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1. Introduction. We consider first in §2 the asymptotic behavior as t —> œ 
of the solutions of the vector-matrix differential equation 

(1.1) x = {A +B(t)}x, 

where A is a constant w-square complex matrix, B{t) a continuous complex 
valued w-square matrix defined on [0, » ) , and x a complex w-vector. 

It is readily shown (4) that the asymptotic behavior of solutions to (1.1) 
can be made to depend on the functions XM{A + A* + B(t) + B*(t)} and 
\m{A + A* + B(t) + B*(t)} where A* = A' and XM, \m are respectively 
the maximum and minimum eigenvalues of the indicated Hermitian matrix. 
We recapitulate this brief calculation in §2. 

There are two types of theorems concerning (1.1) in the sequel: (i) A 
arbitrary with hypotheses on the eigenvalues of {A + ^4*); (ii) A triangular 
with hypotheses on the real parts of the eigenvalues of A. In both (i) and (ii) 
less than the absolute integrability of the functions Bij(t) is required 
(1, pp. 32-63). 

In §3 we discuss the behavior as / —» °° of solutions to the equation 

(1.2) * = {A(t) + B(t)}x, 

in which the entries of A(t) are continuous complex-valued almost-periodic 
functions. The main result concerning (1.2) depends on a theorem of Favard 
which will be stated. In this case, however, it becomes necessary to assume 
the absolute integrability of all entries of B(t). 

We set 

11*112 = ÊW2; 

boundedness refers to this norm. Also let 5R(Z) = (X + X)/2 and $(X) = 
(X - X)/2i. \\X\\2 = trace (XX*), a1 = transpose of a. We note the following 
two elementary results that are subsequently used: 

I. If X and Y are Hermitian n-square matrices then 

(1.3) X^(X + Y)< \M(X) + X M ( F ) , 

(1.4) \m(X +Y)> \m(X) + Xm(F). 
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This follows immediately upon noting that X + Y is Hermitian and 

\M(X + Y) = max z (X + Y)z < max z Xz + max z Yz 
t=\ t=i t=i 

= \M(X) + XM(Y), 

where t = \\z\\2. Similarly for (1.4). 
The following well-known device is due to 0 . Perron. 

II . If X has eigenvalues Xi, . . . , X„ then for any e > 0 there exists a matrix 
D(e) similar to X such that Du(e) — X* and \D%i{è)\ < e for i ^ j . 

For assume X is in Jordan form, set 

( 1 0 
0 €. 

. . 0 \ 
0 

H = • • 

Vo . 
. 0 
0 e"-7 

d note that 

0 . 
0 . .. o\ 

H~1XH = • 

• ° 
^0 . o \J 

2. The equation (1.1). In discussing (1.1) we, of course, omit the trivial 
solution x(t) = 0. We assume that the starting time of every solution is to = 0 
since any solution x(t) with starting time t0 > 0 may be continued over 
[0, to]. 

THEOREM 1. Consider (1.1) with A arbitrary. Assume 

(2.1) \M(A+A*) =a> 

and there exists L such that t > L implies either (a) : 

(2.2) 7 f maxJR{S„(5)}&< - J w 
t Jo i 

(2.3) r\m{Btj(s))\ds < - , f ° | 3 { 3 ( s ) - B'(s)\{J\ds < » 
•Jo */o 

fori 5*j,or (b): 

(2.4) ) ('(maxmBuis)} + £ | W < ; ( * ) } | + |3{B(*) " 5'(5)} „|)<fc 
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then in both cases every solution of (1.1) is uniformly bounded as t —» °°. If in 
either (2.2) or (2.4) the left sides are bounded strictly below — Jco, then every 
solution converges to 0 as t —> oo. 

Proof. Taking the inner product on the left with x* in (1.1) we obtain 

(2.5) x*x = x*{A + B(t)}x 
and 

(2.6) JtW
xW2 = xx + *x = **{4 +-4* + 5 ( 0 + B* (/)}*. 

The matrix on the right in (2.6) is Hermitian for all / and hence let U(t) be a 
unitary matrix reducing it to canonical form. The substitution x = U(t)z 
then yields 

| |H | 2 = /diagonal X,{^ + ^ * + B{t) + B*(t)}z 
n n 

= Z) x*N2 = IMI2I] x,^ 

where ô< = |si|2/IWI2> X^* = 1, 0 < 5* < 1. Integrating we obtain 

(2.7) IKON2 = I M | 2 e x p ( J ^ ' g X<fc<fc) . 

