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A NOTE ON SOME PECULIAR NONLINEAR EXTREMAL
PHENOMENA OF THE CHEBYSHEV POLYNOMIALS

by HOLGER DETTE*

(Received 29th November 1993)

We consider the problem of maximizing the sum of squares of the leading coefficients of polynomials
Pil(x),...,PiJx) (where Ppc) is a polynomial of degree ;) under the restriction that the sup-norm of
YJ=\ Pfj(x) is bounded on the interval [ — 6, ft] (6>0). A complete solution of the problem is presented using
duality theory of convex analysis and the theory of canonical moments. It turns out, that contrary to many
other extremal problems the structure of the solution will depend heavily on the size of the interval [ — b,6].

1991 Mathematics subject classification: 33C45.

1. Introduction

Let Pj denote the set of all polynomials of degree ;', I = {il,...,im} denote a subset of
{1 , . . . , n} containing n (i.e. n e I, i, # ik if k # /) and define

sup ZPftx)Z
xe[-b,b) jel

as the set of all polynomials of degree ii,...,im such that the sup-norm of the sum of
squares is bounded by 1 on the interval [ — b,ti]. In the following m,(P,) denotes the
leading coefficient of the polynomial PteP, and we are interested in the nonlinear
extremal problem

TMix\Y,mi(Pl)\(Pl)leIePiy (&l)
lei

For / = {«} (&i) yields the well known extremal property of the Chebyshev polynomials
of the first kind Tn(f) (see e.g. Achieser [1], Natanson [7] or Rivlin [10]). Similar
problems were investigated by Dette [4] who considered the maximization of a
weighted product of the squared leading coefficients of the polynomials Pi{x). All
extremal problems in these references satisfy a so called "invariance property" which
means that if a solution on one interval, say [—1,1], has been determined, then the
solution on another interval can easily be obtained by a linear transformation from the
"optimal" polynomials on the interval [—1,1].
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In this note we will present a complete solution of the (nonlinear) extremal problem
($?{). It will turn out that the above invariance property is not true any longer for the
problem ((Pt) if m^.2. While for sufficiently small b>0 the Chebyshev polynomial (of the
first kind) on the interval [ — b, b~] of degree max™=1/,- is a solution of (^) (all other
polynomials are vanishing) this is not true any longer for large b. Here the structure of
the extremal solution depends heavily on the size of the interval [ — b, b~].

In Section 2 the problem (SP{) is solved by an application of some results in convex
analysis (see Pukelsheim [9]) and the theory of canonical moments (see Studden [12]).
It turns out that the problem (^7) is dual to a maximization problem of a concave
function defined on the set of all probability measures on the interval [ — b,b~\. This
problem appears in the theory of optimal experimental design in mathematical statistics
(see Dette [3]). While from a statistical point of view the support points and weights of
the optimal measure are the main interest it is shown in this paper that the orthogonal
polynomials with respect to this measure form essentially the solution of the extremal
problem (^7). Section 3 deals with some special cases for the set /, namely I = {\,...,n]
and I = {n — l,n} and some explicit examples. Finally, in Section 4, similar problems are
investigated which generalize the extremal properties of the Chebyshev polynomials of
the second kind.

2. The solution of (&,)

Throughout this paper £, is a probability measure on the interval [ — b, ft] and the
corresponding orthogonal polynomials with leading coefficient 1 will be denoted by
Pj(x, £) and their (squared) L2-norm by kj(^) = ̂ bPj(x, £)d£(x). The main step for
solving the extremal problem (^7) is the following duality which is proved in the
appendix.

