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Abstract

Using both multivariate regression and artificial neural networks, the relative impact of variables affecting
cow-calf profitability was examined over two cattle cycles for spring- and fall-calving herds that varied in
size by time period analyzed when using different fertility management affecting forage yields with and
without weather uncertainty. Neural networks had greater predictive accuracy than regression but at the
cost of lesser transparency and predictive consistency. Explaining profitability, price, and quantity of cattle
sold were consistently and respectively ranked first and second using both approaches. Importance rank-
ings for hay sold and fertilizer were low and less consistent across techniques employed.

Keywords: Artificial neural networks (ANNSs); calving season; cow herd profitability; fertilizer use; herd size management;
multivariate regression (MR)
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1. Introduction

It is often informative to use simulation models that can predict changes in profitability of a range
of production practices along with historical input and output prices to create a set of data that
could then be analyzed to showcase how combinations of certain production factors impact
estimated profitability over time. In these types of analyses, an attempt to draw conclusions about
what individual factors, using combinations of input choices, have the largest impact on profit-
ability is important to decision-makers facing similar situations as they would like to ascertain the
input choices explaining the most variation in profits. A host of evaluation techniques exist for this
purpose. Herein, we analyze artificial neural network (ANN) approaches and contrast results of
their impact analyses to multivariate regression (MR) in terms of predictive accuracy and ability to
identify relationships between production factors, historical prices, and associated profitability
outcomes. At stake is transparency, consistency, and accuracy of results reported.

In this study, we use historical prices and weather data from the last two U.S. beef cattle cycles
(1990-2003 and 2004-2014) and investigate estimated changes in profitability as a result of
changing the herd size over time using a cow-calf simulation tool, the Forage and Cattle
Analysis and Planning tool (FORCAP) as developed by Popp et al. (2014). Prior studies suggest
that managing the well-known concept of the cattle cycle to sell when prices are high and buy
when price are low could lead to enhanced cow-calf producer returns (Bentley and Shumway,
1981; Griffith, Burdine, and Anderson, 2017; Hamilton and Kastens, 2000; Lawrence, 2002; Rosen,
1987; Tester et al., 2019; Trapp, 1986). For this research, we rely on data from an analysis on herd
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size management (HSM) strategies most recently and intensively examined by Tester et al. (2019),
where HSM practices varied from: (1) a strategy of holding the herd size constant regardless of price
and weather conditions; (2) a countercyclical price signal-based strategy expanding/contracting the
herd size when the short-term price outlook was weak/strong and hence would allow for capturing
more sales when prices rebound/selling fewer head when prices would return to lower levels; and (3) a
cost-based herd expansion strategy leading to herd size expansion when replacement heifers are rela-
tively cheap and selling more replacement heifers when prices are high. Holding land resources con-
stant, both fall- and spring-calving seasons and varying levels of fertility were analyzed in conjunction
with HSM strategy (Table 1) and historical input and output prices (Table 2). Further, simulated
weather impacts affected forage production, either creating conditions of excess hay sales or requiring
purchase of hay to meet herd nutrition requirements (Table 3).

With multiple variables impacting profitability of cow-calf operations over time, quantifying the
relative impact of key variables on profitability is of aforementioned interest. The objective of this research
was to estimate and rank the relative impacts of hay and cattle sales, level of fertilizer use, and calving
season on cow-calf profitability using MR and ANNs. This was done for each cattle cycle and across the
entire period (consistency). The point of comparing ANN to MR is to determine if using the more inter-
pretable and the computationally easier MR approach (transparency) comes at the cost of sacrificing
substantial explanatory power (accuracy). We quantify the magnitude of these trade-offs by calculating
R? of in-sample profitability estimates and root-mean-square error (RMSE) for out-of-sample predictions
using 10 randomly selected training and testing data sets that varied in size for each period. Further,
knowledge of what factors drive profitability, regardless of computational method chosen, is important
for producers so they can use this information to identify which factors to monitor most closely to maxi-
mize profit. Finally, producers may wish to know whether the impacts of factors change between the time
periods analyzed: the cattle cycle from 1990 to 2003, the one from 2004 to 2014, or the entire period.

In order, we discuss (1) general insights about analytical techniques employed; (2) how the data
were simulated and the models’ specifications; (3) the metrics to measure each independent var-
iable's explanatory power; (4) the implications of each independent variable's impact in explaining
profitability; and (5) conclusions.

2. Methods
2.1. Review of multivariate regression and artificial neural networks

Traditionally, regression analysis has been the foundational statistical technique for data analysis
in applied economics. Regression analysis allows examination of the effects of one or more explan-
atory variables on a dependent variable where variables can be continuous, discrete, or categorical
(Weisberg, 2013). Regression results yield measures of statistical significance of hypothesized
independent variables and then quantify those relationships using coefficient estimates that
can ultimately be used to make predictions.

