Energy intake and expenditure of Indian schoolboys

By B. BANERJEE* and N. SAHA
Department of Physiology, Faculty of Medicine, University of Singapore, Singapore 3 (Received 17 7une 1971 - Accepted 20 September 1971)

Abstract

1. Sixteen Indian schoolboys, aged 12-14 years and resident in Singapore, were tested for the determination of energy cost, pulmonary ventilation (PV) and oxygen consumption at rest and at various daily activities; their height, body-weight, pulse and blood pressure were also measured. An energy balance study was made by estimating from a diary of measured activities the 24 h energy intake and output. 2. PV and O_{2} consumption during running showed positive correlations ($r=0.4$ and $r=0.3$ respectively) with mean height and body-weight. High positive correlations ($r=0.8$) were obtained between mean post-exercise recovery pulse, O_{2} consumption and PV. 3. The daily mean calorie intake and output of the subjects were found to be 2108 kcal (8.85 MJ) and $\mathrm{I}_{1 \mathrm{II}} \mathrm{kcal}(7.60 \mathrm{MJ}$) respectively. 4. The boys gained an average of 2.2 kg in weight and 0.7 cm in height in 2 months. They did not suffer from any mental retardation, they were physically fit, free from disease and did their daily routine work satisfactorily.

Except for two studies, by Taylor, Lamb, Robertson \& MacLeod (1948) and Taylor, Pye, Ellis \& Godshall (195 I^{-2}), on energy expenditure in European children, there is very little information about the relationship of age, body-weight, height, blood pressure, pulse rate and oxygen intake to the daily calorie intake and expenditure of energy of Asian children. To provide more information on these matters, the study now described was undertaken with Indian boys as subjects.

METHODS

Subjects

Sixteen Indian schoolboys of Dravidian stock, aged 12-14 years, who were residing in a boy's home in Singapore, were selected at random for the test. They were medically examined and were found to be healthy and physically fit.

Procedure

Observations were made on the subjects for 7 consecutive days, during which time they performed various activities in the mornings before they had had any food or drink.

Height, body-weight, pulse and blood pressure. In the morning of the ist day at the start of the test, before the subjects had had any food or drink, their height (the subjects standing barefoot) and body-weight (each subject clothed in one garment), resting pulse and blood pressure were measured.

[^0]Pulse and blood pressure were also measured at post-exercise recovery (see p. 485).
Measurement of energy expenditure. The energy output of the activities was measured by using a Max Planck respirometer and Lloyds gas analysis apparatus. The details of the method and the precautions that were adopted have been described by Banerjee \& Saha (1970). The measurement of energy output of each boy was made on three consecutive mornings for periods ranging between 3 and ro min for each activity. Rest intervals of $4^{-10} \mathrm{~min}$ were given between tests. After necessary corrections, the average value of O_{2} consumption based on measurements that were made for 3 d at each activity of each boy was accepted for calculation of the mean energy expenditure for that activity. The calorie value of O_{2} was obtained from the table of Zuntz \& Schumberg, modified by Lusk, as given by Oser (1965). The average room temperature and relative humidity at the place of investigation were 29° (range 27-31 ${ }^{\circ}$) and 75% (range $70-80 \%$). The pulmonary ventilation (PV) at each activity was measured by the same respirometer and was corrected to standard temperature and pressure, dry.

Calculation of energy expenditure

The subjects recorded their 24 h energy expenditure by a standard diary method, similar to that used by Garry, Passmore, Warnock \& Durnin (1955), to record the time spent on various activities. Under the supervision of the warden of the home each boy supplied, on the work-diary sheet provided, a detailed time-record of his various activities for each 24 h period for the 7 d ; the entries were checked each day. The energy costs per min of all activities were measured except for bathing, toilet, dressing and eating: on the basis of measurement in other activities, the average energy cost of these four activities was taken as $1.5 \mathrm{kcal}(0.0063 \mathrm{MJ}) / \mathrm{min}$ (see Table 2). The energy cost of slecping was equated with that of lying at rest. The average durations (timed in min) of various activities were noted from observations for 7 d of such durations at each activity of all the boys. The estimate for the total 24 h expenditure for all activities was calculated by summing the products obtained from multiplying the duration (expressed in min) of each activity by the energy expenditure ($\mathrm{kcal} / \mathrm{min}$) for that activity.