Theorem 2.1. Let S: = {£ | kn(0 > 0} and nel, then

max \ £ mf(P,) | (P ; ) , £ ,EP 7 Uminmax {fc/1^) I J^I} (3),)
I" i ) t

Moreover, if %* is a solution of the problem (@,) and

?) = {j 6 /1 ktf*) = min *,(£•)},
I E /

then {y/ocj/k/^*jPj(x,^*)}jsI is a solution of (&,) where P/x, <!;*) is the jth tnonic
orthogonal polynomial with respect to the measure d£*(x) and the a,- are (arbitrary)
nonnegative numbers with sum 1 satisfying

a,= 0 ifjeI\Jt(?) (2.1)

X oijkjH^)PJ(x,Z*)^1 for all xel-b,b]. (2.2)
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The dual problem (2,) appears in the theory of optimal experimental design in
mathematical statistics and has been solved in the special case I = {l,...,n} (see Dette
[3]). While statisticians are mainly interested in the support points and weights of the
solution <!;* of ($){) (they give essentially the points where observations have to be taken
in a polynomial regression) Theorem 2.1 shows that the orthogonal polynomials with
respect to the measure d£*(x) are needed for the solution of the primal problem (&>,). In
order to determine these polynomials (and to solve the dual problem (2>,)) some basic
facts about canonical moments of probability measures on the interval [ — b,b] are
needed. The Stieltjes transform with corresponding continued fraction expansions of
such a measure E, is given by

J K(x)

-» z~x

|z + b(l-2C2-2C3) |z + b(l-2C4-2C5)

where (i=Pi> CJ=<1J-IPJU = 2)> Qj=l—PjU=l) a n ^ ® = Pj^l (see e-g- Lau and Studden
[6]). The quantities pj are called the canonical moments of £,. Note that pj+l is
undefined whenever pje {0,1} because in this case the continued fraction terminates. It
is well known that the polynomial in the denominator of the nth convergent is the nth
monic orthogonal polynomial with respect to the measure d^(x) and that this
polynomial is given by the continuant (see Perron, [8, Bd. I, p. 9])

U* . . . -(2b)2C2n_3C2n_

+ b(l-2C2-2C3) ( • ]

and has L2-norm

= (2b)2" (2-5)

(see Chihara [2] or Wall [13]). The following theorem determines the canonical
moments of the solution of the dual problem {2>i).

Theorem 2.2. The solution t,* of the dual problem (!&,) is uniquely determined by its
canonical moments p*j_j = -̂ (_/ = 1,...,n), p f n = l and

i=n-j+l

(2.6)
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where zn_j is 1 or 0 according to n — jel or n — j

Proof. In the special case / = { 1,...,«} a proof of Theorem 2.2 can be found in Dette
[3], which can be generalized to arbitrary index sets. For the sake of completeness we
provide a different proof in this paper, which is directly based on the duality result of
Theorem 2.1 and uses some identities for orthogonal polynomials on compact intervals.
Let yn-j=l-b-2JY[Ki-j+i(<l2iP2i)~l(yn=l), then it is easy to see (observing (2.5) and
(2.6)) that yn_j^i if and only if kn(^)=kn_j(^*) and ?„_,-<£ if and only if kn{£*)<
kn-j(£*)(n — jel). Consequently we have for the set Jt(t;*) in Theorem 2.1 and the
canonical moments defined in (2.6)

(2-7)

(2.8)

In the following let Pt(x, f *) denote the /th monic orthogonal polynomial with respect
to the measure d£*(x) and define

which have sum 1 and are nonnegative, by the definition of p£, in (2.6). From Theorem
3.5 and 4.1 in Dette [5] it follows that the orthogonal polynomials /c,~1/2(<!;*)P,(x,£*)
with respect to the measure d£*(x) satisfy

t <ijk^(^)Pj(x,^)= £ afcl(Z*)Pj(x,Z*)£l (2.10)
j=l

for all x e [ — b,b]. Note that the result in Dette [5] was originally stated on the interval
[—1,1] but can easily be transferred to the interval [ — fc,b] and that we have used
a ; ^0 , a, = 0 if jtJt{£,*), which follows from (2.8) and (2.9). By (2.10) we thus have

(2.11)

and using the definition of Jt(g*) and X/e-«<«*)aj= 1 we obtain

jC7)= Z mj(Pf) = -^-rmax{k.^*)\jel}.
««*> b l ' )j = l
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Therefore we have equality in Theorem 2.1 for {Pj}JeleP, and £*eS and the assertion
of the theorem follows. •

Remark 23. In the statistical theory the support points and the weights of the
optimal probability measure (minimizing (3>,)) give the relative frequencies and
locations of the observations in a polynomial regression. For the special index set
/ = {l,...,n} this measure has been determined explicitly in [3].

