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Abstract

We establish a family of q-supercongruences modulo the cube of a cyclotomic polynomial for truncated
basic hypergeometric series. This confirms a weaker form of a conjecture of the present authors. Our proof
employs a very-well-poised Karlsson–Minton type summation due to Gasper, together with the ‘creative
microscoping’ method introduced by the first author in recent joint work with Zudilin.
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1. Introduction

In 1914, Ramanujan [11] mysteriously stated some representations of 1/π, such as
∞∑

k=0

(6k + 1)
( 1

2 )3
k

k!3 4k =
4
π

,

where (a)n = a(a + 1) · · · (a + n − 1) denotes the rising factorial. In 1997, Van Hamme
[13] conjectured 13 interesting p-adic analogues of Ramanujan-type formulas. For
example,

(p−1)/2∑
k=0

(6k + 1)
( 1

2 )3
k

k!3 4k ≡ p(−1)(p−1)/2 (mod p4), (1.1)

where p > 3 is a prime. Van Hamme himself gave proofs for three of them. Super-
congruences of the form (1.1) are now called Ramanujan-type supercongruences (see
[16]). The proof of (1.1) was first provided by Long [9]. See [10] for historical remarks
on Van Hamme’s 13 supercongruences.
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Recently, q-supercongruences have been investigated by several authors (see, for
example, [3–8, 14, 15]). In particular, in [3], the present authors proved that, for odd
integers d � 5,

n−1∑
k=0

[2dk + 1]
(q; qd)d

k

(qd; qd)d
k

qd(d−3)k/2 ≡
⎧⎪⎪⎨⎪⎪⎩

0 (mod Φn(q)2) if n ≡ −1 (mod d),

0 (mod Φn(q)3) if n ≡ −1/2 (mod d).
(1.2)

Here, we adopt the standard q-notation: [n] = 1 + q + · · · + qn−1 is the q-integer;
(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) is the q-shifted factorial, with the abbreviated
notation (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n, and Φn(q) stands for the nth
cyclotomic polynomial in q, which may be defined as

Φn(q) =
∏

1�k�n
gcd(k,n)=1

(q − ζk),

where ζ is a primitive nth root of unity.
It is worth mentioning that the q-congruence (1.2) is not true for d = 3. In [3], the

present authors also gave the following companion of (1.2): for odd integers d � 3 and
integers n > 1,

n−1∑
k=0

[2dk − 1]
(q−1; qd)d

k

(qd; qd)d
k

qd(d−1)k/2 ≡
⎧⎪⎪⎨⎪⎪⎩

0 (mod Φn(q)2) if n ≡ 1 (mod d),

0 (mod Φn(q)3) if n ≡ 1/2 (mod d).
(1.3)

In this paper, we prove the following q-supercongruence, which is a generalisation
of the respective second cases of (1.2) and (1.3).

THEOREM 1.1. Let d and r be odd integers satisfying d � 3, r � d − 4 (in particular,
r may be negative) and gcd(d, r) = 1. Let n be an integer such that n � (d − r)/2 and
n ≡ −r/2 (mod d). Then

M∑
k=0

[2dk + r]
(qr; qd)d

k

(qd; qd)d
k

qd(d−r−2)k/2 ≡ 0 (mod Φn(q)3), (1.4)

where M = (dn − 2n − r)/d or n − 1.

Note that, in [5, Theorem 2], the present authors have already proved that (1.4)
is true modulo Φn(q)2 and, further, conjectured that it is also true modulo Φn(q)4 for
d � 5 (see [5, Conjecture 3]). We believe that the full conjecture will be rather difficult
to prove.

We apply the method of creative microscoping, recently introduced in a paper by
the first author with Zudilin [6], to prove Theorem 1.1. In our application of this
method here, we suitably introduce the parameter a (such that the series satisfies
the symmetry a↔ a−1) into the terms of the series and prove that the congruence
holds modulo Φn(q), modulo 1 − aqn and modulo a − qn. Thus, by the Chinese
remainder theorem for coprime polynomials, the congruence holds modulo the product
Φn(q)(1 − aqn)(a − qn). By letting a = 1, the congruence is established moduloΦn(q)3.
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Our paper is organised as follows. In Section 2, we list some tools that we require in
our proof of Theorem 1.1. These consist of a lemma about an elementary q-congruence
modulo a cyclotomic polynomial Φn(q), and a very-well-poised Karlsson–Minton type
summation by Gasper of which we need a special case. In Section 3, we first prove
Theorem 3.1, which is a parametric generalisation of Theorem 1.1 that involves the
insertion of different powers of the parameter a, appearing in geometric sequences,
in the respective q-shifted factorials. Afterwards, we show how Theorem 1.1 follows
from Theorem 3.1. We conclude with Section 4, where we elaborate on the merits and
limits of the method of creative microscoping employed here in the quest of proving
[5, Conjecture 3] (which remains open).

