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Non-smooth approximations of steep sigmoidal switching networks, such as those used as

qualitative models of gene regulation, lead to analytic and computational challenges that

arise as a result of the discontinuities in the vector fields. In order to highlight the need

for care in dealing with such systems, several particular phenomena are presented here

through illustrative examples, including ‘Zeno breaking’, or computing beyond the finite time

convergence of an infinite sequence of threshold transitions; the ‘Contact’ effect, in which

in the discontinuous limit, trajectories can pass through a ‘saddle point’ without stopping,

though these solutions are not unique and other solutions stop for arbitrary time intervals;

and sensitive behaviour that arises from exotic dynamics within switching regions.

Key words: Discontinuous equations, singular perturbations, differential inclusions, oscilla-

tions, dynamical systems in biology (34A36; 34D15; 34A60; 34C10; 37N25)

1 Introduction

Non-smooth approximation to steep sigmoidal switching networks has proven to be a

fruitful approach to analysis of their behaviour, for example, in the study of dynamics of

gene regulation. However, the introduction of discontinuities also leads to some analytic

challenges, and in situations where the true system is believed to be smooth, it is especially

important to be sure that the behaviour predicted by the non-smooth analysis is close

to that of nearby smooth systems, and to interpret results accordingly. Here, particular

examples are used to highlight several challenges of this type, in which care needs to be

taken in conducting or interpreting the non-smooth analysis. Some of the examples were

inspired by analysis of gene-regulatory networks, but we are more concerned here with

demonstrating the technical issues, in order to encourage rigorous analysis.

Autoregulation in piecewise-linear models of gene networks leads to sliding motion

in threshold hyperplanes or their intersections, and trajectories in which two (or more)

variables spiral in to threshold intersections in finite time. In the latter case of fast

damped oscillation, an infinite number of threshold transitions occur during the finite

time convergence to the intersection, as in Zeno’s ‘paradox’. After convergence, other
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variables continue to evolve. This itself poses a computational challenge, since software

systems designed to compute solution trajectories must be capable of computing past

the Zeno convergence point. Ames [2] refers to such a point where simulators tend

to get stuck as a “breaking (Zeno) point,” though we could also use the term ‘Zeno

breaking’ to refer to the ability of a good simulator to break out of the infinite loop and

continue (reminiscent of ‘breaking the sound barrier’). In gene networks with equal decay

rates, we can compute explicitly the convergence time. We demonstrate by means of an

example in Section 3. Qualitative models of gene networks are characterized by multilinear

combinations of non-linearities, which are sigmoid in general, but step functions in the

limiting piecewise-linear case. In Section 3.3, we consider both asymptotic and fast damped

oscillation in an example system that is not multilinear, to demonstrate how long-term

behaviour can depend sensitively on whether or not the threshold intersection is reached.

Autoregulation in gene networks is actually accomplished by a sequence of steps, and

introducing intermediate linear variables leads to more general piecewise-linear systems

with other kinds of non-uniqueness, such as what we call here the ‘Contact’ effect, in

which it becomes possible in the non-smooth limit of a saddle point to sail through it

without stopping. Such an example is presented in Section 4. Exotic forms of behaviour

through threshold regions, such as periodic or strange attractors in the boundary layer

equations, can hide sensitive behaviour in nearby steep sigmoidal systems. In Section 5,

we demonstrate this by means of another pair of examples.

2 Continuous-time switching networks

The motivating application for most of the examples that follow is that of gene-regulatory

networks, in which piecewise-linear qualitative models have played a significant role for

analysis of dynamical behaviours. However, the technical issues that are of concern in the

current work relate to a much broader class of equations. All of the examples we deal

with here will be piecewise-linear systems, with step function non-linearities, or smooth

(but steep) sigmoidal perturbations of these. The class of systems can be expressed as

follows:

ẋi = Fi(Z1(x1), Z2(x2), . . . , Zn(xn)) + Gi(x1, x2, . . . , xn), i = 1, . . . , n, (2.1)

with linear functions Gi. In the context of Glass networks, which are often used to model

gene regulation qualitatively, each xi is the concentration of the protein product of gene

i, each Gi = −γixi, expressing degradation of the protein, each production term, Fi, is

multilinear in Z1, . . . , Zn, and each Zi(xi) is a Hill function

Zi(xi) = H(xi, θi, q) =
x

1
q

i

θ
1
q

i + x
1
q

i

, q ∈ (0, 1]. (2.2)

In the limit as q → 0,

lim
q→0

H(xi, θi, q) =

{
0 if xi < θi
1 if xi > θi,
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and this becomes a non-smooth system where each Zi = 0 or 1, except at thresholds. The

Glass network structure is then,

ẋi = Fi(Z1(x1), Z2(x2), . . . , Zn(xn)) − γixi, i = 1, . . . , n, (2.3)

with multilinear Fi.

In Section 3.3, we will present an example in which the functions Fi are not multilinear

in the Zj , though Gi = −γixi still. In Section 4, we will use an example from a class

of equations that extends Glass networks by including an additional linear variable for

each regulatory equation (an mRNA concentration), so that half the equations have

a multilinear Fi with the standard degradation term, and the other half have Fi ≡ 0,

but Gi = κixi−1 − γixi (though we will rename half the variables yi and reorder indices

accordingly).

It is also possible for each gene product to have multiple thresholds (for example, a

different threshold for the regulation of different genes). Then, we have Zij = H(xi, θij , q)

for the regulation of the jth gene by the ith. We will not need to exploit this generalization

to illustrate the behaviours we are interested in here.

