as types (^4) through (E) between pages 69 and 73. Of these groups 
only the icosahedral group, type (E) on page 73, has two noncommut ing 
elements of order 5. T h e groups of degree 3 are numbered (A) through (J) 
on pages 105, 109 and 113. Only the groups (H) and ( / ) , A5 and A6, contain 
two non-commuting elements of order 5. 

W e often refer to a consequence of [4, I I , Theorem 1] t h a t if Y is an irreduc­
ible representat ion of G with a ^-Sylow subgroup P = (x) of order p, then 
the ^>th roots of un i ty can be part i t ioned into disjoint sets Si and ^2 such t h a t 
the elements of St occur with the same multiplici ty as eigenvalues of Y(x) 
for i = 1, 2. Also, Si = {1} or there exists a primit ive ^>th root of un i ty 7 
such t h a t Si = {ymT\r G Z} for m equal to the [{p - l)/[N{P) : C(P) ] ] th 
power of a generator of the multiplicative group of Z / ^ Z . 

In conjunction with section 4, L e m m a 1, we often use [10, 53.17] from which 
it follows t h a t degrees of irreducible characters of G divide \G/Z\. 

3. Groups of degree six. 

T H E O R E M . If G has a complex irreducible representation X of degree 6 which 
is faithful, unimodular, and quasiprimitive, then G is one of the following groups 
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(\Z\ is given for the case G = G ; G can be extended means that a larger group 
has a representation of degree 6). 

I. G/Z^A XB where A^A5, A4, or yA, and B ^ PSL(2, 7), 
A5, AQ, or Hi for i — 1, 2, or 3, where iJ3 is the Hessian group in [1] isomorphic 
to an extension of Z3 X Z3 by SL(2, 3), and H2 and H\ have indices 3 and 6 
in Hz. 

II. G/Z is isomorphic to a subgroup of index 2 in $f \ X Hu i = 1 or 2, 
or to a subgroup of index 3, 12, or 24 in A± X i?3. 

III. G/Z ^ A, or y5, \Z\ = 2, \A5\ = 60. 
IV. G/Z ^AQ ^ PSL(2, 9), \Z\ = 3, | 4 8 | = 360; G' has two conjugate 

characters of degree 6 contained in Q(oo). This group G can be extended by an 
automorphism of order 2 coming from the product of the outer automorphism 
from GL(2, 9) and the field automorphism of PSL(2, 9). 

V. G/Z ~A 6, \Z\ = 6; G' has four conjugate characters of degree 6 
contained in Q(oo, \/2). 

VI. G/Z ^ An or S7 | \Z\ = 1, \Ai\ = 7!/2. 
VII. G/Z — AT, \Z\ = 3; G has two conjugate characters of degree 6 con­

tained in Q(<a). 
VIII. G/Z ~ AT, \Z\ = 6; G' has four conjugate characters of degree 6 

contained in Q(co, s/2). 
IX. G/Z ^ PSL(2, 7) or PGL(2, 7), \Z\ = 1, |PSL(2, 7)| = 168. 
X. G/Z 9Ë PSL(2, 7) or PGL(2, 7), \Z\ = 2, G' has two conjugate charac­

ters of degree 6 contained in Q(V2). 
XI. G/Z 9 Ë P S L ( 2 , 11), \Z\ =_2, |PSL(2, 11)| = 660; G has two con­

jugate characters contained in Q(\/—11). 
XII . G/Z ^ PSL(2, 13), \Z\ = 2, |PSL(2, 13)| = 13 • 7 - 3 • 22; G' Ao5 

two conjugate characters of degree 6 contained in <2(V13). 
XII I . G / Z ^ P S U 4 ( 2 ) , \Z\ = 1, |PSU4(2)| = 26345; G can be extended 

by an automorphism of order 2. 
XIV. G/Z ^ U3(3), \Z\ = 1, |U3(3)| = 6048; G can be extended by afield 

automorphism of order 2. 
XV. G/Z ^ PSU4(3) ^ 06(3), \Z\ = 6, |U4(3)| = 273635; G can be ex­

tended by an automorphism of order 2; G has two conjugate characters contained in 

Q(«). 
XVI. G/Z is isomorphic to the Hall-Janko group, \Z\ = 2, \G/Z\ = 604800. 

XVII. G/Z ^ LF(3, 4), \Z\ = 6, |LF(3, 4)| = 263235; G has two conjugate 
characters contained in Q{u>); G can be extended by an automorphism of order 2 
coming from the product of a graph automorphism and a field automorphism. 

The reason for classifying quasiprimitive 6-dimensional rather than primi­
tive 6-dimensional groups is not to achieve greater generality, but to avoid 
deciding which of the above groups are primitive. For example, the pro­
jective representation (IV) of AQ with centre of order 3 is monomial. 
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4. T h e S y l o w s u b g r o u p s . W e use our bounds on G/Z(G) to limit the possi­
ble degrees of complex representat ions of G. By [10, Theorem 53.17], these de­
grees divide \G/Z\ where Z = Z(G). 

Here we establish bounds for the order of Sv/ (Sp P Z ) , where Sp is a £-Sylow 
subgroup of G for p = 2 or 3 assuming t h a t G/Z is simple. W e also find some 
general results for S& in the case where X(G) is quasiprimit ive. 

L E M M A 1. If G/Z is simple and X is a faithful representation of G of degree 6, 

then \S2/(S2 H Z ) | ^ 2 9 and | 5 8 / ( 5 3 r\ Z)\ S 37 . 

Proof. X(S2) is monomial and S2 has an abelian subgroup A of index a t 
most 16 in S2. If A/ (A P Z) has order as large as 64, then by [5, 3D] , a proper 
normal subgroup of G intersects A in a, subgroup of index a t most 2 6 - 1 = 32, 
which is a contradict ion. T h e bound for \Sz\ is obtained similarly. 

L E M M A 2. If X is a faithful, irreducible, quasiprimitive n-dimensional repre­
sentation of a finite group G with n > 4, then for no g £ G — Z does X(g) have 
the eigenvalues a, . . . , a, a> T with g5 £ Z. 

Proof. Suppose t h a t g £ G — Z, X(g) has eigenvalues a, . . . , a, a, r, and 
t h a t g5 = 1. Le t h be conjugate to g b u t no t in C{g) ; otherwise, (g)G is a normal 
abelian subgroup of G, contradict ing quasiprimit ivi ty. Then as 

n — dim Cv(a~1g) P C F ( a - 1 ^ ) ^ n — dim CV(a -1g) 

+ » - dim Cv{or%) ^ 2 + 2 = 4, 

xl(gt h) = in — 4)/x + f, where ^ and f are characters of {g, h) of degree 1 
and 4, respectively. If the representat ion Y corresponding to f has two dis­
joint invar iant subspaces of dimension 2, then a t least one of them corresponds 
to a projective representat ion of A$. Now, (g, h) is isomorphic to a subgroup 
of the direct product of the irreducible const i tuents of X\(g, h). Then by the 
subdirect product theorem [14, Theorem 5.5.1], wTe obtain a produc t of com­
muta to r s with eigenvalues -co , -~o>, 1, 1, . . . , 1 or — co, -co, -co, -co, 1, 
1, . . . , 1, in contradict ion to the eigenvalues result of [1]. In part icular , 
a ^ r ; otherwise, Y(g) and Y(h) have eigenvalues a, a, a, a and by [1, section 
103], Y has two disjoint invar iant subspaces of dimension 2, which is a con­
tradict ion. Also, a 9e <T and a ^ r, for the same reason. 