2. Preliminaries

We need the following result, which is due to the present authors [4, Lemma 2.1].
In order to make the paper self-contained, we include its short proof here.

LEMMA 2.1. Let d, m and n be positive integers with m � n − 1. Let r be an integer
satisfying dm ≡ −r (mod n). Then, for 0 � k � m and any indeterminate a,

(aqr; qd)m−k

(qd/a; qd)m−k
≡ (−a)m−2k (aqr; qd)k

(qd/a; qd)k
qm(dm−d+2r)/2+(d−r)k (mod Φn(q)).

If gcd(d, n) = 1, then the above q-congruence also holds for a = 1.

PROOF. We first assume that a is an indeterminate. Since qdm+r ≡ qn ≡ 1 (mod Φn(q)),

(aqr; qd)m

(qd/a; qd)m
=

(1 − aqr)(1 − aqd+r) · · · (1 − aqdm−d+r)
(1 − qd/a)(1 − q2d/a) · · · (1 − qdm/a)

≡ (1 − aqr)(1 − aqd+r) · · · (1 − aqdm−d+r)
(1 − qd−dm−r/a)(1 − q2d−dm−r/a) · · · (1 − q−r/a)

= (−a)mqm(dm−d+2r)/2 (mod Φn(q)). (2.1)

Moreover, modulo Φn(q),

(aqr; qd)m−k

(qd/a; qd)m−k
=

(aqr; qd)m

(qd/a; qd)m

(1 − qdm−dk+d/a)(1 − qdm−dk+2d/a) · · · (1 − qdm/a)
(1 − aqdm−dk+r)(1 − aqdm−dk+d+r) · · · (1 − aqdm−d+r)

≡ (aqr; qd)m

(qd/a; qd)m

(1 − qd−dk−r/a)(1 − q2d−dk−r/a) · · · (1 − q−r/a)
(1 − aq−dk)(1 − aqd−dk) · · · (1 − aq−d)

=
(aqr; qd)m

(qd/a; qd)m

(aqr; qd)k

(qd/a; qd)k
a−2kq(d−r)k.

Substituting (2.1) into this q-congruence, we obtain the q-congruence in the lemma.
We now assume that gcd(d, n) = 1 and a = 1. Then the desired result follows from

the same argument. �
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We will further utilise a very-well-poised Karlsson–Minton type summation due to
Gasper [1, Equation (5.13)] (see also [2, Example 2.33(i)]): that is,

∞∑
k=0

(a, q
√

a,−q
√

a, b, a/b, d, e1, aqn1+1/e1, . . . , em, aqnm+1/em; q)k

(q,
√

a,−
√

a, aq/b, bq, aq/d, aq/e1, e1q−n1 , . . . , aq/em, emq−nm ; q)k

(q1−ν

d

)k

=
(q, aq, aq/bd, bq/d; q)∞
(bq, aq/b, aq/d, q/d; q)∞

m∏
j=1

(aq/bej, bq/ej; q)nj

(aq/ej, q/ej; q)nj

, (2.2)

where n1, . . . , nm are nonnegative integers, ν = n1 + · · · + nm and the convergence
condition |q1−ν/d| < 1 is needed when the series does not terminate. We point out that
an elliptic extension of the terminating d = q−ν case of (2.2) was given by Rosengren
and the second author in [12, Equation (1.7)].

In particular, we notice that the right-hand side of (2.2) vanishes for d = bq. Further,
taking b = q−N , we get the summation formula

N∑
k=0

(a, q
√

a,−q
√

a, e1, aqn1+1/e1, . . . , em, aqnm+1/em, q−N ; q)k

(q,
√

a,−
√

a, aq/e1, e1q−n1 , . . . , aq/em, emq−nm , aqN+1; q)k
q(N−ν)k = 0, (2.3)

provided that N > ν = n1 + · · · + nm.

3. A parametric generalisation and proof of Theorem 1.1

We now give a parametric generalisation of Theorem 1.1.

THEOREM 3.1. Let d and r be odd integers satisfying d � 3, r � d − 4 (in particular,
r may be negative) and gcd(d, r) = 1. Let n be an integer such that n � (d − r)/2 and
n ≡ −r/2 (mod d). Then, modulo Φn(q)(1 − aqn)(a − qn),

M∑
k=0

[2dk + r]
(ad−2qr, ad−4qr, . . . , aqr; qd)k

(ad−2qd, ad−4qd, . . . , aqd; qd)k

× (a2−dqr, a4−dqr, . . . , a−1qr; qd)k(qr; qd)k

(a2−dqd, a4−dqd, . . . , a−1qd; qd)k(qd; qd)k
qd(d−r−2)k/2 ≡ 0, (3.1)

where (dn − 2n − r)/d � M � n − 1.