The two main methods for dealing with the discontinuities in the vector fields are

Filippov methods [10,11], in which the equations are considered as differential inclusions,

and potentially, set-valued solutions are possible and singular perturbation methods [14,

21], in which the non-smooth system is considered as a limit of smooth systems — in our

case, the step functions are limits of underlying sigmoids. Much has been written on these

methods, and we do not reproduce a full discussion here, but use them as needed.

However, it is important to point out that there are multiple definitions of Filippov

solutions. At a point on one or more discontinuity surfaces (a codimension-k switching

domain is one in which k variables are at their threshold, i.e., on their switching hy-

perplane), the usual approach defines the vector field as an element of the convex hull

of the vectors at that point considered as part of the vector field in one of the smooth

(regular) regions adjacent to the point. Thus, a point in a codimension-k switching do-

main has 2k adjacent regular regions. These have been called Filippov solutions in the

general sense [17, 19]. It has been argued in [17, 19] that a more appropriate definition is

one that allows all values across the discontinuous jump in each variable separately. In

our context, this corresponds to allowing each Zi to take all values in the interval [0, 1].

These have been called Filippov solutions in the narrow sense [17, 19]. If the differential

equations (in our case, the Fi functions) are multilinear in the Zi, then this definition

corresponds to a multilinear interpolation of the vectors on each side of each discontinu-

ity surface at a point. Others (e.g., [7, 16]) have argued in a more general context for

using a multilinear interpolation of these vectors, rather than the convex hull, but this

approach only corresponds to the concept of Filippov solutions in the narrow sense if

the differential equations are multilinear in the Zi. There has been a profusion of names

for these alternative definitions of vector field and solution, including Filippov solution in

the narrow sense [17, 19], Utkin’s vector field or solution [7], the Aizermann–Pyatnitskii

vector field [1], the bilinear interpolation vector field [6] or the convex canopy [16]. See

also [12] for discussion of many of these papers.
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Table 1. Production terms of a general two-dimensional Glass network

Z1 Z2 F1/γ1 F2/γ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 a3 b3

0 1 a2 b2

1 0 a4 b4

1 1 a1 b1

It is also important to recognize that the classical singular perturbation theory, based

on Tikhonov’s theorem, relies on asymptotic convergence of fast variables to a stable

equilibrium, in order to continue the evolution of the slow variables in a way that ensures

that behaviour of nearby smooth systems is still well approximated (at least for arbitrary

finite time intervals) [21]. However, in [17, 18], it was shown how an extension of this

method due to Artstein and collaborators [3–5] allows continuation of solutions even

when the attractor in the fast variables is not a fixed point.

3 Zeno breaking

3.1 Oscillations: sustained, damped or fast damped

The fact that finite-time convergence of damped oscillators can occur in Glass networks

was first observed in [8]. The simplest setting is a two-gene system:

ẏ1 = F1(Z1, Z2) − γ1y1,

ẏ2 = F2(Z1, Z2) − γ2y2,

where we have translated thresholds to 0 via yi = xi − θi, and F1 and F2 can in general

be specified as in Table 1. To keep things simple, let us assume that the decay rates are

equal, γ1 = γ2.

For the structure in Figure 1, starting on the wall {y1 > 0, y2 = 0}, the map for the

cycle through the four quadrants is

M(y1) =
Ay1

1 + φy1
,

where

A =
b1a2b3a4

a1b2a3b4
, φ = − 1

a1
+

b1

a1b2
− b1a2

a1b2a3
+

b1a2b3

a1b2a3b4
.

For details of the calculations of these maps, see [8] or [9].

Oscillations are sustained (periodic orbit) if A > 1 (see [20]). Oscillations are damped

if A � 1. The time to convergence is finite if A < 1 and infinite if A = 1 (see [8]). If there

is no autoregulation, then A = 1.

3.2 Computing past the Zeno point

The Zeno phenomenon refers to finite-time convergence of an infinite sequence of trans-

itions. Computer systems for analysis of piecewise-linear systems must deal with the
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Figure 1. Damped oscillation in a two gene network.

problem of computing past the Zeno point (see, for example, [15]). A simulator that

simply computes trajectories from transition to transition will ‘break’ at the ‘Zeno (break-

ing) point’ (for use of this term, see [2]). For Glass networks with equal decay rates,

ẏ = F(Z) − γy (y ∈ �n), we can compute the Zeno point (time) directly, from an initial

point [8, 9].

In the two-variable case, iteration of the cycle map (m times) yields

Mm(y(0)
1 ) =

Amy
(0)
1

1 + φ(m,0)y
(0)
1

,

where the denominator is the exponential of the time taken, and

φ(m,0) =

m−1∑
k=0

Akφ =
1 − Am

1 − A
φ .

Then, if A < 1,

lim
m→∞

(1 + φ(m,0)y
(0)
1 ) = 1 +

φy
(0)
1

1 − A
,
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so the time to convergence is

t = log

(
1 +

φy
(0)
1

1 − A

)
.

If decay rates are not equal, explicit calculation of the convergence time is not so easy,

but Ironi and coworkers implicitly deal with this in [14] and [15].

Example 1

ẋ1 = 2(1 − Z2) − x1,

ẋ2 = 2.5Z1 − 0.5Z1Z2 − x2,

ẋ3 = 1 − 0.1x3,

with θ1 = θ2 = 1.

Here, x1 and x2 are independent of x3 and have a phase plane like Figure 1. In

terms of the shifted yi variables, a1 = a2 = −1, a3 = a4 = 1, b1 = 1, b2 = b3 = −1,

b4 = 3
2
, and A = 2

3
, φ = 11

3
, so the time to convergence to the threshold intersection is

T = log(1 + 11y(0)
1 ). Recall that y(0)

1 = x
(0)
1 − 1, so y

(0)
1 ∈ (0,∞).