If Y is irreducible, then by enlarging Z(G) and replacing X(g) and X(Â) 
by scalar multiples of themselves, ŵ e m a y assume t h a t de t Y(g) = 
det Y(h) = 1, and t h a t Y is unimodular . Then by [4], 25| \(g, h)\. Fur ther ­
more, Y cannot be irreducible and imprimit ive, since in this case Y(g) and 
Y{h) would permute the spaces of imprimit ivi ty trivially. By Blichfeldt 's 
classification [1] of groups of degree 4, Y contains, as a subgroup of index 1 or 
2, a tensor product of 2-dimensional representat ions of a central extension by 
A5. Again we get -co , -co, -co , — oo, 1, 1, . . . , 1 in contradict ion to the eigen­
values result of [1]. Therefore, Cv(a~lg) P Cv(a~lh) has a 3-dimensional 
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(g, /z)-invariant complement U on which (g, h) irreducibly represents A5 or 
A$ projectively, by the groups of degree 3 of [1]. By quasiprimitivity, U is not 
left invariant by the normal subgroup generated by conjugates of g and in 
particular, not by k equal to some conjugate of g. Now, 

n - dim{Cv(ar^g) C\ Cv (*-%)) C\ Cv(orlk) ^ 3 + 2 = 5. 

Then if U is contained in a (g, h, &)-invariant irreducible 4-dimensional space, 
the remaining constituents are linear and we reach the same contradiction as 
when we assumed Y to be irreducible. Therefore, X\(g, h, k) has an irreducible 
5-dimensional constituent W and the remaining constituents are linear. By 
[5, 4E and 9A], because of an element with eigenvalues a, a, a, a, r, W is 
monomial. But then W(g) and W(h), by their eigenvalues, must be diagonal 
and commute, which is a contradiction. 

LEMMA 3. If X is a faithful, ^-dimensional representation of the finite group G, 
then a 5-Sylow subgroup S5 of G is abelian. 

Proof. If this were not true, a non-identity element in S5 Pi Z(S$) would have 
eigenvalues 1, e, e, e, e, e, contrary to Lemma 2. 

5. The case G/Z simple and \G/Z\ = 5C3&2\ Now, until section 10, we 
assume that G is faithfully and quasiprimitively represented by X on a 
6-dimensional space V, G/Z is simple, and G = G'. In particular, X is uni-
modular and \Z\ | 6. Suppose that D is a 5-Sylow intersection group. Further, 
suppose that X\D has variety 2. Then by Lemma 3, S5 is abelian, and by 
Lemma 2 no 5-element has as many as four identical eigenvalues, so we have 
g Ç D with X(g) = diag(e, e, e, e, ê, ê). Then C(g) does not have a normal 
5-Sylow subgroup. By Blichfeldt's classification [1] (we mentioned this in 
section 2) of 2 and 3-dimensional groups, X\C(g) has a 2-dimensional con­
stituent projectively representing A$, or an irreducible 3-dimensional con­
stituent representing A5 or AQ projectively. Suppose that the former is con­
tained in Cv(e~lg). Then C(g) on Cv(eg) represents A5 projectively and irre­
ducibly on the 3-dimensional subspace; otherwise, by the subdirect product 
theorem we obtain an element with eigenvalues -co, -co, 1, 1, 1, 1 or -co, -co, 
-co, -co, 1, 1. Then X\S5 has variety 6 and is centralized by an element, 
XQi) — diag(—1, — 1 , 1, 1, 1, 1) of order 2 corresponding to the centre of 
the 2-dimensional projective representation of A5. We may look at a 2-
modular representation of G corresponding to X. When X(S&) is diagonal, 
X(h) is diagonal and in the kernel, a 2-group by [5], of the 2-modular repre­
sentation, contradicting the simplicity of G/Z. Therefore, the 2-dimensional 
projective representation of A5 cannot arise here. Then, as an element 
(e, e, 1, 1, 1, 1) is impossible by Lemma 2, X\C(g) has two irreducible 3-
dimensional constituents dependently representing A 5 or AQ projectively. Now, 
C(D)/Z(C(D)) ^ Am for m = 5 or 6. By unimodularity of X, all 5-elements 
x of Z(C(D)) have X(x) = diag(y, 7, 7, 7, 7, 7) for some 7, and [Z(C(J9))]5 
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is cyclic. If 25| \Z(C(JD))\, then for some x we have y = e2iri/2S, in contradict ion 
to the eigenvalues result of [1]. Then 5|| \Z(C(D))\ and, as S5 (Z C(D), 
\S5\ = 25. Also, C(g)' has an e lement with eigenvalues 1, — 1 , — 1 , 1, — 1 , — 1 . 
Because conjugates of this element generate G we m a y take a conjugate j no t 
commut ing with g. Also, X\(g, j) has a t least two linear const i tuents corres­
ponding to Cv(— j) C\ CV(e_1g) and Cv(—j) C\ Cv(eg). On a complementary 
space, X(g) has eigenvalues e, e, ë, ë and X ( j ) has eigenvalues 1, 1, — 1 , — 1 . 
By [1, section 103], this reduces a t least to 2-dimensional const i tuents . If 
either represents A5 projectively, then we get an element contradict ing the 
eigenvalues result of [1], as before. Therefore, these const i tuents are monomial . 
Because |5s| = 25,5*5 = ((e, ë; e, ë; e, ë); ei ther (e, ë, ë, e, e, ë) or (e, ë, ë, e, ë, e)). 
In the first case the first and fifth linear characters are identical; and in the 
second case the third and fifth characters are identical. This contradicts 
var ie ty 6. 

Now, assume t h a t X\D has var ie ty 3. T h e possibilities for X\C(D) where 
X\D has homogeneous spaces of dimensions 1, 2, and 3 were all el iminated in 
the case of var ie ty 2. Homogeneous spaces of dimensions 1 ,1 , and 4 contradic t 
L e m m a 2. Therefore, homogeneous spaces have dimensions 2, 2, and 2. Then 
C(D) is a central extension by A5 whose image in each 2-dimensional con­
s t i tuen t mus t be non-abelian to avoid the previous contradict ion to the 
eigenvalues result of [1]. By L e m m a 2 and unimodular i ty , an element g Ç D 
of order 5 mus t have eigenvalues 1, 1, e, e, ë, ë or with e replaced by e2 every­
where. Therefore, D is cyclic. Suppose t h a t hb = g and h G D. W e m a y take 
X(g) = d i a g ( l , 1, e, 6, ë, ë), e = 7 5 , XQi) = diag(e«, e\ y, y, y ~ ^ \ Y " 1 " 5 0 ) 

where 7 is a fixed primit ive twentyfifth root of uni ty . If a = 0, then h con­
t radic ts the eigenvalues result of [1]; if a = 1, X(h7) = d iag(7 1 0 , 71 0 , 7 7 , 77 , 
78 , 78) contradicts [1]; if a = 2, X (hs) = d iag(7 5 , 75 , 78 , 78 , 71 2 , Y12); if o = 3, 
XQi*) = diag(710, 710, Y9, Y9, Y6, Y6); if a = 4, X(h*) = diag(7

10, 710, Y8, Y8, 
77 , 7 7 ) . Therefore, |Z)| = 5 and | 5 5 | = 25. 