With the growth of big data and advanced artificial learning techniques, ANN analyses are
becoming more popular as a viable alternative to traditional regression analysis. Despite demon-
strated superior goodness of fit in many applications (Adya and Collopy, 1998; Ibrahim, 2013; Lek
et al.,, 1996; Warner and Misra,1996), ANN results are not easily interpreted when compared to
regression analysis as ANN parameter estimates of explanatory variable effects on the dependent
variable are often not revealed in a structured, user-defined manner but instead estimated as a
neural network of relationships that are iteratively determined by weighting a myriad of functional
forms (Olden and Jackson, 2002) and/or a variety of ANN configurations. Multi-layer feedforward
(MLF) networks and generalized regression neural nets (GRNNs) are described here because they
are relevant ANN configurations using Neural Tools v 7.5° (NT) software (Palisade Corporation,
2015b), an add-in to Excel®. MLF networks function through a backpropagation algorithm and
include one or more hidden layers that specify the relationships between explanatory variables
(Figure 1). These relationships are weighted to minimize the sum of squared prediction errors
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Table 1. Summary of input use and output changes across model runs for 1990-20142

Hay yields with changing fertilizer use w/o weather effects

Least Medium Most
Hay yield in 1,200 lb. bales/acre 4 bales/acre 4 bales/acre 6.2 bales/acre
Ammonium nitrate in lb./acre 100 100 300
Poultry litter in tons/acre 2 2 3
Pasture excess hay bales/acre (fall/spring) 0.5/0.4 0.6/0.6 0.7/0.7
Ammonium nitrate in lb./acre 0 0 100
Poultry litter in tons/acre 0.5 1 2

# of head sold/year

Herd size management Fall Spring Fall Spring Fall Spring

Constant herd size 90 78 90 78 146 123

Cyclical price signal

Min 85 71 85 71 136 115

Max 100 87 100 87 158 135
Cost-based

Min 83 67 83 67 130 101

Max 107 92 107 92 168 158

Bales of hay sold (bought)/year

Herd size management Weather Fall Spring Fall Spring Fall Spring

Constant herd size excl.P 49 87 171 221 46 119
Min incl. (231) (212) (136) (89) (347) (281)
Max 253 289 401 425 466 503
Avg 38 78 170 206 58 109

Cyclical price signal

Min excl. (26) (24) 106 114 (38) (13)
Max 73 130 191 261 107 191
Avg 28 66 152 204 25 99

Min incl. (260) (281) (165) (172) (396) (418)
Max 232 274 352 429 379 400
Avg 16 64 148 192 28 88

Cost-based

Min excl. (107) (77) 26 (43) (192) (289)
Max 76 120 195 253 115 155
Avg (14) 3 114 138 (39) (19)
Min incl. (299) (235) (202) (133) (430) (362)
Max 186 166 305 340 238 324
Avg (24) (5) 107 129 (38) (27)

aNumbers are similar for subperiods but do vary because weather impacts and herd size changes were calculated differently. Prices varied
more than forage production and herd size changes across subperiods. For details, please see Tester et al. (2019).

PNote that weather effects were modeled on a monthly basis such that good or bad weather at a particular time in a year could have deleterious
or beneficial impacts (incl.) when compared to hay production without weather effects (excl.). For example, average hay sales were 46 for fall with
most fertilizer use and no weather and increased to 58 with weather, whereas for spring, sales decreased from 119 to 109.

https://doi.org/10.1017/aae.2020.6 Published online by Cambridge University Press


https://doi.org/10.1017/aae.2020.6

Journal of Agricultural and Applied Economics 355

Table 2. Nominal Arkansas fertilizer, fuel, seed, and feed costs and cattle prices, 1990-2014

Fertilizer Fuel Seed Feed Cattle
Year Ammonium nitrate Diesel Wheat Ryegrass Hay Corn Fall Spring
1990 180 0.94 13.35 50.50 47.50 2.62 104.36 100.02
1991 184 0.87 11.48 46.80 48.00 2.58 111.70 95.00
1992 178 0.79 12.35 43.80 49.50 2.29 91.94 88.82
1993 186 0.82 12.88 56.70 54.50 2.53 102.65 96.38
1994 196 0.77 13.17 64.60 52.00 231 89.25 81.65
1995 223 0.77 13.00 67.20 55.50 3.10 74.00 63.75
1996 233 0.92 14.17 58.80 55.00 2.65 55.01 61.13
1997 227 0.87 16.67 57.90 54.00 2.51 89.57 88.69
1998 193 0.74 13.75 65.30 54.00 1.85 90.63 78.44
1999 181 0.73 12.25 64.20 54.00 1.74 85.05 90.00
2000 194 1.08 11.75 60.50 56.00 1.75 100.60 100.55
2001 260 1.08 12.00 55.50 60.00 2.02 104.25 97.60
2002 195 0.96 12.83 58.00 53.00 243 95.44 90.38
2003 243 1.24 13.35 51.30 48.00 2.37 100.19 109.50
2004 263 131 13.77 52.60 46.00 2.39 122.20 124.02
2005 292 1.97 15.10 59.30 64.00 2.15 138.19 129.87
2006 366 2.23 15.53 69.60 84.00 2.73 128.83 124.33
2007 382 2.43 17.67 71.80 90.00 3.80 125.04 119.52
2008 509 3.62 24.67 78.80 87.00 4.42 116.92 107.68
2009 560 2.46 26.67 78.90 74.00 3.79 113.45 104.25
2010 285 2.22 22.83 70.30 80.00 4.55 126.03 118.36
2011 360 2.39 25.67 73.40 101.00 6.27 147.51 143.64
2012 411 3.40 29.17 95.20 132.00 6.81 185.38 169.80
2013 450 3.50 30.00 99.90 128.00 5.12 161.38 186.76
2014 413 3.30 30.67 101.00 115.00 4.13 229.09 287.61

Note: Ammonium nitrate price is in $/ton, poultry litter price was constant at $23/ton, fuel is in $/gal., cattle price is in $/cwt. for 4-500 Ib.
steers in appropriate sale months of May and October for fall- and spring-calving herds, respectively, seed prices for planting of winter
annuals are in $/cwt, hay prices are in $/ton, and supplemental feed corn prices are in $/lb.

using a training process, involving iterations that require substantial processing time. The inclu-
sion of more than one hidden layer increases complexity and often increases processing time so
only one hidden layer was used. In general, the MLF method works well on large data sets with
hundreds or thousands of observations. To make predictions, the user requires NT software
because parameter estimates are hidden.