Now x3 continues to evolve, and there is sliding motion along the threshold intersection

after T = log(1 + 11y(0)
1 ), asmpytotically converging to the singular stationary point

at (x1, x2, x3) = (1, 1, 10). This can be established rigorously, by singular perturbation

analysis, in terms of the boundary layer equations in Z1 and Z2.

3.3 The Zeno phenomenon and sliding — a sensitive case

To illustrate the potential sensitivity of a piecewise-linear system to the dynamics in the

boundary layer system, we construct an example that is not multilinear like the Glass

network equations.

Example 2

ẋ1 = 2 − (5/3)Z2 − αZ1Z2 − x1,

ẋ2 = 2Z1 − x2,

ẋ3 = (2Z1 − 1)2 + (2Z2 − 1)2 − x3,

(3.1)

with θ1 = θ2 = 1, and α ∈
[
− 1

3
, 1

3

]
. Figure 2 shows the behaviour for α = 1

3
, 0 and − 1

3
.

3.3.1 Singular perturbation analysis

Note that if Z1, Z2 ∈ {0, 1}, then

F3(Z1, Z2) = (2Z1 − 1)2 + (2Z2 − 1)2 = 2,

so ẋ3 = 2 − x3 and x3 → 2. This holds in all the regular regions around the threshold

intersection (x1, x2) = (1, 1). Only when Z1 or Z2 ∈ (0, 1) is F3(Z1, Z2) < 2.
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Figure 2. Behaviour of Example 2. The top panels show sample trajectories in the phase space for

a small value of q; the middle row of panels show the flow in the x1, x2 projection of phase space

in the limit q → 0; the bottom panels show the behaviour of the fast variables in the Z -square

(blow-up of the x1, x2 threshold intersection). In the left panels, α = 1
3

and x3 → 1
121

(in the limit

q → 0); in the middle column of panels, α = 0 and x3 → 1
25

or 2, depending on q; in the right

panels, α = − 1
3

and x3 → 2 (in the limit q → 0).

The equations for the fast dynamics in the switching intersection, x1 = 1, x2 = 1, can be

obtained by expressing the first two equations of (3.1) in terms of the Z variables using

equation (2.2) to get

Z ′
1 = Z1(1 − Z1)(1 − (5/3)Z2 − αZ1Z2),

Z ′
2 = Z2(1 − Z2)(2Z1 − 1) ,

where the derivatives are with respect to fast time, τ = t
q

(see [21] for details of computing

these boundary layer equations). The domain for these fast variables ([0, 1]n in the

https://doi.org/10.1017/S0956792518000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000116


Zeno breaking, the Contact effect and sensitive behaviour 833

switching intersection for n variables) is called by Plahte and Kjøglum the Z-cube [21],

but in two dimensions we can call it the Z-square. The fixed point in the switching

intersection (found by setting the Z ′
1 and Z ′

2 to 0) is at Z∗
1 = 1

2
, Z∗

2 = 6
10+3α

. So, for

example, at α = − 1
3
, 0 and 1

3
, we have Z∗

2 = 2
3
, 3

5
and 6

11
, respectively. The Jacobian matrix

is

J(Z∗
1 , Z

∗
2 ) =

⎡
⎢⎢⎣
− 3α

2(10 + 3α)
−10 + 3α

24

12(4 + 3α)

(10 + 3α)2
0

⎤
⎥⎥⎦ ,

so det(J) = 4+3α
2(10+3α)

> 0 for all α ∈ [− 1
3
, 1

3
] (the allowed range), and tr(J) < 0 if and only

if α > 0 (within the allowed range). Also, 4det(J) > (tr(J))2 for α ∈ [− 1
3
, 1

3
], so the fixed

point is an asymptotically stable focus for α ∈ (0, 1
3
], and an unstable focus for α ∈ [− 1

3
, 0).

In the case α ∈
(
0, 1

3

]
, solutions in the large phase space reach the threshold intersection

in finite time, as can be calculated by the method above. A = 2
3+2α

and φ = 10
2+3α

, so the

convergence time is T = log(1 +
φy

(0)
1

1−A
) = log(1 + 10

3α
y

(0)
1 ), for a trajectory that begins on

the y1 > 0, y2 = 0 wall (again yi = xi − θi). At the Zeno point at t = T , trajectories of the

fast variables enter the interior of the Z-square, and converge to the stable spiral point

inside, at (Z∗
1 , Z

∗
2 ) = ( 1

2
, 6

10+3α
). This occurs instantaneously in terms of the normal time,

t (in the limit q → 0). Then, the slow evolution of the x3 equation is taken with Z1 and

Z2 at these values, giving

ẋ3 =
(2 − 3α)2

(10 + 3α)2
− x3,

so that x3 → (2−3α)2

(10+3α)2
. See left panels of Figure 2.

In the case α ∈
[
− 1

3
, 0

)
, the Z-square has no stable fixed point, solutions spiral out to

the boundary, and the heteroclinic orbit around the boundary of the Z-square corresponds

to solutions that cycle through the four regular domains in the large phase space. Indeed,

the analysis of Section 3.1 show that there exists a periodic orbit, which can be shown to

be stable by the methods of [8]. See right panels in Figure 2.