If X\D has var ie ty as large as 4, then the par t i t ion into homogeneous 
subspaces is a refinement of 6 = 1 + 2 + 3 and all the possibilities were 
eliminated in the case of var ie ty 2. Therefore, in the case of nontrivial 5-Sylow 
intersection, | 5 5 | = 25, D = ( ( 1 , 1, e, e, ë, ë)), C(D) is a central extension by 
A6, C(PY ^ S L ( 2 , 5) , and X\D X C(D)' = (1)0! + (e)02 + (i)08. Here, the 
6f are faithful 2-dimensional representat ions of SL(2 , 5) and (J) is the linear 
character of D taking g to £. In part icular , the image of the 2-element in the 
centre of C(D)f is d i ag (—1, — 1 , — 1 , — 1 , — 1 , — 1) and for any 6-dimensional 
representat ion of G, the centre has even order. Therefore, the skew-symmetr ic 
tensors Y of X ® X cannot have a const i tuent of degree 6 and mus t be irre­
ducible of degree 15, since by [1 ; 5] G has no representat ion of degree 2, 3, 4, or 
5. Le t <fi be the character of F . A 5-block B of defect 1 contains </>. By [3, 
Corollary 6] if </> has four 5-conjugates, then the sum of these conjugates and 
a character 77 of degree 15 is a 5-principal indecomposable. Now, 0(g) = 
5 + 4e + 4ë + e2 + €~2 so 20 — 10 + 7j(g) = 0. This is impossible since 
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15 < 40. Therefore, since 0(g) is irrational, 0 has two 5-conjugates. Then 
0 is fixed by taking e to i and 02 = #3. Another character of odd degree equal 
to 3d5 = ± 3 0 (mod 25) is contained in B by [3, Corollaries 4 and 5]. The 
degree equation must be 45 - 15 = 30, 405 + 15 = 430, or 3645 - 15 = 
3630. Only 45 = 15 + 30 is possible. By [3, Corollary 6], 0 + (the conjugate 
of 0) + (the character of degree 45) is a principal indecomposable <£> of degree 
75. The character <j>\D X C{D)r contains at least two copies of the principal 
character of D X C(D)f, one from the skew-symmetric tensors of (l)0i, and 
one from the (e)02(ë)02. Then §\D X C{D)r contains at least four copies of 
this principal character. We can write $\D X C(D)' = (l)z>o + (e)vi + 
(e2)^2 + (e3)^3 + (e4)z>4, where the vt are characters of C(D)'. This expression 
is 0 at uv, where v is any fixed element in C(D)r and u runs through g, g2, g3, 
and g4. Therefore, the vt(v) are identical for all i, and the vt are identical. 
Letting u = 1 and running through the 5-elements of C(D)' we see that v0 is 
a sum of principal 5-indecomposables. Also, v0 contains the principal character 
at least four times and deg v0 ^ 20, which is a contradiction. 

The only remaining case is the trivial intersection case. Here, 
(mod|S5|) 1 = \G\/\N(S6)\ |2937, by Lemma 1. Now, |55 | |25 and by Brauer's 
classification [6] of simple groups of order 2a3&5, we may assume that IS5I = 25. 
By [10, 88.8 and 53.17], G has no 5-block of defect 1. Therefore, the skew 
symmetric tensors of X (x) X are reducible and must contain an irreducible 
constituent of degree 6. Replacing X by this constituent, we may take \Z\ as 
odd. Suppose that the simple group G = G/Z contains a ^-element h centraliz­
ing a 5-element g for p = 2 or 3. If B0(p) is the principal ^-block, we have the 
block orthogonality relation 

E x«(l)x«(gA) = 0. 
xieeo(p) 

Because %o contributes 1, we have another term not divisible by g, the other 
prime 2 or 3 ^ p. Then, x*(l) = 5ePf> Also, g ^ 2 or Xi is in a block of 5-
defect 0 and x*(g^) = 0; e 9^ 1 or x% is in a block of 5-defect 1; and e ^ 0 or 
by [9, Lemma 2] x% would not be in a ^-block of full defect. This is a con­
tradiction, and for any g ^ 1 in a 5-Sylow subgroup £5 of G, C{g) = S5Z. This is 
the situation described in [8].f Let f be an irreducible constituent of %I-^GSB) 
which does not have S5 in its kernel, f is in a proper family F of 24:/[N(S5) : C(55)] 
characters of degree [N(S6) : C(56)] of N(S6). By [8, 2C], xW(S6) takes on 
all but one of these characters the same number of times m and the other 
character m — 1, m or m + 1 times. By [2, Lemma 1], N(S$)/C(S$) acts 
without fixed points on the non-principal characters of 55. Then, 

[N(Sb) : C(S*)] ^ 6 

fMore easily, by the inequality in the proof of [11, Lemma 4.1], 11x1^(^5)11 = 1. Then the 
argument on X(J) near the end of this section completes the proof. 
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as all conjugates of f \S5 in N(S5) are constituents of xl-Ss- The sum of all but 
one of the characters of F still has degree as large as 18 > 6, so x|iV(55) — f 
contains no characters in F. However, F contains all irreducible characters 
of N(S5) with action on Z identical to that of x and non trivial action on S5. 
Therefore, xl-^s = Ç\S& + (principal characters of <S5). By unimodularity and 
Lemma 2, an element with eigenvalues e, i, 1, 1, 1, 1 is precluded; therefore, 
deg f ^ 1 or 2. Then, deg f = 3, 4, or 6. If deg f = 3, then 

[N(S6) : C(Ss)] = 3 

and S$ is not cyclic. Then, some element has eigenvalues e, ë, 1, 1, 1, 1. Suppose 
that [iV(55) : C(55)] = deg f = 6. Because \Z\ is odd, we can find / of order 2 
in N(S5) — C(S$). Then X(J) permutes the six character of xl^s without 
fixed points and X(J) may be taken as 

.ÏJKJKJ: 
contrary to unimodularity. Suppose deg f = 4. Let S be the set of 5-singular 
elements of G. Then 

i i i 2 Ixll 
>Elx(*)l7lG| 

x€S 

> E |xW|2-62 |Z| 
xÇC(Ss) 

/Ms*)\ 

> (6 - 36/25)/4, 

which is a contradiction. 

6. The case where a large prime divides |G|. Here again G/Z is assumed 
to be simple. Suppose that pa\ \G\ for p a prime greater than 7 and a ^ 1. 
By [11] applied to Sp C G, G has a normal ^-subgroup of order at least pa~l. 
By simplicity of G/Z, a = 1, and by [4], if p à 13, then G/Z ÊË PSL(2, 13). 
Assume that 11| \G\. Then 11 || |G|. Also, qu ^ 6, so qu = 5 or 2, for if 
gn = 1, then G has a normal 11-complement. By [4], if qn = 2 and 7 is a 
primitive 11th root of unity, then we have that X (71*11) has eigenvalues 
7y 7J 7> 7i 7> 7J contrary to the eigenvalues result of [1]. Let f be the character 
corresponding to the skew-symmetric tensors of X (x) X. Now, x(^"n) = 1 + a 
where a = 7 + ys + y9 + Y5 + Y4. In f (7rn) no eigenvalue 1 occurs, but 1Y 
and Y97 occur, so f (7m) = 2a + a or 2a + a. In any event, by [4], f is re­
ducible. Since 5 divides the degrees of the constituents, f has an irreducible 
character of degree 5 and by [4], G/Z ^ PSL(2, 11). 