GRNN configurations are distinctly different from MLFs. Rather than manipulating relation-
ships between explanatory variables and their connections to the dependent variable, GRNNs
adjust a smoothness parameter to minimize the sum of squared prediction errors (Figure 2).
The smoothness parameter determines the influence of observations on the predicted value as
a function of their proximity to the desired output value obtained from the training set
(University of Wisconsin, n.d.). Again, NT software is required for predictions but GRNNSs often
perform better for smaller data sets in comparison to MLFs.
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Table 3. Sample of estimated gross receipts and direct costs of a 100-cow herd by calving season using 2005-2014 average
prices with and without weather effects using the least fertilizer

Calving season Fall Spring

Weather effects Excluded Included Excluded Included

Gross receipts (% of total receipts)

Steer calves $31,397 (48.0) $31,397 (44.1) $25,832 (46.0) $25,832 (42.0)
Heifer calves $17,892 (27.3) $17,892 (25.1) $11,609 (20.7) $11,609 (18.9)
Cull cows $12,174 (18.6) $12,174 (17.1) $12,869 (22.9) $12,869 (20.9)
Cull herd sire $1,453 (2.2) $1,453 (2.0) $1,309 (2.3) $1,309 (2.1)
Excess hay (if any) $2,563 (3.9) $8,316 (11.7) $4,550 (8.1) $9,885 (16.1)
Total receipts $65,479 (100) $71,232 (100) $56,168 (100) $61,502 (100)

Direct cost (% of total receipts)

Fertilizer costs $15,225 (23.3) $15,225 (21.4) $15,225 (27.1) $15,225 (24.8)
Forage maint. (400 ac.) $11,093 (16.9) $11,093 (15.6) $11,093 (19.8) $11,093 (18.0)
and winter annuals (80 ac.)

Salt and minerals $4,420 (6.8) $4,420 (6.2) $4,300 (7.7) $4,300 (7.0)
Fuel $2,788 (4.3) $2,668 (3.7) $2,780 (4.9) $2,665 (4.3)
Feed supplement $433 (0.7) $251 (0.4) $282 (0.5) $173 (0.3)
(other than hay)

Twine $459 (0.7) $469 (0.7) $465 (0.8) $476 (0.8)
Veterinary and drug $3,140 (4.8) $3,140 (4.4) $3,062 (5.5) $3,062 (5.0)
Sales commission $2,202 (3.4) $2,202 (3.1) $1,807 (3.2) $1,807 (2.9)
Hauling, yardage, insurance, $548 (0.8) $548 (0.8) $515 (0.9) $515 (0.8)
fees and checkoff

Replacement herd sire $2,000 (3.1) $2,000 (2.8) $2,000 (3.6) $2,000 (3.3)
Repair and maintenance $2,217 (3.4) $2,217 (3.1) $2,217 (3.9) $2,217 (3.6)
Farm vehicle ($1/cow/month) $1,200 (1.8) $1,200 (1.7) $1,200 (2.1) $1,200 (2.0)
Total direct costs (TDC) $45,725 (69.8) $45,433 (63.8) $44,945 (80.0) $44,732 (72.7)
Operating interest $1,086 (1.7) $1,079 (1.5) $1,067 (1.9) $1,062 (1.7)
Cash opr. profit () $18,668 (28.5) $24,720 (34.7) $10,155 (18.1) $15,708 (25.5)

Notes: Direct costs are organized more or less in order of occurrence during a production year, relative size, and whether or not they vary
across systems. Seasonal price differences only impact cattle prices as input costs are only tracked on an annual basis. Weather conditions,
on average, have been favorable for forage production over the course of the last 10 years in comparison to the 25-year average resulting in
excess hay sales. Hay sales in combination with relatively high cattle prices for the past 10 years thereby have led to cash operating profit that
is relatively high. Weaning, cull cow, and herd sire weights were held constant across calving season and were 555 lb. for steers, 520 Ib. for
heifers, 1,117 Ib. for cows, and 1,850 |b. for herd sires. Cash operating profits are returns to land, labor, and capital. Differences in work hours
with herd size changes, calving season, and weather are not accounted for.

Further, NT and similar software exist to assist with the choice of (1) ANN framework to use
(GRNN vs. MLFs with varying levels of nodes in a single hidden layer); and (2) the percentage of
the original data set to use for training of the neural net versus the percentage used for testing
predictions of the neural net. The user specifies the number of iterations used to minimize error
in the training runs and the program picks random observations for training the neural net
(Palisade Corporation, 2015b). As such, ANN outcomes can vary with the percentage of the data
set used for training, the type of ANN (GRNN vs. MLF), and because the training data are chosen
at random. Once a neural net is trained, however, “live” predictions are based on the estimated
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Figure 1. Multi-layer feedforward neural network diagram.
Note: A simplified example of one explanatory variable's (X) relationship with the explanatory variable (Y) is shown here with the option
of up to six different hidden layers (L) resulting in a linear or nonlinear fitted line of a specification not revealed.