We use (1.2) to obtain 

(2.8) Ê X,M + ^ * + 5 ( 0 + 3*(0}8i < * * M + ^ * + B(*) + B*(f)} 

< XM(^ + A*) + \M{B(t) + £*(/)}. 

Now let m (s) be the unit eigenvector of {B(s) + B*(s)} such that 

(2.9) \*{B(s) + B*(s)} = »*(*){5W + B*(s)}m(s) 

for 0 < 5 < oo. Also, setting B(s) = U(s) + iV(s) and wz(s) = a(5) + i$(s), 
(2.9) becomes 

(2.10) XM(B(s) + B*(s)) = 9î(m* (*){£(*) + B*(s)\m(s)) 

= 9 î [{a ' (5 ) - i<j>'(s)}(U(s) + U'(S) + i{V(s) - V'(s)})(a(s) + * 0 ( 5 ) ) ] 

= 2(a'(s)U(s)a(s) + *'(*)tf(s)*(5) +a ' ( s ){7 ' (5 ) - 7(*) }*(*)) 

= 2 Ê ^ii(5){a«*(s) + 4>i\s)\ + 2 ^ tf„(5){a,(s)a,(s) + ^«(5)^(5)} 
1=1 i^j 

+ 2 i : { ^ ( s ) - V„(s)}a,(s) *,(*). 

Now 

w (s)m(s) = ^ {«/(s) + 0/(5)} = 1 
i = i 

and we obtain 
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(2.11) \M{B(s) + B*(s)} < 2max Uu(s) + 4 £ \U(J(s)\ 
i^j 

+ 2ll\Vti(s)- V}i(s)\. 

We conclude from (2.7), (2.8) and (2.11) that 

(2.12) | | s (0 | | 2 < I M T e x p L / + 2 J max Uu(s)ds 

+ 4 f E \Utj(s)\ds + 2 f ' E \VtJ(s) - VJt(s)\ds) 
•JO i9^j JO 1̂ 7 / f0 iy^j */0 i^j 

In case (a), by (2.3), we select K > 0 such that 

(2.13) \\z(t)\\2 < K\\z0\\
2 exp[t{œ + j j ^ 

and the result follows from (2.2). Case (b) is analogous with the use of (2.4) 
and (2.12). 

THEOREM 2. Consider 
(2.14) 
and assume 

x = {T + B(t)}x 

(2.15) T is triangular, Ttj — 0 for j < i, and max dl{\i(T)} = co, 

J»oo 

\Btj(t)\dt< co, ij£j, 
0 

(2.17) l i m s u p - I max W{Bu(s)}ds < -co; 
t^m t Jo i 

then every solution of (2.14) converges to 0 as t —-> oo. 

Proof. Let x = i ty where 

H = 

e ^ 0 then (2.14) becomes y = {D + C(/)}y with Z> = H~lTH, 
C(t) = H~lB{t)H. Proceeding as above we obtain 

f i o . 
Oe. 

.. o \ 

Vb. 
. 0 

(2.18) | | * ( 0 l r = I M P e x p 

where z is the unitary transform of y. Now 

( Jo'Ê M# + D* + C(s) + C*(s)}Ms) 

(2.19) 
[2«R{X<(r)}> * = i , 

W-ifju j < i, 
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and Cij(s) = e^Bi^s). By (2.16) and (2.18) there exists such a constant K 
that 

(2.20) | | x (0 | | 2 <^ | |xo | | 2 exp^X i t f (Z)+ J D*) + 2 J ' m a x ^{Bu{s)}dsj ; 

but since the eigenvalues of a matrix are continuous functions of the entries, 
^M(D + D*) can be made to differ arbitrarily little from 2 max 9t(X*(_T)) = 2co 
by choosing e sufficiently small. (2.17) completes the argument. 

The divergence theorems follow analogously. We omit proofs. 

THEOREM 3. Consider (1.1). Assume 

(2.21) Xm(_4 + .4*) = co 
and 

(2.22) liminf 7 f\rmnM{Btt(s)} - 2 £ \m{Btj(s)}\ 

-T,\S{B(s)-B'(s)}tj\)ds> -W, 

then every solution of (2.1) diverges to <» as t —> » . 

THEOREM 4. Consider (2.14). Assume (2.16), Ttriangular, min 9J(Xi(_T)) = co 

(2.23) liminf 7 ( min W(B u(s))ds > -co; 

then every solution of (2.14) diverges to &> as t —* °°. 