In the case α = 0, the Jacobian has pure imaginary eigenvalues, so a more delicate

treatment is required. Nevertheless, we show below that the Z-square has a neutrally

stable fixed point and nested periodic orbits, so again solutions cannot enter the interior

of the Z-square from outside. This corresponds to the case in which solutions spiral into

the threshold intersection, but in infinite time. See center column panels in Figure 2.

Let α = 0, and let Y1 = Z1− 1
2

and Y2 = Z2− 1
2
, so that the fixed point (Z∗

1 , Z
∗
2 ) = ( 1

2
, 3

5
)

becomes (Y ∗
1 , Y

∗
2 ) = (0, 1

10
), and the fast equations become

Y ′
1 =

(
1

4
− Y 2

1

) (
1

6
− 5

3
Y2

)
, (3.2)

Y ′
2 =

(
1

4
− Y 2

2

)
(2Y1) . (3.3)

Then,

dY2

dY1
=

(
1
4
− Y 2

2

)
(2Y1)(

1
4
− Y 2

1

) (
1
6
− 5

3
Y2

)
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and ∫ (
1
6
− 5

3
Y2

)(
1
4
− Y 2

2

) dY2 =

∫
2Y1(

1
4
− Y 2

1

)dY1,

which gives

1

3
tanh−1(2Y2) +

5

6
log(1 − 4Y 2

2 ) = − log(1 − 4Y 2
1 ) + C

or

log(1 + 2Y1) + log(1 − 2Y1) + log(1 + 2Y2) +
2

3
log(1 − 2Y2) = C.

A Taylor expansion about (Y ∗
1 , Y

∗
2 ) = (0, 1

10
) gives

C ≈ log(1.2) +
2

3
log(0.8) − 4Y 2

1 − 125

36

(
Y2 −

1

10

)2

,

and the Morse Lemma says that isoclines are closed curves (see, for example, [22]). Thus,

orbits are closed curves around the fixed point, which is neutrally stable.

The global behaviour of the system in the large phase space for the case α = 0 is also

sensitive. In the non-smooth system (i.e., in the limit q → 0), the threshold intersection is

never reached. Nevertheless, for any small q > 0, the switching region can be defined to

be of non-zero width, and solutions can enter it in finite time. This corresponds to the

higher order singular perturbation analysis of Ironi and colleagues [14], which shows that

under small perturbations of q from 0, the fixed point in the Z-square becomes stable.

This can also be shown directly, by linearizing the sigmoidal system when q > 0. The

smooth version of the system (3.1) with α = 0 has x1 nullcline Z2 = 3
5
(2 − x1) and x2

nullcline Z1 = 1
2
x2, where Z1 and Z2 are smooth and monotonic functions of q, given

by equation (2.2). The x1 nullcline is decreasing (either considered as a function of x1 or

of x2) and the x2 nullcline is increasing. Given their ranges, it is clear that they have a

unique intersection, (x∗1 , x
∗
2 ) which must approach (θ1, θ2) = (1, 1) as q → 0. Then at an

equilibrium, we must have x3 = (2Z1 − 1)2 + (2Z2 − 1)2 = (x2 − 1)2 + (7
5
− 6

5
x1)

2 which

approaches 1
25

as q → 0. This corresponds to the asymptotic value of x3 in the finite-time

convergence case.

3.3.2 Filippov analysis

Treating the q = 0 system as a differential inclusion, there is a choice of definitions

of Filippov solutions, as discussed in [17], Filippov solutions in the general sense or

Filippov solutions in the narrow sense. The former use the convex hull of the focal points

(or, equivalently, of the vector field), while the latter simply allows each Zi to take all

values in [0, 1]. It was shown in [17] that solutions in the narrow sense exist at least in

codimension-1 or -2 switching regions. It is well known from Filippov that solutions in

the general sense always exist [10].

The traditional Filippov solution uses the convex hull of focal points in the four regions

around (1, 1, x3): F11 = ( 1
3
− α, 2, 2), F01 = ( 1

3
, 0, 2), F00 = (2, 0, 2), F10 = (2, 2, 2). The convex

hull, Φ, of the focal points intersects (x1, x2) = (1, 1) at φ = (1, 1, 2), regardless of the value

of α. So the Filippov solution in the general sense within the threshold intersection is a
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Figure 3. The flat surface is the set Φ, the convex hull of the four focal points as used in finding

Filippov solutions in the general sense. The parabolic surface, Φ1, is the corresponding set for

finding Filippov solutions in the narrow sense. The vertical line is the intersection of thresholds

x1 = θ1 = 1, x2 = θ2 = 1, whose intersection with Φ or Φ1 determines solutions.

trajectory flowing towards (1, 1, 2) for any α ∈ [− 1
3
, 1

3
]. A bilinear interpolation of the four

focal points is in this case the same as the convex hull, so the same solution is obtained.

The Filippov solution in the narrow sense uses Zi = [0, 1], i = 1, 2. The set of potential

focal points is a paraboloid

Φ1 =

{
2 − 5

3
Z2 − αZ1Z2, 2Z1, (2Z1 − 1)2 + (2Z2 − 1)2

}
,

which intersects (x1, x2) = (1, 1) when (Z1, Z2) =
(

1
2
, 6

10+3α

)
at

φ1 =
(
1, 1, (2Z1 − 1)2 + (2Z2 − 1)2

)
=

(
1, 1,

(2 − 3α)2

(10 + 3α)2

)
,

(see Figure 3). This agrees with the singular perturbation fixed point.

Technically, the Filippov method does not allow conclusions to be drawn about beha-

viour after the infinite sequence of transitions of the damped oscillation. However, from

within the threshold intersection, it is only the narrow sense of solutions that corresponds

to the singular perturbation solutions, at least when α �= 0.