Calculation of food intake

The total food intake of the boys was measured daily by the individual method of Durnin \& Brockway (1959). Each item of food ready for cooking was separately weighed and recorded by the warden for the 7 d of the study and the average quantity of each item that was eaten by each boy per d was calculated. The inevitable minor variations in food intake were ignored. The calorie values, and the carbohydrate, fat and protein contents of these items of food were obtained from the tables given by Oser (1965), from which the total 24 h intake was calculated. The records were submitted daily by the warden for checking.

Activities

The boys performed daily for 7 d the various activities barefoot, which was their usual way of performing their daily tasks. The mean duration of each particular
activity was calculated from observations that were made, throughout the 7 d , of the duration of each activity by each boy.

For activities e, f, g, h and i, the respirometer was carried on the back of the subject. In activities h and i, a lift was used for returning the boys to the floor from which they commenced their ascents and descents of the stairs: during these journeys by lift, the respirometer was disconnected (the time taken by the lift to travel between floors was 16 s).
(a) Lying in absolute rest. Early in the morning, after the boys had rested lying in bed for about 15 min , measurement was made for 10 min .
(b) Sitting at rest. After 5 min spent in sitting at ease on getting up from the above lying position, measurement was made for ro min.
(c) Sitting reading. After activity b. The same reading material was given to all the boys and measurement was made for io min.
(d) Sitting zoriting. After activity c. The same writing material was given to all the boys and measurement was made for 10 min .
(e) Standing. After activity d. Measurement was made for 10 min . As a diversion, the subjects were asked to watch the gas analysis.
(f) Walking. After activity e. Each boy walked a measured horizontal distance (100 m) for 10 min . The average speed was $5.1 \mathrm{~km} / \mathrm{h}$ (range $4.0-6.9 \mathrm{~km} / \mathrm{h}$).
(g) Running. After activity f. Each boy ran a measured horizontal distance (100 m) for 5 min . The average speed was $8.5 \mathrm{~km} / \mathrm{h}$ (range $6.0-9.9 \mathrm{~km} / \mathrm{h}$).
(h) Ascending stairs. After activity g and 10 min rest, each boy repeatedly climbed up flights of fifty-eight steps (each 16.5 cm high) for 3 min from the ground floor to the second floor. The average speed was 142 steps $/ \mathrm{min}$ (range $100-199 \mathrm{steps} / \mathrm{min}$).
(i) Descending stairs. After activity h and 10 min rest, each boy repeatedly descended the same flights of steps for 3 min from the second floor to the ground floor. The average speed was 158 steps $/ \mathrm{min}$ (range $120-199$ steps $/ \mathrm{min}$).
(j) Post-exercise recovery. After activity i and 10 min rest, each boy ran the same measured distance (100 m) with the same speed range as in activity g for 5 min and then immediately settled down in a chair and was connected to the respirometer with the nose closed. His pulse and blood pressure were also measured till these returned to the pre-exercise levels.

RESULTS

Age, body-weight, height, pulse and blood pressure

Age, body-weight and height of the subjects at the start of the test and 2 months later are recorded in Table I. The mean gains in body-weight and height were 2.2 kg and 0.7 cm respectively.

Pulse rate and blood pressure at rest and immediately after exercise are also shown in Table r .