(A)
35

30 .

Predicted value

25

20

15

10

B)
35

30 .
25 Predicted value
20

15

10

0 10 20 30 40 50 60 70
X

Figure 2. Generalized regression neural network diagram with high (A) and low (B) smoothness parameter.

Note: Dot size represents contribution to predicted value. Therefore, larger dots represent training observations with higher contribu-
tions to predictions closer in proximity to the level of X at the prediction (a), while smaller dots represent those observations that con-
tribute relatively less. Weighting is a function of horizontal distance between observations and a particular predicted outcome's X value.
Specification of the line in terms of linear or nonlinear fit is again not revealed.
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neural network for a given training percentage and given set of randomly drawn training data.
However, a different training of the neutral network leads to different predictions, even with
the same percent of observations and the same modeling technique (GRNN vs. MLF) used for
training. Much like regression analysis, ANNs use the coefficient of determination (R?) to measure
explanatory power as well as RMSE for analyzing the predictive accuracy of the trained neural
network on both the training and testing data set. We report RMSE for the testing data sets
to assess predictive accuracy and R* on the training data sets to assess goodness of fit.

Further, NT reports relative impacts of explanatory variables on the dependent variable defined
as follows (Palisade Corporation, 2015a):

L= (Ai/ S Ai) % 100 (1)

where A is the difference between predicted maximum and minimum outcomes when changing
the explanatory variable i across observations in the training data set holding all other explanatory
variables constant and j is the number of explanatory variables. The i impact on the dependent
variable (I;) is then compared to the sum of all j explanatory variables’ impacts, calculated in the
same way, to yield relative impacts for each explanatory variable that sum to 100% across all
explanatory variables. This same approach is employed with outcomes from regression analysis
as described in more in detail below.

2.2. Data

Combining modeled input use levels and output changes as summarized in Table 1 with changes
in select input and output prices as shown in Table 2, cow-calf cash operating profits similar to
those shown in Table 3 were estimated to provide annual profitability estimates as a function of
combinations of 3 fertilizer use levels, 2 calving seasons, 25 production years, and 3 HSM strate-
gies, each with and without weather effects on forage production for a total of 900 observations.
Further, weather effects and HSM strategy vary slightly by subperiod chosen as average weather
effects are impacted by length of period chosen. Also annual herd size change calculations for
different HSM strategies vary by period. While details of impacts of these model outcomes are
reported in Tester et al. (2019), Table 3 showcases typical results on profitability changes associ-
ated with calving season and the impact of weather. Fall calving is more profitable than spring
calving given greater breeding failure rates associated with fescue toxicosis leading to fewer cattle
sales with spring calving (Smith et al., 2012). Hence, fall-calving herds exhibit higher sales given
seasonally higher cattle sale prices as well as greater sales quantities (Table 2). Including weather
effects altered hay sales, positively so, and more so in spring-calving operations given different
monthly seasonal nutrition requirements. Herd nutrition requirements vary with calving season
due to timing of feeding needs for replacement heifers and differences in gestational cow nutrition
needs (Tester et al., 2019—Tables 2 and 3). Adding herd size changes' for each year, using annual
output and input prices, with different HSM strategies thus led to 1,650? annual, unique cow-calf

"We assume changes in herd size impact the opportunity cost associated with investment in cattle. Therefore, we added an
opportunity cost of 5% per year for deviations from the 100 cow baseline across model runs. Equipment and building invest-
ments were held constant across different herd sizes, however, as annual use impacts are assumed to have only marginal
impacts on repair and maintenance costs.

2With 25 years of annual herd profitability simulations at historical input and output prices conducted over either the whole
period or the 2 cattle cycles, with and without weather effects, over 3 fertilizer use intensities, 2 calving season management
scenarios and 3 herd size management strategies, 1,800 combinations of annual return estimates are possible. With no weather
effects and the constant herd size strategy, however, the observations for the 2 separate cycles and the whole period are iden-
tical leading to 150 duplicate observations—25 years by 2 calving season management strategies by 3 fertilizer use intensities—
and hence 1,650 unique observations were available. For the first cycle, the number of observations is 14 years by 2 calving
season, by 3 fertilizer levels, by 3 herd size strategies both with and without weather, or 504 observations. For the second cycle,
the total number of observations is 396, given a shorter time period of 11 years. For the whole period, the total number of
observations is 900, given the longer time period of 25 years.
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operation simulations that were subsequently used to measure the relative impact of explanatory
variables on operating profits as follows:

Y, = ay + o HayQy + a,HayPy + a3CattQy + a,CattPy + asFertMy + agFertHy
+ a; Weather;. 4+ agSeasony, + & (2)

where Y} is cash operating profits in year k defined as the revenue generated from cattle and
excess hay sales less production costs, HayQy is the annual number of 1,200 1b. bales sold/
bought, HayPy is the annual price of hay in dollars per ton, CattQy is the yearly number of calves,
cull cows, and cull bulls sold that varies both by HSM and by calving season, CattP;, is the nom-
inal 4-500 Ib. steer price® that varied by calving season (Table 2), FertM; and FertH) were binary
(zero/one) variables denoting intermediate and highest fertilizer use (Table 1) in comparison to
the least fertilizer use of the baseline, respectively, Weathery is a weather index indicating above/
below cattle cycle or period-specific annual forage production that averages to 1 for a particular
cattle cycle or period (for details, see Tester et al., 2019), Season, is a binary variable for
spring- or fall-calving season in a particular year, and &y is the error term. Equation (2) was
then estimated for each of the three time periods, the 1990-2003 cattle cycle, the 2004-2014
cattle cycle, and finally pooled over both time periods as weather effects were modeled using
matching time periods, and hence forage production could vary given an upward trend in
weather effects that led to greater forage production over time. Note that another specification
could have included HSM strategy as a categorical explanatory variable instead of CattQ as the
latter variable captures both calving season and HSM effects. However, the specification with the
categorical HSM strategy variable instead of CattQ proved less powerful in terms of explaining
profitability and thus this approach was not pursued.