By [18, Theorem], 72 -f |G|. By the previous section, we may assume that a 
higher prime than 5 divides \G\. Therefore, when G/Z is simple, we may assume 
that IGI = 2a3&5c7. This case concerns the next two sections. 
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7. T h e cases £7 = 6 a n d ti = 3 . T h e case h = 6 is eliminated by the 
existence of a normal 7-complement in this case. Assume tha t h = 3 and 
\G/Z\ = 2a3&5c7. Now, X (7^) = diag (7, 7, 7, 7, 7, 7) contradicts the eigenvalues 
result of [1], so by [4], xiji) = — 1 and C(7r7) = S^Z. Fur thermore , B0(7) 
contains characters of degrees 1, x, and y, with x — y = ± 1 ; x, 3/ = d=l or 
± 2 (mod 7) ( ± ' s independent here) . Since x and y do not have a common 
prime divisor, one of them, say x, is a power of 2, 3, or 5. We m a y assume by 
[1 ; 5 ; 29] t h a t no degree is 2, 3, 4, 5, or 7. All the characters of G with action 
on Z identical to the action of % lie in the same 7-block which can contain a t 
most two characters of degree 6. Therefore, % has a t most two 5-conjugates. 
Then 5 5 is e lementary abelian, and x\S?> = 0 + 6, with 6 faithful of degree 3. 
Because 6 is faithful on S5 e lementary abelian, if |S5 | è 125, then for some 
element x £ G, 6(x) = 1 + 1 + e and x(x) = l + 1 + l + l + e + ë , con­
t ra ry to section 4. 

If x = 9, y = 8; x = 27, y = 26; x = 243, y = 244; x = 729, y = 730; 
x = 8, 3/ = 9; x = 16, y = 15; x = 64, 3/ = 65; x = 128, y = 127; x = 512, 
y = 513. T h e only possible degree equations are 1 + 8 = 9 and 1 + 15 = 16. 
However, -Bo (7) consists of characters of G / Z where S7 is self-centralizing, 
and by block separation (see [9, Lemmas 2 and 3]) in the first case \G/Z\ = 
5C504. Also, c < 3 and (mod 49) 14 = \G/Z\ = 5C504. Therefore, c = 0 and 
G/Z ^ PSL(2 , 8) which is dealt with later. 

If x = 16, y = 15, then 5 or 25 divides \G\ exactly. If 25 || |G|, then the 
character of degree 15 is in a block of 5-defect 1, contrary to block separation. 
If 5 || |G|, then by block separation the principal character and the algebraic 
conjugates of the character of degree 16 lie in the same 5-block. Then this 
block contains a character of degree 1 + 16 + 16 + 16 = 49, which is 
impossible. 

8. T h e case U = 2. Assume tha t G/Z is simple, ti = 2, and tha t \G/Z\ = 
2a365c7. By [4], XM = " 1 or p + 0 + /32 + £2 + £4 + /34. Suppose t h a t 
x(G) ÇL Q(o)). Then we may find a distinct conjugate xa with the same action 
on Z . Also, xaX has non-principal characters of G/Z as its consti tuents, entirely. 
If x(^i) = ~"1> then by [5, 3F] , the image of (^7) in G/Z is self-centralizing, 
and xa{^i)x{^i) = 1- I n the second case, let C(7r7) = (ir7) X V. Then x|(^7) 
X V = (f3)d + ((32)69 + (p)B°\ where g G N((ir7)) - C(ir7) and 6 is an irre­
ducible character of V. Also, 6 = 60 = 6°2 or % lies in a 7-block with a character 
of degree 6 with 7T7 in the kernel, which is a contradiction. Fur thermore , 
XxlM X V = (1 + 1 + 1 + 0 + /32 + £3 + /34 + £5 + j86)(0ë>). Because 66 
contains the principal character as a consti tuent, there is a surplus of two 
l<7r7>lF, a t most one corresponding to !#, and xx has an irreducible const i tuent 
in B0(7) of G/Z of degree 8, 15, 36, 18, 25, or 32. When XM = - 1 , XaX has 
such a consti tuent . In either event, let n be the degree of this const i tuent . 
Only for x(^i) = — 1 is ^ = 36 possible. If the four term degree equation 
1 + 8 + . . . = . . . has another term on the left, then by the tree i t mus t 
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be 8. However, 1 + 8 + 8 = 17, 1 + 15 + 15 = 31, 1 + 36 + 36 = 73, 
1 + 18 + 18 = 37, 1 + 25 + 25 = 51 and 1 + 32 + 32 = 65 are impossible. 
If 1 + 8, 1 + 15, 1 + 36, 1 + 18, 1 + 25, 1 + 32 = x + y, we may take 
x ^ 18 and x = 6 or 10. If x = 6, we may take X to be the corresponding 
representation. Then % is rational, contrary to our supposition. If x = 10, 
then we are in the case of n = 8, 15, or 36. It must be the last, since x = 6 is 
contrary to assumption. The degree equation is 1 + 36 = 10 + 27. Then 
x(^i) — — 1 . As in the previous section, x has at most three 5-conjugates and 
1551 ^ 25. If |55 | = 25, then 5-7 block separation gives a contradiction, since 
the character of degree 10 is in a 5-block of defect 1. Therefore, |S5| = 5. By 
3-7 block separation, since in is self-centralizing in G/Z, \G/Z\ = 2a3335. 
Then (mod 7) 1 = [G : N((T7))] = 2a325 = 2a3, and this is impossible. There­
fore, x £ (?(&>) and x(^i) = — 1. Suppose that 36 | \G/Z\. Let 5 3 be the image 
of 3-Sylow subgroup under X after adding co/6. There exists an abelian sub­
group A <3 5*3 of index at most 9 in 5 3 and \A | ^ 35. Let f be a linear consti­
tuent of x\A. Since x £ <2(w)) ffe)9 = 1 f° r all g £ -4, and f's lying outside 
of Q(oo) occur in triples of conjugate characters. The image of A under such 
a triple has order 9. If such a triple occurs, then by unimodularity, \A | ^ 339/3 
or 9.9/3, which is a contradiction. Therefore, \A\ = 35 and X\A consists of 
all diagonal matrices of order 3 and determinant 1. This shows that 5 3 has two 
non-linear constituents and some element g £ <S3 permutes the linear characters 
of the first constituent Y cyclically and fixes the linear characters of the second 
constituent, W. Furthermore, g3 Ç D where D is the group of diagonal matrices 
in 53, and F(g3) = (det Y(g))Iz, so (det F(g))3 = 1. Multiplying g by an 
element in A we may take det Y{g) = 1, 

/ 0 1 0\ 
Y(g) = 0 0 1 , 

\ 1 0 0 / 

and W{g) = 73. We may reverse the roles of the constituents and X\Sz is 
determined. Furthermore, co/6 occurs as a commutator, 3| |Z|, and 36 |] \G/Z\. 

As x £ Q(u), x\$£> is rational and by [21], 

c ^ [6/(5 - 1)] + [6/5(5 - 1)] + . . . = 1. 

If 5| |G|, then x is 5-non-exceptional and by [4], we may take S5 = (7r5) with 
X(T5) = diag(l, 1, e, e2, e3, 64), C(TT5) = S5 X V, and 

(X(V)) = <diag(a-5, a, a, a, a, a)). 

Then x(G) £ Q(œ) implies that a is a 6th root of unity, or5 = a, and (7r5) is 
self-centralizing in G/Z. We have not yet assumed that G has no irreducible 
representation of degree 7, so this eliminates As. 