Energy expenditure

The duration of each activity, the energy expenditure for each activity and the percentage variation in expenditure at each activity above the value for sitting writing

Table I. Age, body-weight and height of sixteen Indian schoolboys initially

 and 2 months after the test, and pulse and blood pressure(Mean values and standard deviations; the sD was calculated from the variation between sixteen boys, representing each boy by the mean of three readings)

Age (years)	13.0 ± 0.60
Body-weight (kg)	
Initial	$31 \cdot 3 \pm 5 \cdot 60$
2 months after the test	$33 \cdot 5 \pm 5 \cdot 52$
Height (cm)	
Initial	$140 \cdot 6 \pm 7.00$
2 months after the test	$141.3 \pm 7 \cdot 00$
Pulse (beats/min)	
Resting	$77 \cdot 8 \pm 8 \cdot 40$
Post-exercise recovery	111.0 ± 12.80
Blood pressure (mmHg)	
Systolic, resting	102.2 ± 6.40, post-exercise recovery 123.0 ± 10.00
Diastolic, resting	$60 \cdot 3 \pm 6 \cdot 80$, post-exercise recovery 67.8 ± 6.80

are shown in Table 2. The energy expended by the subjects during sitting at ease was significantly more $(t>3)$ than when they were sitting reading or sitting writing.

The highest percentage increase in energy expenditure above the value for sitting writing was in running (456%), closely followed by ascending stairs (422%). In descending stairs, the energy expenditure was about 37% lower than that at ascending stairs and was about 227% more than at sitting writing.

The energy expenditure was lowest in sitting writing, closely followed by sitting reading and lying at rest.

The boys spent about 20 and I 8% of the total energy output in sleeping and walking respectively.

$P V$ and O_{2} consumption

PV and O_{2} consumption were lowest in sitting writing, closely followed by sitting reading and lying at rest (Table 3). Although the PV was highest during the ascent of stairs, the O_{2} consumption was slightly higher when running. When descending stairs, PV and O_{2} consumption were each about 36% lower than when the subjects were ascending stairs. For post-exercise recovery, PV and O_{2} consumption were about 44 and 55% lower respectively than the values for subjects when running. The ratio O_{2} consumption: PV gradually rose from 0.024 at lying at rest to 0.036 while running.

Oxygen intake and PV during running were found to have some positive correlation with height ($r=0.4$ and $r=0.3$ respectively) and body-weight ($r=0.5$ and $r=0.4$ respectively) but no such correlations were found with age. High correlations ($r=0.8$) were obtained between post-exercise recovery pulse, and O_{2} consumption and PV.

Food intake

The items and quantities of food provided for daily per caput consumption, with their carbohydrate, fat and protein contents, and their calorie values are shown in
Table 2. Energy expenditure in different activities of sixteen Indian schoolboys
(Mean values and standard deviations; the so was calculated from the variation between sixteen boys,

Activity
Lying at rest (including
sleeping)
Sitting at ease
Sitting reading
Sitting writing
Standing
Walking, speed $5 \cdot \mathrm{Ikm} / \mathrm{h}$
Running, speed $8 \cdot 5 \mathrm{~km} / \mathrm{h}$
Ascending stairs,
speed $\mathrm{I42}$ steps $/ \mathrm{min}$
Descending stairs,
speed I 58 steps $/ \mathrm{min}$
Post-exercise recovery
Bath, toilet, dressing and
eating
Total

* Total energy expenditure $/ 24 \mathrm{~h}$ was calculat
thus, 24 h balance was $+297 \mathrm{kcal}(\mathrm{r} \cdot 247 \mathrm{MJ})$.
$\dagger 100 \mathrm{kcal}=0.42 \mathrm{MJ}$.

Table 3. Pulmonary ventilation (PV) and oxygen consumption in different activities of sixteen Indian schoolboys
(Mean values and standard deviations; the sD was calculated from the variation between sixteen boys, representing each boy by the mean of three readings)
$\left.\begin{array}{lcccc} & \begin{array}{c}\text { Percentage } \\ \text { variation from } \\ \text { lowest }\end{array} & & \begin{array}{c}\text { Percentage } \\ \text { variation from }\end{array} \\ \text { lowest }\end{array}\right]$

Table 4. Daily per caput food items eaten by sixteen Indian schoolboys
(Mean values from observations for 7 d)