2.3. Model specification

Since the variables, initially identified to impact profitability (Table 3), were strongly
correlated leading to degrading multicollinearity (causing point estimates to be imprecise),
principal component analysis was used to determine the appropriate number of explanatory
variables in the regression model. Four principal components explained roughly 98% of the
variation in the explanatory variables (Figure 3). This suggested the potential to eliminate several
explanatory variables (1) using their statistical significance/contribution to model performance
such that explanatory variables with |t-stat| < 1 were dropped (the adjusted R? criterion); and
(2) by examining the extent of correlation among explanatory variables to avoid redundancy due
to strong multicollinearity. The results suggested that hay price was statistically insignificant in
every period analyzed, and that hay sold was highly correlated with weather as expected since the
weather index drove forage production. Hay sold remained in the model given its ease of inter-
pretation relative to the weather index and its larger |t-stat|. Finally, calving season was removed
because the primary effect of a spring-calving season is higher expected breeding failures that
result in fewer head sold. Therefore, head sold captured the majority of calving season effects,
while cattle price captured seasonal price effects resulting from selling calves in the fall rather
than the spring.

Additionally, ANN analysis was conducted using the initial set of explanatory variables. Similar
to the regression results, the ANN model's variable impact analysis revealed calving season,
weather, and hay price to have little impact. Fertilizer was also shown to have little impact on
the ANN, but provided substantial explanatory power in the regressions and therefore was

3Steer sales make up the largest percentage of cattle sales (Table 3). Further, steer, heifer, and cull cattle prices are highly
correlated.
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Proportion of variance explained
088 090 092 094 096 098 1.00
|

| | | |
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Principal components

Figure 3. Principal component analysis for variable selection to explain cow-calf cash operating profits using hay and cattle
sales, fertilizer use, calving season and weather over 1990-2014.

Note: The dependent variable was Y or cash operating profits in year k defined as the revenue generated from cattle and excess hay
sales less operating costs shown in Table 3, HayQ, was the annual number of 1,200 b. bales sold/bought, HayP, was the annual price of
hay in dollars per ton, CattQ, was the yearly number of calves, cull cows, and cull bulls sold, CattP, was the nominal 4-500 lb. steer price
that varied by calving season, FertM, and FertH, were binary zero/one variables denoting intermediate and highest fertilizer use in com-
parison to the least fertilizer use of the baseline, respectively, Weather, is a weather index indicating above/below cattle cycle or period-
specific annual forage production that averages to 1 for a particular cattle cycle or period, and Season, represents whether or not the
operation used a spring- or fall-calving season in a particular year. Table 1 summarizes scenario-specific production changes.

included. Using these results, the final model specification included cattle price, hay sold, head
sold, and fertilizer application level as follows:

Y, = Bo + B1HayQy + B,CattQy + BsCattP + B FertM; + BsFertH, + y; 3)

where y is the error term and other variables are as described for equation (2). The set of explana-
tory variables was held constant across cycle (time period) as well as modeling technique.

2.4. Testing for consistency in neural network analysis results

Neural network analysis was conducted using NT (Palisade Corporation, 2015b). The “Best Net
Search” tool was used to select the configuration that resulted in the lowest RMSE for training data
sets that were separated by cycle or time period with the following results—GRNN for the 1990-
2003 cycle, MLF with five nodes for the 2004-2014 cycle, and MLF with six nodes for the 1990-
2014 period.

To test for the consistency of ANN modeling outcomes across cattle cycle and for the entire
period, ANN analyses were repeated 10 times using training data sets that differed in size—two
model runs with different randomly selected observations using 80%, 75%, 70%, 65%, and 60% of
the data for training, holding modeling technique (GRNN, MLF with five nodes, or MLF with six
nodes) constant for each of the time periods analyzed. This led to 10 observations of variable
impacts and 10 estimates of R? per time period and per MR and ANN, to determine if the ranking
of relative variable impacts changed across model runs and also by time period analyzed.

2.5. Compatibility of results between regression and neural network analyses

To allow comparison of R* and variable impact analyses between regression models and ANNs,
randomly selected training data used in the ANN analyses were also used as the data set for regres-
sion analysis. For example, 403 random observations of the 504 observations in the 1990-2003
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cycle (14 years x 2 calving seasons x 2 weather scenarios x 3 herd size strategies x 3 fertilizer
use rates) were used in each of the two 80/20 training/testing data sets leading to 2 ANN and
2 MR variable impact outcomes using 2 different sets of randomly selected observations.
Another two variable impact analyses for each of ANN and MR were then chosen using 75/25
training/testing data. Six further analyses for each of ANN and MR used 70/30 to 60/40
training/testing data sets by lowering the percentage of training data used by 5% and respectively
raising the testing data set by 5%. Statistical significance of input variables was computed using
heteroscedasticity-consistent standard errors using the coeftest function of the Imtest package for R
(Zeileis and Horton, 2002).