Remark 2.4. The polynomial Pf in the set {P*}JsI vanishes, whenever j$J({!;*)
(which follows from p*j=2 an£l (2-9)), however, there might be situations where <*, = ()
also for some jeJ((£*). Observing the arguments at the end of the proof of the
preceding theorem the solution of (fy) is obtained from (2.11) where the monic
polynomials (orthogonal with respect to the measure d£*(x)) are given by (2.4) and the
quantities fc/£*) are obtained from (2.5). This provides a complete solution of the
extremal problem (!?,). In the following we will discuss some special cases of the set /
for which this solution becomes more transparent.

3. Chebyshev polynomials of the first kind

If / = {«}, the solution of (0>,) is given by the Chebyshev polynomial of the first kind
(on the interval [_ — b, b]) Tn(f) (see Rivlin [10] or Natanson [7]). In this section we will
discuss two other sets for which the extremal polynomials have a relative simple
structure, namely / = {l,...,n} and / = {/i—l,n}. It turns out that the answer of the
question if the Chebyshev polynomial of the first kind is also a solution of {&{) for these
sets will depend heavily on the length of the interval [_ — b,b]. We will start with the
discussion of the problem (0>,) for the set I = {l,2,...,n}. In the following Un{x) denotes
the Chebyshev polynomial of the second kind (on the interval [—1,1]).

Theorem 3.1. Let I = {1, . . . , n} and

( 0 for i = j,...,ni (3.1)

then the solution of the extremal problem (&>,) is given by the polynomials {P*(x)}"=1

(/ = k,...,«) and

P _+\/bU2n-2l+l(j)

The maximum value of(!?i) is given by
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U2k- ((!)

Proof. For j = n,...,k define y ^ * ) = l - 6 " 2 ( " " J ) n " = / + i ( « « P * i ) ~ 1 (here we put
(£*) = 1 and the p%j are defined by (2.6)), then it is straighforward to show that

. 1 ._ .
+2 J - k ' - '

(3.3)

and the definition of k in (3.1) and Theorem 2.2 yield for the canonical moments of the
solution £* of the dual problem (S>,) p*j = yj(£*)(j = K• • • ,«)• If k^.2, then it follows that

i = k

and that b^2 which implies (by Theorem 2.2) p*k-2=i a n d y*_2(€*) = 1 — 2fc 2^j.
Therefore the canonical moments of the solution £,* of the dual problem (2>j) in
Theorem 2.2 are given by

1 1 1 „ 1 1 1

where P2j = 7j(|J*)(j = ' c ) - - ' n ) a ° d y/^*) is defined in (3.3). By Theorem 2.1 we have to
find the orthonormal polynomials with respect to the measure d£,*(x) whose monic form
is given by (2.4) that is

b2 fc2... b2 b2
 2 2

~~^~~A ~~A ~~J~P2k —° 1lkP2k + 2 ••• ~° Q21-4P21-2

X X . . . X X

b2 b2

= K
2 b2b2 b

X X . . . X X X . . . X

= 2-k+lLk - i - * x • (3-4)

Here we used Sylvester's identity (see e.g. Studden [11, formula (4.12)]), (3.3) (for j = k)
and the recursive definition of the Chebyshev polynomials of the first and second kind.

https://doi.org/10.1017/S001309150001912X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001912X


SOME PECULIAR NONLINEAR EXTREMAL PHENOMENA 349

Note that the case k = 1 has to be considered separately but gives the corresponding
result in (3.4) for k = l. The L2-norm of this polynomial is given by (note that
P*j — 2'j— l,...,fc—1 and p*j=]