The significance of Example 2 is that x3 dropping to near zero may represent an

important event for the system modelled (e.g., cell death). If α ∈ [− 1
3
, 0), then this event

certainly does not happen, and all methods agree. If α ∈ (0, 1
3
], then the Filippov solution

in the general sense and the bilinear interpolation approach say that this event does not

happen, while the Filippov solution in the narrow sense and the singular perturbation

solution say that it does. If α = 0, then the Filippov method in any sense says the

event does not happen, but for nearby smooth systems, it does happen, and it is only the
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extended singular perturbation analysis by Ironi and colleagues [14] or a direct calculation

on the smooth system that shows this.

4 Grazing and the ‘Contact’ effect

In this section, following [13], we model gene networks with two variables per gene, one

for mRNA concentration (xi) and one for protein concentration (yi):

ẋi = Fi(Z) − βixi
ẏi = κixi − γiyi

i = 1, . . . , n , (4.1)

where Z = Z1, . . . , Zn, and each Zi = H(yi, θi, q), a function of yi instead of xi.

The ith production term, Fi, does not contain xi. This means that no variable appears

in its own equation. Every wall (threshold) is ‘transparent’ — trajectories cannot hit a

threshold and stay there. Autoregulation of a gene now shows up as damped oscillations

instead of hitting a wall and sliding. They may, however, spiral into an asymptotically

stable fixed point on a threshold or at an intersection of thresholds. Thus, singular

dynamics (sliding, the Zeno phenomenon) are largely avoided. However, it is now possible

for trajectories to graze thresholds (intersect threshold hyperplanes tangentially).

‘Boxes’ or ‘Domains’ for this system are bounded by thresholds only in the yi variables,

while the xi have no thresholds (other than being bounded above 0). In the limit q → 0,

in a given domain Z is a constant vector, so αi = Fi(Z) is constant.

Thus, in a given domain, the system is

ẋi = αi − βixi
ẏi = κixi − γiyi

i = 1, . . . , n , (4.2)

The focal point for the domain is given by

φ = (x∗, y∗) = (x∗1 , . . . , x
∗
n , y

∗
1 , . . . , y

∗
n ) where (x∗i , y

∗
i ) =

(
αi

βi
,
κiαi

γiβi

)
. (4.3)

Solution trajectories within and between domains can be computed.

Fixed points in regular domains are asymptotically stable, though some trajectories

starting in a domain with a fixed point leave it. Moreover, trajectories are non-monotone

in yi within a domain, so flow can cross walls in both directions. There are solutions that

graze the wall from both sides at the same point, leading to non-uniqueness again in the

limit q → 0 (see Figure 4). These trajectories define upper or lower boundaries, Γ (j)
ui

or

Γ
(j)
li

, of invariant regions within each domain (see [13]).

A grazing point, perturbed from q = 0, occurs in situations that can be expressed

canonically as

ẋ = b + aZ − βx,

ẏ = κx− γy,
(4.4)

where a, b � 0.

The following result comes from [13], though the statement of the proposition there

had a typographical error in the condition on θ, and a more complete proof is provided

here.
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x
i

yi

xi = γi

κi
yiΓ(1)

ui

Γ(1)
li

Γ(0)
ui

Γ(2)
li

Figure 4. Dynamics of the two variables corresponding to a single gene, yi is protein concentration,

xi is mRNA concentration. Two thresholds are depicted for the protein. The straight black dotted

lines are nullclines. The grazing trajectories are denoted Γ (j)
ui

and Γ
(j)
li

in the domain indicated by

j = 0, 1, 2, where the subscripts ui and li describe the fact that these trajectories define upper and

lower boundaries of an invariant region in each domain.

Proposition 1 If b < βγ
κ
θ < a + b, then there is a fixed point for the pair (x, y) in a neigh-

bourhood of ( γ
κ
θ, θ). Moreover, this point converges to ( γ

κ
θ, θ) as q → 0. If q is sufficiently

small, then this fixed point is a saddle point.

Proof of Proposition 1 The x and y nullclines can be written, respectively, as

x = f1(y) =
1

β

(
b + a

y
1
q

y
1
q + θ

1
q

)
and x = f2(y) =

γ

κ
y .

Note that f1(y) is a shifted Hill function starting at x = b
β

when y = 0 and increasing as

y increases, approaching x = b+a
β

as y → ∞. The assumption of the proposition implies

that θ ∈ ( bκ
βγ
, (b+a)κ

βγ
). In this case, as q → 0, the Hill function approaches a step function,

with a jump at y = θ, so that for q sufficiently small, there exist three intersections

of the nullclines. To see this, recall that for the Hill function, limq→0 H(y, θ, q) = 0 for

any fixed y < θ and limq→0 H(y, θ, q) = 1 for any fixed y > θ. Thus, f1(y) < f2(y)

for any fixed y ∈ ( bκ
βγ
, θ) for sufficiently small q, and f1(y) → b

β
as q → 0. Similarly,

f1(y) > f2(y) for any fixed y ∈ (θ, (b+a)κ
βγ

), for sufficiently small q, and f1(y) → b+a
β

as

q → 0. Clearly, f1(0) = b
β
> 0 = f2(0) for all q, and f1(y) <

b+a
β

< f2(y) for y > (b+a)κ
βγ

, so

there are three points where f1(y) = f2(y) for sufficiently small q > 0. At the end-points,

f1(
bκ
βγ

) → b
β

= f2(
bκ
βγ

), and f1(
(b+a)κ
βγ

) = b+a
β

= f2(
(b+a)κ
βγ

) as q → 0, which give the asymptotic

values of the two outer fixed points. These are clearly not in the vicinity of the threshold.