Food item	Quantity, uncooked but dressed (g)	Carbohydrate (g)	Fat (g)	Protein (g)	Energy intake (kcal)
Rice	320	254.00	0.96	24.30	1158.40
Wheat	80	59.20	1.06	$9 \cdot 60$	$292 \cdot 20$
Bread (one slice)	23	II.80	0.51	$1 \cdot 95$	59.50
Noodle	32	$4 \cdot 10$	0.20	0.71	21.40
Egg, one	54	0.40	$6 \cdot 20$	$6 \cdot 90$	87.40
Butter	8	--	$6 \cdot 50$	-	57.30
Cooking oil	8	-	8.00	-	$70 \cdot 70$
Soya bean	8	3.00	0.50	3.40	$21 \cdot 10$
Vegetables, mixed	60	7.20	0.20	2.40	$36 \cdot 60$
Fruits, mixed	136	19.00	$0 \cdot 41$	0.95	$76 \cdot 10$
Milk (half a cup)	144	7.00	$5 \cdot 62$	5.04	98.00
Sugar	16	16.00	-	--	62.00
Pulses (lentils, split and dried)	20	12.00	0.24	$4 \cdot 80$	67.80
Total		393.70	$30 \cdot 40$	60.05	2108.30

Table 4. The average food intake provided $2108 \mathrm{kcal}(8.85 \mathrm{MJ})$, with more than 70% of the calories being derived from carbohydrates. The subjects consumed daily only 30 g fat and 60 g protein.

Relationship between calorie intake and energy expenditure

The mean daily energy expended by the boys was $18 \mathrm{Ir} \mathrm{kcal}(7 \cdot 60 \mathrm{MJ})$ (see Table 2, footnote) and their mean daily intake was $2108 \mathrm{kcal}(8.85 \mathrm{MJ})$ (Table 4), thus giving a surplus of $297 \mathrm{kcal}(\mathrm{I} \cdot 24 \mathrm{MJ})$.

DISCUSSION

According to the recommendation of the Food and Nutrition Board of the National Research Council of the USA (as quoted by Oser, 1965), the weight and height of boys aged $12-15$ years should be 45.0 kg and 156.0 cm respectively. Our subjects were smaller, with a mean body-weight of $31 \cdot 3 \mathrm{~kg}$ and a mean height of 140.6 cm : these values were lower than those of European boys aged from 8 years and 9 months to 10 years and II months that were reported in the study by Taylor et al. (1951-2). In our study, the resting blood pressure was found to be $102 / 60 \mathrm{~mm} \mathrm{Hg}$: this is low compared with the figures quoted by Spector (r 96 I).

Although we found some positive correlation of O_{2} intake and PV during running with height and body-weight, we did not find any such correlation with age: Wilmore \& Sigerseth (1967), however, with the same activity obtained relatively high correlations with age, height and body-weight. The O_{2} intake and PV of our subjects during running were much lower than those reported in the study of Wilmore \& Sigerseth (1967). This might be due to the lower body-weight and height of our subjects.

The finding that energy expenditure during sitting at ease was significantly more than that expended by subjects sitting reading and sitting writing is in agreement with our earlier findings (Banerjee \& Saha, 1970) and might be due to concentration of mind on reading and writing, which reduced the PV and O_{2} consumption.

Taylor et al. (1948) showed that boys, aged $12-14$ years and of body-weight 4 Ikg , spent $\mathrm{r} .4 \mathrm{kcal}(0.0058 \mathrm{MJ})$ per min while sitting and playing at puzzles. The boys whom we studied were of the same age range but with a lower body-weight; they spent only $0.82 \mathrm{kcal}(0.0033 \mathrm{MJ})$ per min while sitting reading, an activity that may be considered equivalent to sitting and playing at puzzles: even while standing, these boys spent only $1.03 \mathrm{kcal}(0.0043 \mathrm{MJ})$ per min.