Finally, while R* was automatically reported for regression output, R of ANN models were
calculated using:

S 2

X (Y —Yy)
Y (Y -1’
where Y is the mean annual cash operating profitability (Y;) in the randomly selected training
data sets for which a prediction Y, was made with number of observations changing by period

and training/testing data set sizes.

Further, regression coefficients for each explanatory variable were used to estimate the

variable's impact on profitability for direct comparison to ANN analysis results. For example,
_ :31' [Hameux - Hamein]

IHa Q
Ly \J A
i=1 i

RR=1 (4)

(5)

was the relative impact of variable HayQ on Y (Ipayq), and Apgyq was calculated as shown in the
numerator and represented the maximum change in Y with changes in HayQ, the difference
between and largest and smallest observation, using coefficient estimates of equation (3), holding
other variables constant, and i represented the i of j explanatory variable impacts. Note that for
the fertilizer effect, a binary zero/one variable, the maximum change Y is reflected in the coeffi-
cient estimate of the highest fertilizer use dummy variable (FertH) and as such the fertilizer impact
was calculated as follows:

Bs

IFert ==
J
i=1 Ai

(6)

2.6. Nuances of estimating variable impacts

Variable impact can be estimated using varying metrics. Since FORCAP was used to generate the
data analyzed herein, a large set of input values are used to estimate profit over time, that is, the
costs of all relevant inputs, all relevant output prices and the implicit technology (production
function) that, in this case, also includes the role of weather. Dixon, Garcia, and Anderson
(1987) demonstrated that conventionally estimated profit functions do not always result in good
replications of underlying technology so that it is useful and informative to investigate alternative
approaches. The underlying technologies in Dixon, Garcia, and Anderson (1987) are smoothly
continuous but those in FORCAP are not. This motivated the need to use alternative methods
for ranking variable importance using ANNs and regression methods in a curve-fitting exercise.
As noted earlier, conventional economic theory can be used to estimate derived demand from
conventional profit functions. The models estimated below include outputs (cattle and hay) as
well as their prices as independent variables. In the case of hay, its price serves as both an output
price and an input price. Fertilizer price and other input prices are not included since they played a
minor role on profitability as stocking rate changes and hay sales offset cost implications.
By including hay and cattle output levels as well as fertilizer input use, both exogenous and endog-
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enous variables in relation to profit are being included. Hence, it is not possible to impute any
causal or behavioral relationships but simply measure via regression or ANN how profit
varies as the explanatory variables (production, cattle prices, and input use) change. In essence,
regression and ANNSs are being used to estimate the shape of a more complex function and derive
information about that more complex function.

3. Results

ANN models outperformed regression for any given sample by the R? criterion (Table 4). This
was not surprising as neural networks examine a host of linear and nonlinear combinations of
explanatory variables’ impacts on the outcome, whereas a linear functional form was used in
the regression models (equation (3)). Across all time periods, R* values of ANN analyses ranged
between 96.5 and 99.9%. In comparison, regression models generated a range of R* values from
89.3 t0 92.8% using the same randomly selected training data sets as those used in ANN methods
(Table 4). RMSE results were similar to R? results indicating that ANN methods have superior
predictive accuracy in comparison to MR. All variables had a statistically significant impact at
least at P=0.001 in MR which was not surprising since a deterministic model was used to
generate the dependent variable observations.

For the first cattle cycle, 1990-2003, the ANN models identified cattle price as the most
impactful variable (light shaded bars in Figure 4 top bar chart). Cattle price had an average
impact of 52.1% compared to 19.0% for hay sold and was followed by head sold and fertilizer,
respectively. Using MR, head sold was the most impactful variable and was followed by hay sold,
fertilizer, and cattle price (darker shaded bars in Figure 4 top bar chart). Hay sold showed a
slightly higher average impact over cattle price and fertilizer, but also had a larger range of
impact estimates. Hence, aside from differences in goodness of fit (R?) and RMSE, rankings
of factors impacting profitability by magnitude of each factor's variable impact, or importance
ranking, varied by modeling technique for the first cattle cycle. Further, for all four variables,
ANN models had a larger range of variable impacts compared to the MR models. This suggested
that ANN modeling of dependencies between explanatory variables and the predicted outcome
varied more by a particular training data set than changes in effects observed when a simple
linear fit (MR) was imposed. Hence, ANN impact measures were less consistent than MR impact
measures.

For the second cycle, 2004-2014, cattle price remained the most impactful variable in every
ANN model run with a noticeably smaller range in impacts compared to the first cattle cycle.
In contrast with the previous cycle, head sold was more important than hay sold, while fertilizer
remained the least impactful variable (middle bar chart of Figure 4). Importance rankings of
variables using MR were similar to those of ANN analyses except for fertilizer use having greater
impact than hay sales. Importance rankings based on MR, like ANN rankings, also varied with
those reported for the first cattle cycle. Again, the range of ANN impacts was larger compared to
those shown using MR. Since cattle made up the largest share of sales (Table 3) compared to hay
sales, and since cattle prices were higher in the second cattle cycle compared to the first (Table 2),
the changes in importance rankings make sense.