For the middle fixed point, express the x nullcline as a function of y:

y =

(
βx− b

a + b− βx

)q

θ .

Now, as q → 0, for any point x in the open interval ( b
β
, b+a

β
), it is clear that y → θ, so the

transition region of the Hill function provides the third intersection of the nullclines at a

point that approaches ( γ
κ
θ, θ) as q → 0.
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The Jacobian of the system is

J(x, y) =

⎛
⎜⎝−β aθ

1
q y

1
q
−1

q

(
y

1
q +θ

1
q

)2

κ −γ

⎞
⎟⎠ , (4.5)

which at the central fixed point, (x̄, ȳ), has eigenvalues

λ1,2 = −β + γ

2
±

√√√√√ (β + γ)2

4
+

aκθ
1
q ȳ

1
q
−1

q
(
ȳ

1
q + θ

1
q

)2
− βγ, (4.6)

which approach ±∞ as q → 0, since

lim
q→0

aκθ
1
q ȳ

1
q
−1

q
(
ȳ

1
q + θ

1
q

)2
= lim

q→0

aκθ
1
q θ

1
q

(
βx̄−b

a+b−βx̄

)
q

(
θ

1
q

(
βx̄−b

a+b−βx̄

)
+ θ

1
q

)2

ȳ

= lim
q→0

aκ
(

βx̄−b
a+b−βx̄

)
q

((
βx̄−b

a+b−βx̄

)
+ 1

)2

ȳ

,

which → ∞, because x̄ is strictly in the interior of the interval
(

b
β
, b+a

β

)
. �

Thus, the grazing point is a saddle point with the rate of approach to the fixed point

on the stable manifold approaching ∞ as q → 0, and the rate of approach to the fixed

point in reverse time on the unstable manifold similarly approaches ∞ as q → 0. For

any q > 0, the solution takes infinite time to reach the saddle on the stable manifold, or

leave the saddle on the unstable manifold. At q = 0, the solution can sail right through

the ‘fixed point’ as if it were not there: e−λt reaches 0 for finite t in the limit λ → ∞.

In fact, two solutions pass through the same ‘fixed point’, but the non-uniqueness is

more profound than this: the solution trajectory may stop at the ‘fixed point’ or follow

either continuation. In fact, Webber and colleagues have shown that there is a ‘temporal

indeterminacy’ in that the solution may stop at the grazing point for an arbitrary time

interval before continuing [23].

The fact that the solution may sail right through the saddle point in the q → 0 limit,

however, means that the infinite time interval spent in the vicinity of the ‘fixed point’

for a solution on the stable/unstable manifold can disappear from view at q = 0. It is

reminiscent of the interstellar journey taken by Ellie (played by Jodie Foster) in the film

‘Contact’, which motivated the term, ‘Contact effect’. In the film, the capsule in which

Ellie sits is dropped into an energy field created by a spherical machine built according to

instructions from extra-terrestrials. From the outside, the capsule appears to drop straight

through the sphere, but from Ellie’s point of view, at the centre point of the sphere, she

enters a wormhole and goes on a long trip through space before returning to fall the rest

of the way through the sphere. Somehow, all the action at the centre point is squeezed

into zero units of real time, as if an infinite eigenvalue were at work!
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5 Masking of sensitivity in the discontinuous limit

The possibility of complex behaviour in the fast variables in switching domains was

introduced in [17], in which it was shown by example that, within the multilinear struc-

ture of gene network models, fast variables could converge to periodic orbits or strange

attractors, rather than fixed points, necessitating an extension, due to Artstein and col-

laborators [3–5], of the classical singular perturbation theory. The periodic example there

was a three-dimensional system based on the Rössler system, but with parameters in

the periodic, rather than chaotic regime. In that example, all three variables reach their

thresholds in finite time, and remain there, but the fast variables in the codimension-3

switching domain converge to a periodic orbit, called a ‘quasi-Rössler’ attractor. In [18],

this example was extended to a four-dimensional system, in which a fourth variable con-

tinued to evolve slowly, while the other three executed their microscopic periodic orbit

within their triple threshold intersection. The subsequent motion depended sensitively on

the location on the periodic orbit of the first three variables at the moment the fourth hit

its threshold. There were two possible continuations, each converging to a different fixed

point. For small q, the basins of attraction of the two fixed points are densely interwoven,

implying a kind of sensitivity to initial conditions, despite the fact that trajectories starting

close to each other remain close for a long time, during the slow evolution of the fourth

variable, only to diverge after it switches. The sensitivity increases as q decreases. In the

limit q → 0, the interweaving of the two basins of attraction becomes infinitely refined and

the eventual fate of a trajectory cannot be determined. We are left with non-uniqueness.

5.1 Quasi-Rössler controlled by another loop

Here, we demonstrate another phenomenon that can arise from such a structure, in which

the system displays complexity of behaviour as a result of a kind of sensitivity to initial

conditions for small q > 0, which is lost (or masked) in the limit q → 0. We show this by

extending the original quasi-Rössler system by two additional variables, as follows.