PROOF. It is easy to see that gcd(d, n) = 1 and, thereby, none of the numbers
d, 2d, . . . , (n − 1)d are multiples of n. This means that the denominators of the
left-hand side of (3.1) contain neither the factor 1 − aqn nor 1 − a−1qn. Thus, for
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a = q−n or a = qn, the left-hand side of (3.1) can be written as

(dn−2n−r)/d∑
k=0

[2dk + r]
(qr−(d−2)n, qr−(d−4)n, . . . , qr−n; qd)k

(qd−(d−2)n, qd−(d−4)n, . . . , qd−n; qd)k

× (q(d−2)n+r, q(d−4)n+r, . . . , qn+r; qd)k(qr; qd)k

(q(d−2)n+d, q(d−4)n+d, . . . , qn+d; qd)k(qd; qd)k
qd(d−r−2)k/2, (3.2)

where we have used (qr−(d−2)n; qd)k = 0 for k > (dn − 2n − r)/d. Specialising the
parameters in (2.3) by N = (dn − 2n − r)/d, a = qr, q �→ qd, m = (d − 1)/2, ei =

qr−(d−2i−2)n (1 � i � m − 1), em = q(d+r)/2, n1 = · · · = nm−1 = (2n + r − d)/d and nm =

(2n + r − d)/(2d) and noticing N − (n1 + · · · + nm) = (d − r − 2)/2 > 0, we see that
(3.2) is equal to 0. This proves that (3.1) holds modulo (1 − aqn)(a − qn).

For M = (dn − 2n − r)/d, by Lemma 2.1, we can easily check that

[2d(M − k) + r]
(ad−2qr, ad−4qr, . . . , aqr; qd)M−k

(ad−2qd, ad−4qd, . . . , aqd; qd)M−k

× (a2−dqr, a4−dqr, . . . , a−1qr; qd)M−k(qr; qd)M−k

(a2−dqd, a4−dqd, . . . , a−1qd; qd)M−k(qd; qd)M−k
qd(d−r−2)(M−k)/2

≡ −[2dk + r]
(ad−2qr, ad−4qr, . . . , aqr; qd)k

(ad−2qd, ad−4qd, . . . , aqd; qd)k

× (a2−dqr, a4−dqr, . . . , a−1qr; qd)k(qr; qd)k

(a2−dqd, a4−dqd, . . . , a−1qd; qd)k(qd; qd)k
qd(d−r−2)k/2 (mod Φn(q)).

It now becomes evident that the kth and (M − k)th summands on the left-hand side
of (3.1) cancel each other modulo Φn(q). Therefore, the left-hand side of (3.1) is
congruent to 0 modulo Φn(q) for M = (dn − 2n − r)/d. Furthermore, for any k in
the range (dn − 2n − r)/d < k � n − 1, we have (qr; qd)k/(qd; qd)k ≡ 0 (mod Φn(q)).
Hence, the q-congruence (3.1) also holds modulo Φn(q) for (dn − 2n − r)/d < M �
n − 1. �

PROOF OF THEOREM 1.1. Since gcd(n, d) = 1 and 0 � k � n − 1, the factors related to
a in the denominators of the left-hand side of (3.1) are relatively prime to Φn(q) when
a = 1. On the other hand, the polynomial (1 − aqn)(a − qn) has the factor Φn(q)2

when a = 1. Thus, letting a = 1 in (3.1), we see that (1.4) holds modulo Φn(q)3. �

4. Concluding remarks

We have inserted different powers of the parameter a, appearing in geometric
sequences, in the respective q-shifted factorials on the left-hand side of (1.4), in
order to establish the desired generalised congruence modulo (1 − aqn)(a − qn). The
proof of Theorem 1.1 is similar to the proofs in [3] but is quite different from those
in [6], where the parameter a is inserted in a more standard way (without higher
powers of a).
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While the method of creative microscoping enabled us to strengthen [5, Theorem 2]
to the congruence modulo Φn(q)3 in Theorem 1.1, we believe that it is rather unlikely
that the validity of (1.4) modulo Φn(q)4 for d � 5 [5, Conjecture 3] can be proved by
the method of creative microscoping, since the parametric generalisation in (3.1) does
not hold modulo Φn(q)2(1 − aqn)(a − qn), in general. For this reason, the proof of (1.4)
modulo Φn(q)2 given in [5] still has its virtue. Recall that the present authors, in [5],
wrote the left-hand side of (1.4) as a product of two rational functions X and Y, and
showed that X is congruent to 0 modulo Φn(q)2. Hence, to prove [5, Conjecture 3],
it remains to prove that Y is also congruent to 0 modulo Φn(q)2. We hope that an
interested reader can shed light on this problem and settle the conjecture.
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