Lastly, over the entire period, 1990-2014, cattle price was again the most impactful variable
using ANN analysis. Across periods analyzed, the margin between the impact of cattle price
and the second most important factor was second largest (for the first period, the impact differ-
ence between the first and second factor was 33.2% on average, whereas it was 15.1% on average
for the overall period). For the entire period, MR-based importance rankings, as during the second
cycle, were close to ANN analyses results. Range of impacts was again larger for ANNs than MR
results indicating ANNSs led to less consistent results compared to MR.
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Table 4. Estimated effects of hay production, cattle sales, and fertilizer use on annual estimates of cow-calf cash operating
profits using multivariate regression (MR) and comparison of R? and RMSE on testing data between MR and artificial neural
network techniques of generalized regression neural networks (GRNNs) for 1990-2003, multi-layer feed forward (MLF) neural
networks with 5 nodes for 2004-2014 and 6 nodes for 1990-2014 across 10 randomly selected training sets® by time period

Range and average of regression coefficients, R?, and RMSE across model

runs
Time period Est. method Variable Min. coeff. est. Avg. coeff. est. Max. coeff. est.
1990-2003 MR HayQP 26.87 28.30¢ 29.45
CattQ 328.87 347.25 365.08
CattP 424.49 432.14 451.74
FertM —4,152 —3,812 —3,646
FertH —26,843 —25,969 —24,765
R? 0.893 0.902 0.914
RMSE 2,893 3,032 3,105
GRNN nad na na
R? 0.985 0.992 0.999
RMSE 336 836 1,228
2004-2014 MR Habe 45.92 49.47 52.89
CattQ 626.39 676.00 704.82
CattP 419.46 443.81 462.61
FertM —4.552 —3,817 —3,293
FertH —38,670 —36,551 —33,624
R? 0.917 0.921 0.928
RMSE 5,811 6,409 6,796
MLF na na na
R? 0.978 0.982 0.986
RMSE 3,043 2,739 3,402
1990-2014 HayQP 32.12 33.52 35.31
MR CattQ 463.31 499.42 522.90
CattP 404.57 412.63 426.33
FertM —3,624 —3,203 —2,671
FertH —32,359 —30,686 —29,189
R? 0.914 0.919 0.922
RMSE 5,581 5,829 5,581
MLF na na na
R? 0.965 0.969 0.972
RMSE 3,625 3,886 4,065

2Ten separate regression models for each time period, using different randomly selected subsamples of the data with different proportions used
for training the neural net (60-80%). Randomly chosen observations were the same for MR versus GRNN or MLF analyses for each model run.
bHayQ was the annual number of 1,200 lb. bales sold or bought, CattQ was the yearly number of calves, cull cows, and cull bulls sold, CattP
was the nominal, Arkansas average 4-500 lb. price for medium and large frame No. 1 steers.

All model runs had coefficient estimates that were statistically significant at P < 0.001 including constant terms that are not reported.
9INot applicable. Relationship between variables and profitability not revealed.

https://doi.org/10.1017/aae.2020.6 Published online by Cambridge University Press


https://doi.org/10.1017/aae.2020.6

364 Colson A. Tester et al.

1990-2003
e '
18.9% e —

o o ——
0% 10% 20% 30% 40% 50% 60% 70%
20042014
e =
- ="
HayQ 16.4% ==
=
Forl pf et
0% 10% 20% 30% 40% 50% 60% 70%
1990-2014

CattQ 27.1% e
HayQ ——
for pem.
0% 10% 20% 30% 20% 50% 60% 70%
ANN = MR

Figure 4. Comparison of variable impact analyses between artificial neural network (ANN) and multivariate regression (MR)
methods: minimum, average, and maximum variable impacts as estimated across cycle or period are reflected in error bars
using the same 10 different randomly selected training sets across method that varied in size from 60 to 80% in 5%
increments.

Note: HayQ was the annual number of 1,200 lb. bales sold/bought, CattQ was the yearly number of calves, cull cows, and cull bulls sold
that varied by herd size management strategy and with calving season given changes in exposure to fescue toxicosis, CattP was the
nominal, Arkansas average 4-500 lb. price for medium and large frame No. 1 steers that varied by calving season and served as a proxy
for all types of cattle sold, Fert captures changes in fertilizer use with attendant cost implications as well as impacts captured in HayQ
and CattQ. See also equations (1), (3), (5), and (6) for further details. Note that minimum and maximum values across estimation meth-
ods do not necessarily correspond to the same training set.

4. Conclusions

Using a cow-calf simulation tool, FORCAP, this research sought to determine which of cattle
price, head sold, hay price, hay bales sold, and fertilizer use would have the largest impact on
profitability when analyzed over each of the last two cattle cycles or over the course of the last
25 years (two cycles combined). Nominal, annual profitability observations were simulated using
annually varying input and output prices as well as changes in production practices that included:
(1) level of fertilizer use that led to changes in forage production, with and without weather effects
modeled that impact hay yields and also stocking rate; (2) modification of cow herd size over time;
and (3) timing of calving season.

ANN analysis revealed cattle price to be the most impactful variable in every model run and
analysis period, and MR similarly indicated cattle price was the most impactful variable in the
second cycle and the overall period. Head sold was the second most impactful variable in
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ANN analysis with the exception of the first cycle where head sold ranked third. Quantity of hay
sold was more important than fertilizer use across all periods. By comparison, MR results pro-
vided similar importance rankings except that (1) fertilizer use had a greater impact than hay sales
for two of the three periods and (2) the importance ranking of cattle price and head sold was the
opposite of that using ANN analysis in the first cattle cycle. A justification for head of cattle sold
having a greater impact than cattle price in the first cycle could be that cattle prices were lower in
the first cycle (Table 2), while variation in herd size across years in either of the two cattle cycles
was similar although the timing of herd size changes varied by HSM strategy implemented.