Example 3

ẋ1 = 5(Z1 − 1
2
)Z4 + 1

2
− Z2 − 1

4
Z3 + γ1θ1 − γ1x1,

ẋ2 = Z1 − 1
2

+ a(Z2 − 1
2
) + γ2θ2 − γ2x2,

ẋ3 = b + Z3(18Z1 − 10 − c) + γ3θ3 − γ3x3,

ẋ4 = 1
2
− Z5 + 1

4
Z4Z5 + γ4θ4 − γ4x4,

ẋ5 = Z4 − 1
2

+ γ5θ5 − γ5x5,

(5.1)

with the parameter values a = 0.2, b = 0.4, c = 5.7, γ1 = γ2 = γ3 = 10, γ4 = γ5 = 0.1, and

thresholds for the Zi given by θ1 = θ2 = 0.3, θ3 = 1.6, θ4 = θ5 = 5.

Note that x4 and x5 are independent of the other variables, and simply approach a

periodic orbit. Their low decay rates make them evolve more slowly than x1, x2 and x3.

The quasi-Rössler example in the first three variables is recovered when Z4 = 0, i.e., when

x4 < θ4.
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Let yi = xi − θi, i = 1, . . . , 5 so that each threshold, θi, is moved to the origin, and

consider the transformed system

ẏ1 = 5(Z1 − 1
2
)Z4 + 1

2
− Z2 − 1

4
Z3 − γ1y1,

ẏ2 = Z1 − 1
2

+ a(Z2 − 1
2
) − γ2y2,

ẏ3 = b + Z3(18Z1 − 10 − c) − γ3y3,

ẏ4 = 1
2
− Z5 + 1

4
Z4Z5 − γ4y4,

ẏ5 = Z4 − 1
2
− γ5y5,

(5.2)

where Zi = H(yi + θi, θi, q), i = 1, . . . , 5.

First, we describe the behaviour of this system in the limit q → 0. It can be shown

in a straightforward manner by the method of [8] that y4 and y5 in equation (5.2),

considered as an independent system, converge to a periodic orbit around the origin. This

corresponds, of course, to an oscillation about the threshold intersection of x4 and x5 in

equation (5.1). Now, Z4 = 0 while y4 < 0, and during intervals of time when this holds,

y1, y2 and y3 converge to their threshold intersection in finite time, as shown in [17].

When y4 reaches 0, we enter a codimension-4 switching region, and with our choice of

parameter values, a, b and c, the trajectory can exit the (Z1, Z2, Z3, Z4) box in two places,

(0, 0, b/(10 + c), 1) or (1, 1, 1, 1), as can be shown by an analysis of the boundary layer

equations in fast time [18]. The choice of exit points is not determined in the q → 0 limit.

In either case, we exit with Z4 = 1, so y4 goes positive, and y4 and y5 continue around

their cycle.

From the first exit point, (Z1, Z2, Z3, Z4) = (0, 0, b/(10 + c), 1) = (0, 0, 4
157

, 1), we enter

the domain where y1 and y2 are negative, y3 is still 0 and y4 is positive. Now, according

to equations (5.2), y1 approaches − 1
5
− 1

1570
, which is slightly less than −0.2, while

y2 → −0.06. The corresponding values in the original system (5.1) are x1 ≈ 0.1 and

x2 = 0.24. Eventually, y4 switches off again, and y1, y2 and y3 again converge to 0 in

finite time (in this case, y3 remained at 0 throughout the excursion in y1 and y2). Then, y4

evolves slowly towards its next switching and the process repeats.

From the second exit point, (Z1, Z2, Z3, Z4) = (1, 1, 1, 1), we enter the region in which

y1, y2, y3 and y4 are all positive. Now, y1 → 0.175, y2 → 0.06 and y3 → 0.27. This focal

point corresponds to x1 = 0.475, x2 = 0.36, x3 = 1.87 in the original system. Again, when

y4 switches off again, we repeat the process.

Figure 5 shows the x1, x2 projection of a trajectory of (5.1) with parameter val-

ues as listed above and q = 0.003. The initial point was taken as (x1, x2, x3, x4, x5) =

(0.5, 0.4, 0.6, 4.9, 5.5). The threshold intersection is at (0.3, 0.3) in this plot, and the small os-

cillations near this point are clear, corresponding to the Rössler cycling in the codimension-

3 switching domain. Then repeated excursions occur on loop A, towards a point near

(0.1, 0.24) and back, and on loop B, towards the point (0.475, 0.36) and back.

The two excursions in y1 and y2 (and y3 in the second case), emanating from the two

exit points, we denote loop A and loop B. In the q → 0 limit, the trajectories from the two

exit points both emanate from (y1, y2, y3, y4) = (0, 0, 0, 0) exactly and there are only two

possible subsequent trajectories, corresponding to loops A and B. Of course, the choice

of trajectory from the codimension-4 switching domain is not determined, and thus, in

principle, following a circuit of loop A, we could next take either A or B and similarly after
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(a) (b)

Figure 5. Evolution of a trajectory of (5.1) with parameter values as given in the text. (a) The

projection of the phase space onto (x1, x2), showing the two loops (A to the lower left, B to the

upper right, and the small oscillations near the threshold intersection at (0.3, 0.3). (b) Time plot of

x1, from which one can read the sequence of loop traversals. Downward excursions correspond to

loop A; upward excursions correspond to loop B.

B. When q > 0, however, the exact trajectory depends, sensitively, on the previous history.

A slight change in the point where y1, y2 and y3 reach their codimension-3 switching

domain (now of small but finite width), leads to a slight change in where the trajectory

exits from the codimension-4 switching domain, and thus a slight change in the exact

trajectory along loop A or loop B and on the choice of the next cycle. The sensitive

dependence generated by the oscillation in the codimension-3 switching domain leads to

sensitivity in the determination of the next loop, A or B. Whether there are stable periodic

orbits here that involve some sequence of loops A and B, or whether we have chaos is

not clear. For the example trajectory in Figure 5, the itinerary appears to be A5B2(AB)n,

falling eventually into a periodic cycle through AB.