Taylor et al. (1951-2) found that the average energy expenditure of boys at sitting drawing was $2.00 \pm 0.24 \mathrm{kcal}(0.008 \mathrm{olM})$ per kg per h. On equating the sitting drawing with the sitting writing of our study, it was seen that the boys whom we studied expended only $1.58+0.32 \mathrm{kcal}$ (0.0066 MJ) per kg per h , which was significantly lower $(t>4)$ than the value found by Taylor et al. (1951-2).

The highest percentage increase in energy expenditure above the value for sitting writing was in running, closely followed by ascending stairs: in our previous study (Banerjee \& Saha, 1970), the same trend was also observed.

Consideration of the ratio O_{2} consumption: PV shows that with increase in severity of the activity there was an increase of gas transfer, i.e. the rate of O_{2} intake per min from the lung was more than the value for lying at rest or sitting at ease, and this rate of increase reflected the functional condition of the O_{2} transport system.

Although there was a surplus energy balance, the diet was not at all balanced, most of the calories being derived from carbohydrates, and it fell far short of the recommendations of the FAO (1957) and of the Food and Nutrition Board of the National Research Council of the USA (see Oser, 1965), whether related to age or weight.

In comparison with our findings, Banerjee \& Mahindra (1962) found an even lower calorie intake ($1406 \mathrm{kcal}(5.70 \mathrm{MJ})$ (and expenditure ($14 \mathrm{ro} \mathrm{kcal}(5.92 \mathrm{MJ})$) in college
girls in India. In our earlier studies (Banerjee, Lal \& Saha, 1965; Banerjee \& Saha, 1970), we found similar, low calorie intakes ($1905 \mathrm{kcal}(8.00 \mathrm{MJ})$) in medical students in India, and low calorie intake and expenditure in women police of Singapore. However, despite these inadequacies the daily surplus of calories was reflected in the gain in body-weight and the increase in height in 2 months. Moreover, some of the boys showed the physical changes of puberty which might be additional contributory factors for this relatively large gain in body-weight (2.2 kg in 2 months). Furthermore, they did not suffer from any retardation of mental growth, as was proved by the fact that they read at the same standard (classed as satisfactory) as students of other races, including European children of the same age-group.

As has been stated by the FAO (1957), the influence of undernutrition during one or several generations on the growth rate and calorie requirements of these young children has not yet been fully investigated and assessed.

The authors are grateful to the Swamijis of the Ramakrishna Mission for making available the students and for providing all other facilities for this study. The technical services of Michael Ng are acknowledged.

REFERENCES

Banerjee, B., Lal, D. C. \& Saha, N. (1965). Calcutta med. 7. 62, 119.
Banerjee, B. \& Saha, N. (1970). F. appl. Physiol. 29, 200.
Banerjee, S. \& Mahindra, S. K. (1962). 7. appl. Physiol. 17, 971.
Durnin, J. V. G. A. \& Brockway, J. M. (1959). Br. F. Nutr. 13, 4r.
FAO (1957). Calorie Requirements p. 27. Rome: F.A.O.
Garry, R. C., Passmore, R., Warnock, G. M. \& Durnin, I. V. G. A. (1955). Spec. Rep. Ser. med. Res. Coun. no. 289.
Oser, B. L. (editor) (1965). Hawk's Physiological Chemistry 14th ed., pp. 904, 1338, 1371. New York: McGraw-Hill.
Spector, W. S. (editor) (I96r). Handbook of Biological Data p. 282. Philadelphia and London: W. B. Saunders Company.
Taylor, C. M., Lamb, M. W., Robertson, M. E. \& MacLeod, G. (r948). F. Nutr. 35, 5 r 1.
Taylor, C. M., Pye, O. F., Ellis, M. \& Godshall, F. (1951-2). F. appl. Physiol. 4, 636.
Wilmore, J. H. \& Sigerseth, P. O. (1967). F. appl. Physiol. 22, 923.

[^0]: * Present address: Department of Physiology, Haile Sellassie I University, PO Box II76, Addis Ababa, Ethiopia.