If 5 divides no degree of a character of JS 0 (7 ) , then B0(7) contains characters 
of degrees 8, 32, 64, 256, or 512, and 27, 81, or 729. The degree 8 has already 
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been shown impossible. The other degree is 33 - 27 = 6, 33 + 729 = 762, 
65 - 27 = 38, 65 + 81 = 146, 65 + 729 = 794, 257 + 729 = 986, 257 - 27 
= 230, 513 - 27 = 486, 513 + 81 = 594, and 513 + 729 = 1242. In the 
case 1 + 32 = 6 + 27, block separation implies that \G/Z\ = 25335a7. By 
t = 2 and a Sylow theorem, a = 0. Then G/Z = ^ ( 3 ) , which is studied later. 
When 1 + 512 = 27 + 486 is the degree equation, by 3-7 block separation 
and 34|486| \G/Z\, the character of degree 27 is in So(7), which is a con­
tradiction. 

Now, we may assume that 5 || \G\. Since 5 5 does not have a normal comple­
ment, h = 2 or 1. If U = 2, then B0(5) has a character of degree a power of 
2 or 3. The other degree is 32 - 1 = 31, 64 - 1 = 63, 256 + 1 = 257, 
512 - 1 = 511, 27 - 1 = 26, 81 + 1 = 82, or 729 - 1 = 728. The degree 
equation is 1 + 63 = 64. By 2-5 block separation and a Sylow theorem, 
\G/Z\ = 263235. This by [17] turns out to be LF(3, 4). 

We are left with the case h = 1 and B0(7) has a degree divisible by 5. Since 
C(Ss) = S5Z by [4], all degrees are 0, ± 1 (mod 5). Then B0(7) has exactly 
two degrees divisible by 5. If the last degree is not a prime power, then these 
degrees are 2e5 and 3r5, and the possible degree equations are 1 + 15 = 6 + 10, 
1 + 64 = 20 + 45, 1 + 15 + 64 = 80, 1 + 15 + 144 = 160, and 1 + 64 + 
1215 = 1280. Note that since (fi + /52 + 04) (03 + /35 + /36) = 2, the highest 
power of 2 dividing 7(1)7(^7) is at most 2 for 7 an irreducible character of 
degree 45. Only the first two degree equations have a tree and in the second, 
by 2-7 block separation and t-j = 2, we have \G/Z\ = 263235 contrary to 
£ 5 = 1 and C(Si) = 55Z. Suppose that the degree equation for B0(7) is 
1 + 15 = 6 + 10. Using this character of degree 6 we may assume that 
\Z\ = 1 and |58 | g [6/2] + [6/6] + . . . = 4. The possible orders are 233235 
and 253435. The first is small enough to conclude that G = A*j. In the second 
case, x\Sz has two algebraically conjugate constituents contained in Q(co); 
otherwise, 4 ^ 2 ([3/2] + [3/6] + . . . ) = 2. As in the argument in this 
section showing that |53 | S 36, these constituents are determined; in fact, 
they are 

H O 0 l ) , d iag ( l , l , o ) ) \ . 

We have an element T of order 3 in Z(53) with xCO = — 3. Then for 
Xi5(l) = 15 and xi5 6 -So(7) £ #o(3), by 3-7 block separation, 

[G : C(r)]X iB(T)/15 - [G : C ( r ) ] l / 1 (mod 3), 

and xuCO = — 3; otherwise, xi&(T) = 6 and xioCO = 10, which is imposs­
ible. The character of C2(X), the skew-symmetric tensors of X ®X, takes 
T to ( ( - 3 ) 2 - ( - 3 ) ) / 2 = 6 5* xisOO. Therefore, this character is reducible 
since by [4, II, Theorem 1], B0(7) is the only 7-block of defect 1. It must have 
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irreducible constituents of degrees 1 and 14. The character %2i of P 2 (X) , the 
symmetric tensors of X (x) X, takes T to (( —3)2 + ( — 3))/2 = 3 and cannot 
be %6 + Xi5- Since C%(X) contains xo, P*{X) is irreducible. The character of 
Cz(X), the skew-symmetric tensors of X (x) X (x) X, takes r to 9oo + 9cô + 
2 = — 7 and cannot equal xio + Xio- As a constituent of (xo + XiOxe it does 
not contain xo and must be X6 + Xi4'. Then 

XiAT) = - 7 - ( - 3 ) = - 4 ^ 5 = x i 4 ( r ) . 

Since C(55) = 55, J30(5) consists of xo, xe, X21, X14, and xw- If / € G satisfies 
J~lir$J = 7T5-1, then X(J) has eigenvalues 1, — 1 , 1, — 1 , =hl, ± 1 , xo(/) = 1, 
Xe(/) = ± 2 , X2i(/) = (22 + 6)/2 = 5, X H W = - 1 + (22 - 6)/2 = - 2 , 
and xi4'(/) = ± ( 4 + 4 - 12) - (±2 ) = ± ( - 6 ) . However, 

5 = a(J,J, TT5) = ( |G|/ |C(/) |2)(1 + 2/3 + 25/21 - 4/14 - 36/14) = 0, 

which is a contradiction. 
If a prime power is a degree, it must be 64 or 729. In the first case, the possi­

bilities are 1 + 64 + 64 = 129 or 1 + 64 = 10 + 55, 15 + 50, or 20 + 45, 
and these have already been covered. In the second case, we have a degree 
2e5. The possibilities are 1 + 729 = 10 + 720, 20 + 710, 80 + 650, 160 + 570, 
or 640 + 90. By 3-7 block separation, \G/Z\ = 2a3635 and by t7 = 2, we have 
a = 7. The degree equation of B0(7) of PSU4(3) treated in [17] is 1 + 729 = 
640 + 90. In the case 1 + 729 = 10 + 720, let f be the character of degree 10. 
Then, ff (^7) = 2 and, as 729 > 100, it must contain the principal character 
twice, which is a contradiction. 

9, The case h = 1. Here we assume that G/Z is simple, \G/Z\ = 2fl3&5c7, 
and h = 1. Then, xiji) = — 1 and C(7r7) = S^Z. By unimodularity, if J is 
a 2-element with J~X-KIJ = iri~l, then x(J2) = ~~-̂ 6 and 2| \Z\. Therefore, 
XX has no irreducible constituent of degree 6. By [29], we assume that G has 
no irreducible representation of degree 7. The symmetric and skew symmetric 
tensors of X (x) X are irreducible or have two irreducible constituents, one of 
which is linear. Also X ® X has irreducible constituents of degrees 15 and 21 
or 1, 14, and 21 or 1, 15, and 20. In the latter two cases, replace G by the kernel 
of the character of degree 1. Then \Z\ = 2 and x is real. In the first case 
(xx> XX.) — (xx> xx) = 2 and xx has irreducible constituents of degrees 1 
and 35. 

Suppose X has a 5-conjugate Y for all 6-dimensional representations X of G. 
Then X (x) Y and I g l have the same 5-modular constituents and X (x) Y 
has a constituent in the principal 5-block, B0(5). Then total degrees of con­
stituents in Bo (5) of X (x) X equals the total for X (x) Y > 1, and a character 
of degree 15, 21, 14, 20, or 35 is in B0(5) by the last two lines of the above 
paragraph. If the degree is 35, let U be this constituent of X (x) X. By the 
proof of [7, Theorem 1] and the fact that S5 is abelian, if 7r5 is an element of 
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order 5, then U(j*>) has the eigenvalue 1 a multiple of five times. Let 

X(TT5) = a0l + . . . + a4e
4, 

and let ]£ at — 6. Then 5|(a0
2 + . . . + a4

2 — 1). Furthermore, at
2 = 0, ± 1 

(mod 5). The possibilities after permuting the at are 

a0 = 0, ai2 = . . . = a4
2 = — 1 ; &o2 = 1, a±2 = . . . = a4

2 = 0; 

#0
2 = ax

2 = 1, a2
2 = — 1, a3 = a4 = 0; and a0

2 = a!2 = a2
2 = 1, 

az
2 == a4

2 = — 1. 