In the q → 0 limit, we certainly do not have chaos in the usual sense, only non-

uniqueness, since there is only a single trajectory following each of loop A and loop B.

Indeed, in that case, if we believe that input to the codimension-3 switching domain at

exactly the same point should lead to exactly the same subsequent trajectory, then the loop

following loop A or B would be fixed. Then there would be only two possible itineraries,

one beginning with A, and one with B. The non-uniqueness, however, implies that either

choice can always be made, so any itinerary is possible, but with no way to determine

which will be chosen. This is very different from the well-defined sensitive dependence of

the system with q > 0.

5.2 Periodic fast motion in a codimension-2 switching region

Although we used a codimension-3 switching region above to contain the periodic orbit

in the three fast variables (the quasi-Rössler attractor), it should be noted that periodic

solutions can occur even in a codimension-2 switching region and even with linear Fi (i.e.,
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they need not even be multilinear). This may appear surprising, since a linear system in

itself cannot have limit cycles, and an unstable focus implies that solutions away from

the focus spiral out to infinity. However, in the Z-square expansion of a codimension-2

switching region, the differential equations for the fast variables are multiplied by the

factors Zi(1 − Zi)/θi (this is a consequence of using Hill functions as sigmoids). Thus,

if the Fi are linear, the boundary layer equations are cubic, and are clearly bounded

by the boundary of the Z-square itself. The combination of an unstable focus and the

boundedness imposed by the fast equations makes limit cycle solutions possible.

An example of the latter type is given by Del Buono and colleagues in equation (3.5)

of [7].

ẋ1 = (−2Z1 − Z2 + 33
10

) − x1,

ẋ2 = (8Z1 + μ
(
Z2 − 1

2

)
− 67

10
) − 1

2
x2,

ẋ3 = (1 − Z1 − Z2 + 2Z1Z2) − 1
3
x3,

(5.3)

where θ1 = θ2 = 1, and μ is a parameter. The regime in which the periodic solution in

the codimension-2 switching domain (Z1, Z2) occurs is 18
25

< μ < 8
5
. The boundary layer

equations are

Z ′
1 = Z1(1 − Z1)(−2Z1 − Z2 + 23

10
),

Z ′
2 = Z2(1 − Z2)(8Z1 + μ

(
Z2 − 1

2

)
− 36

5
.

(5.4)

In the given parameter region, the Poincaré–Bendixson theorem can be used to prove

existence of a periodic solution, since the rectangle Z1 ∈ [0.65, 1], Z2 ∈ [0, 1] is invariant

and contains only an unstable focus in the interior at (0.9, 0.5) (and saddle points at

(1, 0), (1, 1) and (0.65, 1), which can be shown not be in ω-limit sets for any initial point

in the interior of the rectangle. It would be easy to extend this system to display the

same type of sensitive behaviour as the quasi-Rössler system of [18] or that of Example 3

above.

6 Discussion

A fruitful discussion has developed between those who seek to model smooth systems

using discontinuous limits as an analytic tool, and those who seek to study non-smooth

systems via regularization across the discontinuities. In the former case, one has prior

information about the nature of the discontinuity (or one could say the appropriate

regularization) from the form of the underlying smooth system, and if one employs non-

smooth techniques, it is important to know how the resulting solutions compare to those

of ‘nearby’ smooth systems (i.e., small smooth perturbations of the non-smooth system).

On another front, attempts are being made to develop software tools to study the

behaviour of non-smooth models of gene networks, or steep sigmoidal models that use

perturbation from the non-smooth case. This involves not only computing sliding solutions

in switching domains, but dealing with the Zeno effect. Filippov methods have difficulty

with the latter from an analytic point of view. Some progress on the Zeno breaking

problem has been made [8, 14], but we show here by example that in the borderline case

of asymptotic (infinite-time) convergence, care must be taken to ensure that the behaviour

of an underlying smooth system is properly captured. Filippov methods do not give the

solution that matches that of nearby smooth systems, which a careful (higher order)
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singular perturbation analysis can, or direct analysis of the smooth system if it is simple

enough to handle (like the one used here).

In a very simple example, we demonstrate the Contact effect, a kind of non-uniqueness

in the discontinuous limit in which multiple solutions can sail through a fixed point, or

stop there for an arbitrary length of time. Such a point arises (in our example) as the

limit of a saddle point in nearby smooth systems. The surprise is that no matter how

small the perturbation from the non-smooth limit (our q parameter), it takes an infinite

amount of time to reach the saddle point along its stable manifold, whereas in the limit

it takes a finite time. This parallels the case of the Zeno effect, in which infinite-time

convergence to a stable focus (in the variables that are spiralling) in the smooth systems

leads to finite-time convergence in the non-smooth limit.

The possibility of exotic behaviour (periodic or strange attractors) in codimension-3

switching regions of piecewise-linear gene network models has necessitated use of more

sophisticated singular perturbation tools that integrate over the attractor in the fast

variables in order to track the slow ones. It has also raised the possibility of a kind of

sensitive dependence on initial conditions in steep sigmoidal systems that becomes more

sensitive as one approaches the non-smooth limit, but in the non-smooth limit the details

of this sensitive behaviour are lost, and only non-uniqueness remains. It has also become

clear from an example in [7] that such exotic behaviour (limit cycles in fast variables) can

occur even in codimension-2 switching regions and even when the fast system is linear

(not even multilinear).

This set of examples is presented here in order to provide test cases for analytic and

computational methods, and to encourage rigorous analysis of such systems.
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