• (£*) = h2l (±\ D* ]~f Q* n* =- Un-k+l(

while the quantities a, in (2.9) are obtained as

a, = -

(/ = fe,...,n). The assertion now follows from Theorem 2.1. •

3.2 Discussion. Theorem 3.1 shows that the structure of the solution of (0*,) changes
completely with the length of the interval [ — b, b]. If b^y/2, then we obtain from (3.1)
k = n and consequently the sum of the squared leading coefficients of the polynomials
Pf,.. . ,P* is maximized for the choice Pf(x) = 0 ( l g / g n - l ) and P*(x) = Tn(f) with
maximum value {2"~lb~").2 If b>N/2 the situation changes completely. In this case the
index 1 ^k^n defined by (3.1) depends on n and b. The solution of the problem (&,) is
given by (3.2). Finally, if b^2, it follows that k= 1 and (3.2) simplifies to

Example 3.3. Let n = 3, then we have to distinguish the following cases:

(A) If b ̂  yjl, we have k = 3, the optimal polynomials are given by

P?(x) = P?(x) = 0, Pf(x)=±T3@\

and the maximum is I6b~6.

(B) If y/l^b^N/3, then k = 2, the optimal polynomials are

p?(x)=o,
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and the maximum value is 4b~2(b2 — I )"1 .

(C) If b^ y/3, then k= 1, the optimal polynomials are

and the maximum value is (b2 — \)/[b2(b2 —2)].

In the remaining part of this section we will consider the index set / = {«— \,n}. Thus
the problem is to maximize the sum of the squared coefficients

Pn) (3.4)

over the set of all polynomials (of degree n — 1 and ri) satisfying

^\ for all xei-b,bl (3.5)

The solution of this problem can be obtained by a similar reasoning as in Theorem 3.1
for k = n and k = n — 1 and we omit the details in the proof of the following result.

Theorem 3.4. The polynomials P*_t(x) and P%(x) maximizing (3.4) subject to the
restriction (3.5) are given by

(Pn*_! (x), P%x)) = (o, ± Tn (j

if b^.y/2. The maximum values in (3.4) are given by 22n~2b~2n, if b^y/2, and by
22n-4ft-(2n-4)(fc2_1)-i ,yfc^ J^, respectively.

Remark 33 . For index sets of the form Im = {n — m+l,...,n} the corresponding
results are obtained similar to Theorem 3.4. The values of b where the structure of the
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solution is changing, are obtained successively from (3.1) as fc = v / 2 , b = s/h, b —
j j / / / , . . . (see also Example 3.3).

4. Chebyshev polynomials of the second kind

In this section we will briefly discuss some generalizations of the extremal properties
of the Chebyshev polynomials of the second kind. Let / denote a subset of {0, l , . . . ,n}
and define

sup (l)-r)^(x)S
xe[-b,b] jel

as the set of all polynomials (Pj)jei such that a weighted sup-norm of the sum of
squares is less or equal 1. We are interested in the problem

max {Xm2(P() | (P,)ie/eP,} (P,)

If l = {n) we obtain the well known extremal property of the Chebyshev polynomials of
the second kind Un(x), if b=\, (see e.g. Achieser [1, p. 250]) and more generally of
Un(i)/b, if b>0. For the sake of brevity we will only state the generalizations
corresponding to the index sets I = {0,...,n} and I = {n— l,n}. All proofs can be
obtained by a similar reasoning as in the previous sections and are therefore omitted.

Theorem 4.1. Let I = {0,. . . , n} and

fc = m i n j ; e { 0 , . . . , n + l } | L / 2 n _ 2 i + 3 ^ > 0 for i=j,...,n + l\ (4.1)

then the solution of the problem (&t) is given by the polynomials {P*{x)}?=0 where

l = k—l,...,n), where

The maximum value offfi) is given by

https://doi.org/10.1017/S001309150001912X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001912X


352 HOLGER DETTE

Remark 4.2. If b^y/2 then it follows from (4.1) that k = n + l and the solution of
is given by the polynomials Pf(x)=0, l = O,...,n-l, and PJ(x) = £l/n(f). As in

Discussion 3.2 it follows that for b ̂  2 we have k = 1 and the optimal polynomials are
"essentially" independent of the interval [—b,b] and proportional to the Chebyshev
polynomials of the second kind, that is

with maximum value Un(%)\jbUa + 1(%)']~1. In the interval C^/2,2] we have l^fcg
(depending on b and ri) and the solution of (#7) is given by (4.1) and (4.2).