If at
2 = 1, a* = 1 or 4. If a*2 = — 1, at = 2 or 3. The first and last cases do 

not arise since, in these cases, ^ a* > 6. The second case arises only when 
x(7T5) = 1 + 5e. In the third case, X) az- > 6 unless a0 = a\ = 1, a2 = 2 or 3. 
Therefore, xOre) = 1 + 5e, contrary to Lemma 2. Therefore, x is real. 

Suppose 5 || \G\. Then by [4] and unimodularity, xOrs) = 3e + 3e or 
2 + 2e + 2g; otherwise, x|5« X V = [1 + (e) + (i)]0 + [1 + (e2) + (e"2)]^, 
where C(S5) = Sh X V. As 6 and 0* are real and linear, 1 = 03(0<O3 = 0<r0~1 

and x has no 5-conjugate, contrary to assumption. The constituent of %X in 
i?o(5) must have degree 14 or 21. Then X ® X has irreducible constituents of 
degree 1, 14, and 21. Also £, the character of the symmetric tensors of X (x) X, 
is irreducible. However, £Os) = 6e2 + 6e~2 + 9 or 4e + 4i + 7 + 3e2 + 3e"2 

in contradiction to [4]. 
By arguments in the previous section, % real implies that l^l ^ 25 if S5 is 

elementary abelian. We still assume that x has some 5-conjugate until we 
state otherwise. As \Z\ = 2, there are two 7-blocks of defect 1, say B0 and Bi. 
Therefore, B\ is taken to itself by complex conjugation and [25, Theorems A 
and B] apply. Since all characters of degree 6 are real, they appear on the 
stem and x has, at most four conjugates. Suppose that k Ç G has order 25. 
Then the automorphisms y —» 76 and y —> 7 _ 1 fix %|55 where yb = e. This 
is impossible as x(&) would then have at least ten eigenvalues. Therefore, 
55 is elementary abelian of order 25 and \G/Z\ = 2a3&527. 

Because x has a 5-conjugate, x\Sz has at most two conjugates and % is real, 
x|53 is rational, and b S [6/(3 - 1)] + [6/3(3 - 1)] + . . . = 4. Further­
more, 523&2a = 6 (mod 7) and b is odd. If b = 1, then S0(3) has xo and a 
character of odd degree which by [29] must be 7.5 or 7.25, but 35 — 1 = 34 
and 175 + 1 = 176 are impossible degrees. Therefore, \G/Z\ = 2a33527. By 
section 4, a = 4 or 7. If a = 7, then by [15], G/Z is the Hall-Janko group 
treated in [16]. Otherwise, \G/Z\ = 75600. By a well known result of algebraic 
number theory, any automorphism of our 7-modular field R/M lifts to an 
automorphism of our algebraic number field leaving invariant our local ring R 
and its maximal ideal M. Then this automorphism induces an automorphism 
of the tree of any block which it fixes. In particular the automorphism of the 
7-modular field of raising elements to their seventh power lifts to an auto­
morphism r of the algebraic number field containing Q(xi(G)), taking 7r-roots 
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of unity to their seventh powers. As S5 is elementary abelian, r does not 
fix % and must flip the stem. Then Bi(7) has three pairs of characters of equal 
degree. Because they are faithful on Z, the degrees are even. If there are two 
pairs of characters of degree 6, then the tree is real with degree equation 
6 + 6 + 6 + 6 = 8 + 8 + 8. Then 5 5 ^ Z5 X Z5 is not cyclic, contrary to 
unimodularity of a 7-modular character of degree 2. Another degree divisible 
exactly by 2 must be 90, 50, or 33522. 33522 is too large. This must be in a pair 
and we are left with 2 (90 + 6) = 192 or 2 (50 - 6) = 88. Degrees not divisible 
by 5 are 36, 8, 216, and 48. Adding one or a pair of these to the first or second 
case, we obtain: 

(192 - 36)/2 = 78, (192 - 8)/2 = 92, (192 + 216)/2 = 204, 

(192 + 48)/2 = 120, 192 - 2.36 = 120, 192 - 2.8 = 176, 

192 + 2.216 = 624, 192 + 2.48 = 288, (88 + 36)/2 = 62, 

(88 + 8)/2 = 48, (216 - 88)/2 = 64, (88 - 48)/2 = 20, 

88 + 2.36 = 160, 88 + 2.8 = 104, 2(216) - 88 = 344, and 

2.48 - 88 = 8, 

which has been listed already. The possible degree equations are: 

6 + 6 + 90 + 90 + 48 = 120 + 120, 6 + 6 + 90 + 90 = 36 + 36 + 120, 

6 + 6 + 48 + 48 = 50 + 50 + 8, 6 + 6 + 20 + 20 + 48 = 50 + 50, and 
6 + 6 + 160 = 36 + 36 + 50 + 50. 

In the first two cases, 120 + 120 - 90 - 90 = 60 ^ 0 (mod 25) and 
90 + 90 - 120 = 60 ^ 0 (mod 25), contrary to 5-7 block separation. In 
the third case, the stem consists of 6, 8, and 6, since the character of degree 50 
has no 5-conjugate, and then 6 + 6 > 8 gives a contradiction. The fourth 
case has no tree. The last case is not possible by 5-7 block separation. 

Now, we may assume that x has no 5-conjugate. In particular 2 5 \ \G\. 
Suppose that 5 i \G\. Then no character has degree 15 and by the first para­
graph of this section, the skew-symmetric tensors of X (x) X have irreducible 
constituents of degrees 1 and 14, x is real, and \Z\ = 2. If x\Sz is irrational, 
then the above mentioned automorphism r taking x to x7 for x a 7'-root of 
unity, induces an automorphism of the tree of Bi(7). Then r2 fixes the stem 
and x» since x is real and on the stem. As a primitive 27th root of unity has 
9 > 6 = x ( l ) images under r2, 5 3 has exponent 9 or 3. For 7 a primitive 
ninth root of unity, r2: 7 —» 749 and complex conjugation: 7 —> y~l generate 
the automorphism group of Q(y) and fix x, so x\Sz is rational. Then as before, 
3 5 ^ \G\. Since [G:S7Z] = 6 (mod 7), 3 divides \G\ to the first or third power. 
Then \G/Z\ |29337 = 96768. In J30(7), the degree 288 is too large since 
2882(1 + 1/5) > 96768. The possible degrees in B0(7) are 8, 64, 48, 36, 27, 
and 216. Then there must be three (mod 4) characters of degree 27. It must 
be three and \G/Z\ = 2a337, a = 3, 6, or 9. Since 216 + 27 + 27 + 27 > 
1 + 64 + 64, the degree 216 is impossible. Only 8, 64, 48, and 36 remain. 
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Since 27 + 27 + 27 + 48 + 48 > 1 + 64, the - 1 (mod 7) side of the degree 
equation is 27 + 27 + 27 or 27 + 27 + 27 + 48. By the degree equation, 
taken (mod 3), the other side is 1 + 8 + 36, 1 + 8 + 36 + 36, 1 + 64 + 64, 
1 + 64 + 6 4 + 3 6 , or 1 + 8 + 8 + 64. The degree equations are 
1 + 8 + 36 + 36 = 27 + 27 + 27, 1 + 64 + 64 = 27 + 27 + 27 + 48, and 
1 + 8 + 8 + 64 = 27 + 27 + 27. In the first case, 2-7 block separation 
implies that a = 3, contrary to Yl xt2 > 56.27. In the second case, a = 6, 
contrary to X) %t > 26337. In the last case, 1, 27, 27, and 27 occur in the same 
2-block by block separation. The characters of degree 8 must also lie in this 
2-block, which is a contradiction. 