Theorems 2 and 4 provide a simple proof of the following familiar statement : 

r\\B(t)\\dt< » 

and a// solutions of x = _4# ei/Aer (a) converge to 0 or are bounded or (b) diverge 
tocoast—>cof then the same is true of (1.1). For (b) implies min 9î{X*(-4)} > 0. 
By a change of variable assume (1.1) is in the form x = {T + 55( / )5 - 1 }^ 
with T triangular, 

rwsBws-1}^ < oo 
Jo 

for all ( i , i) and (2.16) holds, 

liminf 7 f min dt({ SB (s)S-1\ii)ds = 0, 

and (2.23) holds. Case (b) follows by Theorem 4. Case (a) is similar. 
3. The equation (1.2). If f{t) is a continuous complex-valued almost-

periodic (a.p.) function on [0, °° ) set 

M{f(t)) - l i m y ("/(*)& 
t_.no t JO 
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A minor modification of an argument due to Favard (2) proves the following: 

THEOREM 5. Iff(t) is real-valued, M[f(t)} > 0, and 

x f(s)ds 
' 0 

is not bounded on [0, °°), then there exists a sequence of intervals [ani bn] with 
bn > an > 0, an < an+i (n = 0, 1, . . .), h m an = °° > such that 

f(s)ds > n. r We show in Theorem 6 that Theorem 5 is easily applied to obtain some 
sufficient conditions that imply the stability of (1.2) assuming the boundedness 
on [0, oo ) of solutions to 

(3.1) x = A(t)x. 

For any finite collection of a.p. functions and any e > 0 there exists a common 
relatively dense set of translation numbers with respect to e. Hence we may 
consider A (t) an a.p. matrix function. 

Denote by X(i) the fundamental matrix of solutions (f.m.s.) of (3.1) with 

X(0) = / . 

Note that 
(3.2) limsup | |X(/) | | < oo 

and 

(3.3) \X{t)| = expj f tr A (s)dsj 

together with the Hadamard determinant theorem imply that 

(3.4) m(h) = lim sup I 9Î tr A (s + h)ds < oo 

for any h > 0. We have 

THEOREM 6. Assume 

(i) M{mtrA(t)} >0, 

(ii) (3.2) holds, 

(iii) lim sup m {h) < oo, 
7î->co 

(iv) r I |B (s) I |is < » ; 
t / 0 

then all solutions of (1.2) are uniformly bounded on [0, oo). 

Before proceeding, note that (i) and (ii) imply ikf{9? tr^4(/)} = 0. 
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Proof. First consider the translated equation 

(3.5) x = A(t + h)x ( A > 0 ) . 

(ii) clearly implies that all solutions of (3.5) are bounded on [0, <») for 
each h. 

Let X(t\h) be the f.m.s. of (3.5). Suppose there exists hn—>co such that 

(3.6) lim lim supX(/; hn) = co. 
W->oo £->co 

Then 

lim lim sup \\X(t + hn) adj X(hn)|| exp^ - J $ tr A (s)ds( = °°, 
W->CO t-)Œ> \ *J 0 / 

and we conclude from (ii) that 

f 5R tr A (s)ds 
Jo 

is not bounded on [0, oo). By Theorem 5 there exists a sequence of intervals 
[an, bn] such that 

(3.7) f *dl tr A (s)ds>n. 
Jan 

Setting ln = bn — an and s = an + t, (3.7) becomes 

f ?ft tr A (t + an)dt > n, 
Jo 

and we conclude that m(an) > n, contradicting (iii). Hence there exists 
K > 0 such that 
(3.8) lim sup lim supZ(/ ; h) = K < oo. 

h-ïœ J-»co 

Let w(&, /) be a solution of (1.2) with u{b, 0) = &. Using the variation of 
parameters formula and taking norms on both sides, we have 

(3.9) | K M ) 1 1 < \\X{t)\\ \\b\\+ £\\X(t)X-\s)\\ \\B{s)\\ ||«(ft,*)||ds. 

In (3.9) t> s, t - s = h>0, 

£ {X(s + h)X-\h)) = A(s + h)X(s + h)X~\h) 

and it is obvious that X(s + ^X'^h) is the f.m.s. of (3.5). By (3.8) we 
conclude that 

lim sup |\X(t)X-1 (s)11 =K < oo. 
t>s>0 

Using an inequality due to Gronwall (3), we have 

| |*(M)II <K\\b\\exp[KJ)\B(s)\\ds) 

and (iv) completes the proof. 
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We may remark that the argument applied to (3.5) will yield the usual 
stability theorem in case A (t) is purely periodic without use of the Floquet 
representation of the f.m.s. as a product of exponential and periodic matrix 
functions. 
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