Interestingly, ANN analysis results generated a larger range of variable impacts in every period
when compared to MR. This highlights the criticism of ANNs that random selection of training
observations and varying training set sizes lead to a large range of results even when using a
consistent network configuration (GRNN vs. MLF with five or six nodes did not change across
model runs). Hence, added goodness of fit with ANN compared to MR comes at the cost of more
inconsistent impact results since the ANN results are more sensitive to the training sample chosen.

Should beef prices continue to rise as they did over the last 25 years, the analysis of the second
cattle cycle results as well as the entire 25-year period imply cattle price, and head sold will be the
most impactful variable determining profitability. Since cattle producers are price takers, produc-
tion choices that impact cattle price received are limited to calving season management (purebred,
organic, grassfed, and retained ownership are not analyzed here). Hence, preferring fall calving
makes sense since calves born in fall can be sold as stocker cattle in the spring when forage pro-
duction is plentiful and thereby a stocker price premium compared to calves sold in the fall when
forages enter winter dormancy. The MR model found that increasing the number of head sold
increased profits. This suggests that lower breeding failure rates and/or larger herd size would
be profit-enhancing. However, more cattle consume more forage, hence greater cattle output
implies lower hay sales and/or requires more fertilizer. One method to increase head sold without
creating large increases in forage requirements (as calves get most of their nutrition from their
mother's milk) is to use fall calving with 14% fewer breeding failures than spring calving.
Results from this analysis therefore reinforce both Smith et al.'s (2012) and Tester et al.'s
(2019) conclusion that fall calving was the profit-maximizing choice for producers regardless
of cattle cycle. However, the modeling conducted herein does not consider other factors outside
the cow-calf haying enterprises on the farm. Many operations will have a poultry operation or
even crop enterprises. There may well be labor limitations to moving to fall calving as crop harvest
activities would interfere with calving season. Common in the mid-South is also a non-defined or
year-round calving season (Doye, Popp, and West, 2008) where controlled breeding allows lesser
investment of time and facilities needed to keep herd sires from the herd.

Adding more fertilizer to increase forage production and thereby cattle or hay sales, on
the other hand, showed pronounced negative effects in the MR model but they are offset by
the resulting greater cattle and/or hay sales. However, these impacts are not easily discernable
from the variable impacts reported by ANNs (Figure 4). Regression coefficients lend themselves
more readily to examining this trade-off than ANN results. However, neither ANN- nor
MR-based importance ranking results identify fertilizer at the medium level as profit-maximizing
as demonstrated by Tester et al. (2019). Work by Smith et al. (2016) suggests adding fertility to be
of marginal value as well.

Tester et al. (2019) also found that the cost-based and cyclical price signal-based HSM
strategies led to more head sold than a management practice of maintaining the herd at a constant
size over time. Results from ANN and MR indicate that head sold is an important profitability
factor. From a perspective of HSM strategy, the cost-based strategy, which led to the largest head
of cattle sales compared to the cyclical price signal and constant herd size strategies, could thus
erroneously be interpreted as the profit-maximizing decision when using ANN- or MR-based
importance ranking results. Reduced excess hay sales with more cattle leads to sufficient revenue
reduction or hay purchases that make such a strategy least profitable.
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Similar to Adya and Collopy (1998), Ibrahim (2013), Lek et al. (1996), and Warner and
Misra (1996), ANNs were a superior predictive technique as measured by R*> and RMSE. This
superior goodness of fit did come with a cost, however, as hidden layers are not revealed given
the complexity of describing the relationships of a trained neural network. As such, model results
for making predictions are useful only to those with access to software like NT. Retraining the
network also led to changing results. Without an explicit description of relationships between
explanatory variables and the dependent variable, as is available with MR in the form of
magnitude and sign of parameter estimates, it is difficult to interpret results of a trained neural
network in the absence of having access to the software's prediction capabilities. With prediction
capabilities, impacts of marginal changes in projected profitability, that likely change in sign and
magnitude at different levels of the specific variable analyzed, can be estimated. Specifying a set of
inputs and varying, for example, fertilizer application rate or number of head sold is a viable
alternative to analyzing regression coefficients. This approach would allow for a variety of
scenarios to be examined quickly, but also would require access to large amounts of data as well
as software such as NT. This investment may be deemed appropriate by large producers whose
management decisions have large financial implications, but for many producers, knowledge of
regression coefficients may present sufficient information for making more informed decisions.

Finally, while we hint at the direction of future beef prices, results and conclusions of this
research may not prove consistent for future time periods and geographic regions. For example,
what would happen if all producers were to switch to fall calving? Likely, this would erode
price premiums. Further, fall calving may not work in other regions, and seasonality in forage
production may be different in other production regions. The FORCAP tool works well to predict
conditions across the humid mid-Southern United States where both cool season and warm
season forages can thrive. As such, results may be different for future cattle cycles and different
production regions.

Nonetheless, results of this study suggest that ANNs are useful if accuracy of predicted
outcomes is the end goal. Examination of profitability drivers, however, was more consistent with
MR, and hence, for purposes of extension of research findings, MR is deemed to have an edge
over ANN.
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