Suppose that 5 || \G\ and S5 is not self-centralizing in G/Z. By [4] we may 
write X(TT5) = diag(l, 1, e, e2, e3, e4) and [C(7r5)]5' = (g) with X(g) = 
diag(7~5, 7, 7, 7, 7, 7). As G/Z is simple, G is generated by Z and conjugates 
of the homology X(g). Then the classification in [20] of finite primitive 
collineation groups generated by homologies contradicts the simplicity of G/Z. 

Now, we may assume that C(7r5) = S5Z. If U = 2, then as in section 8, 
the degree equation for B0(5) is 1 + 63 = 64. By 2-5 block separation, 
I G/Z I = 263&35. Then b = 10 (mod 12), which is a contradiction. Therefore, 
h = 1. The possibilities for |G/Z| are 293435 and 273235. Degrees x in B0(5) 
satisfy (x - 1)2(1 + (1/3)) ^ 293435 = 1451520 and x g 1043. The possible 
degrees in B0(5) are 1, 64, 14, 56, 224, 896, 384, 21, 84, 336, 36, 126, 504, 216, 
189, and 756. Odd degrees are 21 and 189. Degrees not divisible by 3 are 64, 
14, 56, 224, and 896. If some degree is 64, then we have 1 + 21 + . . . = 
64 + . . . or 1 + . . . = 64 + 189 + . . . . I n the first case, there is another 
degree divisible at most by 2 which would have to be 21, 189, 14, or 126. 
Then 42 - 21 = 21, 42 + 189 = 231, 42 + 14 = 56, or 126 - 42 = 84. 
In the second case, 64 + 64 + 189 - 1 = 316 and 64 + 189 + 189 - 1 = 441, 
so there is a degree x = 1 (mod 5) with 

(64 + 189 - l ) / 2 S x ^ 64 + 189 - 1. 

The possibilities are 

64 + 189 - 1 - 126 = 126 and 64 + 189 - 1 - 216 = 36. 

If no degree is 64, then we have another degree not divisible by 7 which must 
be 384, 216, or 36. We then have characters of degree 1, either 384, 216, or 
36, either 21 or 189, and either 14, 56, 224, or 896. Only four of these twenty-
four combinations give a degree on our list. The possible degree equations are: 
1 + 21 + 21 + 21 = 64,1 + 21 + 56 = 14 + 64,1 + 21 + 126 = 64 + 84, 

1 + 126 + 126 = 64 + 189, 1 + 36 + 216 = 64 + 189, 

1 + 896 = 189 + 384 + 324, 1 + 216 + 21 = 14 + 224, 

1 + 216 = 189 + 14 + 14, and 1 + 216 + 56 = 189 + 84. 
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In the first live cases 2-7 block separation shows that 26 || \G/Z\, which is a 
contradiction. In the last four cases, 216 or 189| \G/Z\, \G/Z\ = 293435, and 
the characters of degree 216 and 189 are in a 3-block of defect 1, contrary 
to 3-7 block separation since 81 <f (216 - 189). 

10. The case where G is a subdirect product of 2 and 3-dimensional 
groups. This section covers [19, Theorem, Case B], Here G Q A X B, 
U is a faithful, unimodular, irreducible, 2-dimensional representation of A, 
F is a faithful, unimodular, irreducible, 3-dimensional representation of B, 
f is the character of U, £ is the character of V, the representation 

Y {A X B) = U(A) (x) V(B), and X(G) = Y(G). 

Also, 7ri(G) = A and 7r2(G) = B, where in and w2 are the natural projections 
of A X B. We may have to alter elements X(g) by scalar multiplication 
corresponding to changing U(a) and V(b) by scalar multiplication to make 
them unimodular. After this is done, Z(A) and Z(B) do not have common 
constituents, so G is a subdirect product instead of just a central, subdirect 
product. To get X{g) back in its original form, we multiply U(a) and V(b) 
by unimodular, scalar matrices. 

If V(B) is i m primitive, then B has a normal abelian subgroup B± of index 
3 or 6. Then H = 7r2

-1C£>i) is normal of index 3 or 6 in G and, by quasi-
primitivity, %|iJ = 0 + 0 + 0, where 0 is a 2-dimensional character of H. 

Then 

1 = llxll2 = E |x(*)|V|G| > E lx(x)|2/6|i?| = | |x |H| |2 /6 > 9/6, 
x€G x£H 

which is a contradiction. Therefore, V(B) is primitive. Similarly U(A) is 
primitive. As mentioned in section 2, by [1], ^ 4 ^ S L ( 2 , 5), SL(2, 3), or 
GL(2, 3), and B ~ PSL(2, 7), A5} a central extension of Z3 by A6, the Hessian 
group E-z of order |SL(2, 3)|.9.3, or a subgroup H2 or Hi of index 3 or 6 respec­
tively in Hz. If N<_G and TI(N) C Z(A), then TV = Z2 X 7r2(iV) or 7r2|iV 
is faithful. The first case is obtained from the second by adding —1&. In the 
first case, if 0 is the non-principal linear character of N = Z2 X ^(AO with 
TT2(N) in its kernel, then x\N = 0(eir2\N + falN). Therefore, when 
TTi(iV) Ç Z(A) or similarly when 7r2(N) Cl Z(B), N does not contradict 
quasiprimitivity of X(G) since w2(N) <3B and J is quasiprimitive. 

In the cases where G = A X B, if N<3G and wi(N) $£ Z(A), since 
Z(^4/Z(^4)) is trivial the commutator subgroup [̂ 4, N] (£ Z (A ), 
iri([A, N]) -<3A, and by quasiprimitivity, f|7ri([/4, N]) is irreducible. We may 
reverse the roles of A and B. Since [A, N] X [5, iV] C N, either 

7ri(iV) Ç Z ( ^ ) , TT2(A
7) C Z ( 5 ) , or X|iV 

is irreducible. Therefore, the direct products are quasiprimitive. By the 
subdirect product theorem, the other possibilities for G are a subgroup of 
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index 60 in SL(2, 5) X A5f a subgroup of index 2 in GL(2, 3) X Hu i = 1 or 2, 
or a subgroup of index 3, 12, or 24 in SL(2, 3) X H%. The first case is covered 
as a projective representation of A5. The case where G is of index 2 in a direct 
product is shown to be quasiprimitive in the same way that the direct products 
were, since they contain SL(2, 3) X (1) and (1) X (the group of index 2 in 
i l l ) . In the case A ^ S L ( 2 , 3) and B^HZ, suppose that N^G and N 
contradicts quasiprimitivity. Then wi(N) %L Z(A) and iri(N) = A or the 
quaternions, Q, and 7r2(A0 = a normal subgroup of index 1, 3, 12, or 24 in i73. 
Then, since 7ri(ker 7r2|i\0 <3 A and 7r2(ker 7ri|iV) <3 B, and N is not a direct 
product of these groups, N is a subgroup of index 3, 12, or 24 in A X B or 
a subgroup of index 4 or 8 in Q X i^2. In any event, N contains a subdirect 
product M of index 8 in Ç X H2. Then 7r2|ikf is faithful. Let 

L = MH irrl{Z{A)). 