Theorem 4.3. Let b ̂  v /2 , t/ien the solution of the problem

maximize ml^(Pn^) + m2
n(Pn) (4.3)

subject to the restriction

sup (fc2-x2)[PB
2_,(x) + PB

2(x)]Sl (4.4)

is giuen by t/ic polynomials PJ_,(x) = 0, P?(x) = £l/B(f) w/t/i optimum value 22nb~2n+2. If
b^^/z t/ie maximum in (4.3) subject to (4.4) is attained for the polynomials

(Pn*_1(x),P*(x)) = [ ± ^ 2 2

itft maximum value (2/b)2{n~l)(b2-l)~l.

Appendix

(Proof of Theorem 2.1) The proof of Theorem 2.1 follows from a standard result in
the theory of optimal design in mathematical statistics (see Pukelsheim [9]). To be
precise let 7 = {i1,...,im}, i = m + Yj=iij, fj{x) = (l,x,...,xj)' (where ' denotes transposi-
tion) and define for a probability measure £ on the interval [ — b, b~]

M£Q = J fj(x)fj(x)'dt;(x) 6 RU+i>»u+n ( ; g 7)
-*
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which is called moment matrix in the theory of optimal design. In the following we will
collect all matrices Mil(<!;),...,M,m(f) in one big matrix

and define two matrices by

A,
K = \eUixm N =

where e, = (0,...,0, l)'eUJ+1 is the (J+l)th unit vector (jel), Ntj are nonnegative
(ij+l)x(ij+l) matrices (i.e. N^O) and all other entries in these matrices are 0.
Defining O_0O(y4) = Amin(/4) where AeUm"m, A^O and kmia{A) denotes the minimum
eigenvalue of A we obtain for the polar function of <!>_„ (see Pukelsheim [9, p. 149])
<^^ao(A) = trace(A). By the duality theorem on page 172 in the same reference it now
follows that (note that *J(5) = [eJAf71(Q«j]"1)

, Nj^O Vje/, ^ trace{M ̂ )N }

= min\(£ (e'jaA |a,.6^+1 V/e/,
(

\(Pj)juleP,\.

In order to go from the third to the fourth line in (Al) we have used that

b

YJtrace(MJ(^)Nj)=Y, J f/.x)'Njfj(x)d£(x)£l V£e3

jel jel -b

is equivalent to the inequality

b,b] (A2)
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and the fact that the minimum value does not change if the matrices N, are replaced by
matrices of the form afi'j (see the following discussion). This proves the first part of the
Theorem. For the second part we discuss equality in (Al) that is equality in the duality
theorem in Pukelsheim [9, p. 171, 172]) and obtain

Ydtrace(MJ(Z*)NJ)=l (A3)

<A4»

I l ^ f f e ; " '• <A5)

Observing that kJl(£*) = e'JM]~1(£*)eJkj=l,...,ri) we obtain by straightforward calcula-
tion as a solution of (A3) and (A4) Nj=OLjaJa'j where aj=s/kj{£,*)MJi{^*)ej(je/), a ^ O
(because Nj^O) and X/6/«/=!• Finally it follows from (A5) that ccj=O whenever
j$J({£,*). By Corollary 2.3 in Dette [5] the polynomials Pf(x, £*) = a',f,(x) are
orthonormal with respect to the measure d£*(x) which yield for the monic orthogonal
polynomials Pt(x,£*) = ̂ /kl(£*)a',fl(x) (/= \,...,n). Consequently a solution of the right
hand side of (Al) is given by {v/a7/feJ(<J*)PJ(x, Z*)}JeI where P}{x, £*) is the jth monic
orthogonal polynomial with respect to the measure d£*(x) and the a, have to satisfy

for all x e [ — b, b~\. This completes the proof of Theorem 2.1. •
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