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Abstract

A star-like circuit-switching network with multistage service is con
sidered. Likelihood ratio ordering is used to show that there exists an
optimal threshold for the mean number of messages processed through the
network as a function of the input traffic intensity.

LIKELIHOOD RATIO ORDERING; OPTIMAL NETWORK PERFORMANCE

1. Introduction

In the theory of circuit-switching networks with losses, only networks with one-stage service
have been investigated. One-stage service means that at the moment of arrival of a call it is
possible to know immediately whether or not a route exists for information transmission
between calling and terminal nodes. Accordingly the call immediately occupies the route and
starts to be served or leaves the system (see, for example, [1], [2]).

In the present note we consider a star-like circuit-switching network with multistage
service. This means that a call successively occupies lines at a preassigned route and gets a
busy signal in the case of blocking of some line only at the moment of appearance at its entry.
The central mode may represent an operator connecting calls between different sources and
destinations. The model also may represent multimedia services in an ATM network. In such
networks we show that an interesting phenomenon is taking place: namely, the number of
calls processed tends to decrease when the traffic load is too large.

2. Model description

Consider a network with one central node Vo and K peripheral nodes VI' ••• , VK. Each of
the peripheral nodes is connected to the central node by a single channel, so it is a network
with K links each with capacity 1. Assume an input Poisson process of calls with rate a at each
node Vi' 1~ i ~ K; all these processes are mutually independent. A call, arriving at node i, at
first analyses the state of the line between Vi and Vo. If the line is engaged, the call is lost. If
the line is free then the call immediately occupies it for a random period of time (first-stage
service). After the service the call chooses the destination node Vi randomly (i.e. with
probability l/(K - 1) as destination any node Vi' j =1= i, can be chosen) and analyzes the state
of the line between Vo and Vi. If the line is busy the call is lost and the earlier occupied line
between Vi and Vo becomes idle. If the line is free then the call immediately occupies it for a
random period of time (second-stage service), keeping the earlier occupied line between Vi

and Vo engaged as well. At the end of the second-stage service the call leaves the network and
both lines become free.

We assume that first-stage service times have the same exponential distribution with
parameter J.lI and second-stage service times have the same exponential distribution with
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parameter 1l2' As usual we suppose that all random variables involved are mutually
independent.

Let Vl(t), v2(t) be the number of calls in progress in the first and second stages respectively.
The two-dimensional process (vl(t), V2(t» is a Markov process with finite state-space
S = {(i, j) E Z; Ii + 2j~ K} (each call at a second stage holds two lines). From a point
(i, j) E S we can reach only the following points (below X(') is the indicator function of a set S,
i.e. X(i, j) = 1 if (i, j) E Sand X(i, j) = 0 otherwise):

1. (i + 1, j) with rate a(K - i - 2j)X(i + 1, j);
2. (i - 1, j) with rate illl(i + 2j -1)/(K -1);
3. (i -1, j + 1) with rate illlX(i -1, j + 1)(K - i - 2j)/(K - 1);
4. (i, j - 1) with rate j1l2'
In what follows we consider the network in steady state (which exists due to the finiteness

of the state space).

3. Main result

The above transition intensities of the process (vl(t), v2(t» allow us to write the
Kolmogorov equations for steady-state probabilities Pii= lim...; P( vl(t) = i, v2(t) = j). By
direct substitution in these equations one can check that the probabilities

ai +i K!
O~i+2j~KP» = 1l;1l~(K - ly i! j! (K - i - 2j)! poo,

satisfy the set bf equations. Here p : can be determined from the normalizing condition.
In particular, for the steady-state distribution Pi = lim,-+oop(v2(t) = j) of the number of calls

processed at the second stage of service we have

[
a ]2 K!

Pi = 1l2(K- 1)(1 + a/Ill)2 j! (K - 2j)! Po,
O < · < ~

=1=2 '

where Po can be determined from the normalizing condition.
From this we can find Y = lim,-+oo EV2(t) = Ei jpi' This value determines the mean profit per

unit time from the network functioning (because it is the only time during which information
carried through is profitable).

Numerical calculations showed that the dependence of Y on traffic load a at each node is as
shown in Figure 1.

We show below this dependence really has the same form for a network with any number
of peripheral nodes. Moreover we can establish the stronger result on the increasing and
decreasing nature of the distribution Pi dependent on the parameter a. For this purpose we
use the stochastic ordering ~lr' Recall that if (pJ), (pj') are any distinct distributions, then
(Pi)~lr(Pj') iff for all j pJ/pJ-l~Pj'/pj'-l' It is well known that (PJ)~lr'(Pj') implies that
(pJ) ~st (pj') and this in turn implies the numerical inequality for the corresponding mean
values:

L jpJ~L jpj'.
i i

(For more details, see [3].) In our case,

J», = a (K - 2j + 1)(K - 2j + 2)
PI PI-l (1 + a/Ill)2 1l2(K- l)j

The function q;(a) =a/ (1 + a]1l2)2 is increasing for 0~ a ~ III and then is decreasing when
III~ a+00. This implies that the distribution Pi =pi(a) at first increases relative to the
stochastic ordering ~lr (on the interval 0~ a ~ Ill) and then decreases relative to the
stochastic ordering ~lr (on the interval III~ a < +00). From this, the corresponding behaviour
of Y(a) easily follows.
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4. App6cations

The above result about the existence of a maximum for Y(a) seems to be of interest for
optimal control of the network. If the objective is to increase the profit from the network
functioning one must find ways to increase the flow of calls at the peripheral nodes. However,
this can be done only up to a certain threshold (maximum of Y(a». Further increase in input
flow intensity (and thus resulting decrease in Y(a» will be detrimental to the network. Calls
will tend to compete for lines to transmit through; hence there is a decrease in the actual
number of transmitted messages, and this in turn influences the profit. In our view a similar
situation can also occur in other structures of multistage networks. However, the determina
tion of the optimal value a of the input intensity could be difficult. We mention specifically the
fact that the phenomenon described in the above investigation cannot be observed in the
models of circuit-switching networks with one-stage service.
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