Then 

E i*(*)i7iAf| = E ir(xi(*))i,i£(T,(*))ivi^i 

= E22|Kx2(x))|2/4|Li 

= I I^ I I 2 = I. 
since £| (the subgroup of index 4 in if2) is irreducible. Therefore, X\N is irre­
ducible and X(G) is quasiprimitive and irreducible. 

11. Groups of degree 2, 3, 4, 5, and 7. Projective representations of 
PSL(2, 7), PSL(2, 8), PSL(2, 11), PSL(2, 13), A*, Ah and their automor­
phism groups (except for PSL(2, 8)), PGL(2, 7), PGL(2, 11), PGL(2, 13), 
j ^ 5 , and S^7 are classified in [22; 26]. The former reference also treats 
AQ = PSL(2, 9) which has outer automorphism group of order 4. The outer 
automorphisms of PSL(2, 9) are generated by a, the field automorphism, 
and j8, conjugation by 

\ 0 y) 

where 7 = 1 + 2, i £ GF(9), and i2 = — 1. An element F of order 8 in 
SL(2, 9) is 

and 

53 = {G ï)l*€GF(9)| . 
Then .F" = F3 and Z73 = F. Let i£ and T be inverse images of 

C 0and (J 1) 
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in G respectively, the non-trivial central extension of Z3 by A*. Then 
(R, T)° = (R, T-1) = (R, T ) - 1 and (R, T)* = (RT, RrlT) = (R, T)~l. 
Therefore, (a/3) is the subgroup of outer automorphisms of PSL(2, 9) with 
trivial action on Z(G). This automorphism aft lifts to G by the uniqueness of 
the representation group of AQ. The 6-dimensional matrix group —G can be 
enlarged by this automorphism. However, FaP = F3 and a(3 permutes the 
classes of elements of order 8 in SL(2, 9) and this automorphism cannot 
enlarge the 6-dimensional matrix group isomorphic to the representation 
group of AQ. In section 8 we eliminated A$. By [29], the symplectic group 
SQ(2) has /5 = 1 and a 6-dimensional projective representation would imply 
that C(7T5) is cyclic, which it is not. By [5; 15], U3(3) and PSU4(2) each have 
a representation of degree 6. 

The degree equation of the 7-block of defect 1 of U3(3) is 1 + 32 = 6 + 27 
by [15]. Suppose that G is a non-trivial central extension of Z2 by U3(3). 
Then B±(7) of G has a character %32' faithful and completing the 2-block of 
defect 1. I t contains other degrees not divisible by 3. The block orthogonality 
equations with (1, — ̂ 7) where — in is of order 14, taken over all 2-blocks 
containing a character of degree 32 (thus, of defect 1) shows that 221 (7) 
contains exactly one character of degree 32. 8 is the only other degree not 
divisible by 3. Since 3f (32 + 8), the degree equation for £i (7) is 32 + 8 + 
8 = 48. Let c' be the inverse image of c in the character table of Z7s(3) in [15]. 
Then |C(c')l = 9|Z|, c' is conjugate to c'-*1, and c' has order 3. The tree of 
Bi(7) shows that the characters of degree 8 are algebraic conjugates and 
the xs(cfYs are equal and congruent to —1 (mod 3). Since |C(c')| = 9|Z|, 
Xs(cf) = —1 or 2 and x^(c) = —3 or 3, which is a contradiction. Therefore, 
any central extension of Z2 by U3(3) is isomorphic to Z2 X U3(3). 

Now, suppose that G is a non-trivial central extension of Z3 by U3(3). By 
[3, Corollaries 4 and 5], a faithful character of degree 27 is in a 3-block of defect 
one with its 3-conjugate and a 3-rational character of degree 27, which by its 
3-rationality has Z(G) in its kernel. Therefore, a non-principal 7-block has at 
most one character of degree 27, contrary to the fact that 27 is the only possible 
odd degree in this block. There can be no projective representation of U3(3) 
with centre of order 6, since Z2 factors out of any central extension of Z6 

byU 3 (3) . 
Now, suppose that G is a non-trivial central extension of Z2 by PSU4(2) 

with a faithful representation of degree 6. We shall make frequent appeal 
to the character table of PSU4(2). There is exactly one degree 64 in -So (5) and, 
hence, exactly one degree 64 in 2?i(5), the non-principal 7-block of defect 1. 
By assumption, %6' of degree 6 is in 2?i(5). There is a degree divisible exactly 
by 2 since if f G £i (5) , then G = G', de t f = 1, 1 = d e t f ( - l ) = ( - l ) m \ 
and f (1) is even. Such degrees must be 6 or 54. Degrees not divisible by 
3 are 4 and 16, and there are two characters of degree 4 or one of degree 16. 
The possibilities are 64 - 6 + 4 + 4 = 66, 64 - 6 - 16 - 6 = 36, and 
64 — 6 — 16 + 54 = 96. Consider the first degree equation: 
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6 + 6 + 16 + 36 = 64. 

Take T € Z(5,) C\ S/. Then Xv(T) = - 3 , -3co, or - 3 « . In G/Z the class 
multiplication coefficient 

a(T, T \ x») £ xi(Dxi(r-1)Xi(Ti)/xi(i) 
XieBo(5) 

IIGl/lc^nccr-1)!] 

= (constant) (1 + 9/6 + 0/81 - 36/24 - 64/64) 
= 0. 

Therefore, a(T, T"1, 7r5) = 0 in G and the sums of Xi(T)xi(T-1)xi(Trb)/xiO-) 
over B0(5) U Bi(o) and over JBI(5) are also 0. However, xw(T) — — 8 and 
Ssi(5) è 9/6 — 64/64 > 0, which is a contradiction. Suppose that the 
degree equation for BX{1) is 6 + 16 + 96 = 54 + 64. Then 21\X^(T) implies 
t ha t X 5 4 ( r ) = 0 since 272 > 648 = \C(T)\/\Z\, and £ S l ( 6 ) è 9/6 - 64/64 > 0 
gives a contradiction. 

Now, suppose that G is a non-trivial central extension of Z3 by PSU4(2) 
with a faithful representation of degree 6. Then Bi (5) has a degree 6 and exactly 
one degree 81. Another odd degree must be 9. Degrees divisible exactly by 3 
are 6, 24, and 96. The possibilities are: 6 + 81 - 9 + 6 = 84, 78 - 24 = 54, 
and 78 + 96 = 174. The degree equation is: 6 + 81 = 9 + 24 + 54. Some 
involution J in G has |C( / ) | = 576|Z|. Since the determinant is 1, xv(J) = ± 2 ; 
andxsi'CO = 9. In G/Z, 

a(J, J, 7f5) = (constant) (1 + 4/6 + 81/81 - 64/24 - 0/64) = 0. 

Therefore, since B\(5) andjB2(5) are conjugate, ]£BI(5) and Z}s2(5) are both 0. 
Now, 8|x24(/) since X24(-/)|G!|/|C(Jr)|x24(l) is an integer. Then 

82/24 > 4/6 + 81/81 

shows that xu(J) = 0- Similarly, 6|x54(/). Then 3|x9(«/) since YIBIW is a 
local 3-integer. However, x*'(J) + Xwtf) = XoU) + X2*(J) + xu(J) gives 
a contradiction, since 3 divides the right side but not the left. 

If X is a projective representation of PSU4(2) with centre of order 6, then 
the symmetric tensors of X (g) X have degree 21 and have an irreducible 
constituent F of degree y = 0 (mod 3) (using det Y([Z(G)]Z) = 1), and 
y = 1 (mod 5). Then y = 6, which is a contradiction since PSU4(2) has no 
projective 6-dimensional representation with centre of order 3. 
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