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Abstract. We have calculated a large set of detailed binary models and used them to test the
observed stellar population ratios that compare the relative populations of blue supergiants,
red supergiants and Wolf-Rayet stars at different metallicities. We have also used our models
to estimate the relative rate of type Ib/c to type II supernovae. We find, with an interacting
binary fraction of about two thirds, that we obtain better agreement between our models and
observations than with single stars. We discuss the use of models in determining the nature of
supernova progenitors and show the surprising result that many type Ib/c supernova progenitors
are less luminous and less massive in our models than the observed population of Wolf-Rayet
stars.
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1. Introduction

When we try to match the observed properties of massive stars with single star models
we have always found a poor fit. For example, the ratio of the number of blue super-
giants to red supergiants and its variation with metallicity cannot be reproduced (Langer
& Maeder 1995; Massey & Olsen 2003). The sources of this disparity could be due to
our limited models of convection or the lack of rotation in our stellar models (Maeder
& Meynet 2001). Another possibility is that a large number of these stars have binary
companions. It is well known that this can change stellar populations substantially (Van-
beveren, Van Rensbergen & De Loore 1998).

We have produced a large set of binary stellar models to predict their effect on the
relative populations of blue supergiants (BSGs), red supergiants (RSGs) and Wolf-Rayet
(WR) stars. The advantage of our study (Eldridge, Izzard & Tout 2008) is that we model
the binary interactions in a detailed stellar evolution code rather than approximating the
evolution as in rapid population synthesis that use tables or equations fitted to detailed
models (Hurley, Tout & Pols 2002). These detailed models ensure that more uncertain
phases of evolution, such as when the hydrogen envelope is close to being removed, are
treated as accurately as possible. This is vital when we attempt to determine a stellar
type for a model and its respective lifetime.

In this proceedings we first summarize our results as described in Eldridge, Izzard &
Tout (2008), where we compare the relative stellar populations predicted by our code
with observed populations. We then discuss how our results indicate that a large number
of type Ib/c supernovae, those devoid of hydrogen, may not have WR stars as their
progenitors.
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2. Stellar population ratios

In Figures 1, 2 and 3 we compare observations of three stellar population ratios at
various metallicities to ratios predicted from our models. The observed ratios are calcu-
lated by observing galaxies and counting the number of each type of star and dividing
the number in one population by another (Massey & Olsen 2003). The model predictions
are calculated by first determining how long each model spends as either a BSG, RSG
or WR star. We use the definitions of BSGs and RSGs from Massey & Olsen (2003) and
the definitions for WR stars from Maeder & Meynet (1994). In addition we also require
that a WR, star must have log;,(L/Lg) = 4.9 to be consistent with the luminosity limit
for BSGs and RSGs.

With the BSG, RSG and WR lifetimes we then use an initial mass function and
assume a constant star formation rate to calculate the relative populations. For the
binary population we take flat distributions in the ratio of the secondary to the primary
mass and the logarithm of the initial separation. We find that about two thirds of our
binaries interact while the remaining third evolve as single stars.

Figure 1 shows the relative number of BSGs, which are main sequence stars, to RSGs,
post-main sequence stars that still have their hydrogen envelopes. Even though there are
only two points on the figure, it demonstrates that binary models better match these
observations. This is for two reasons. First more RSGs lose their hydrogen envelopes
than for single stars by interaction with their companion and thus the number of RSGs
decreases. Secondly, more massive stars are formed from low-mass companions accreting
matter or by stellar mergers. Therefore the BSG population is increased.

The RSGs that lose their hydrogen envelopes become helium stars or WR stars. Fig-
ure 2 shows how the number of O stars (the hottest BSGs) against the number of WR
stars, varies with metallicity. We see that the increased WR, population does improve
agreement with observations. Also the binary line agrees with predictions of the Geneva
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Figure 1. Ratio of the numbers of blue supergiants to red supergiants versus metallicity. Ob-
servations are taken from Massey & Olsen (2003). The solid line is from our single star models
while the dashed line is from our binary models.
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rotating models Meynet & Maeder (2005) so rotation and binaries appear to have the
same effect on this stellar population ratio.

Binaries do not improve agreement for all the ratios. In Figure 3 we show the relative
number of RSGs to WR stars. We see that neither the single nor binary star model
predictions match the observed trend. This it at odds with the match in the previous
two figures which show good agreement. Including missing details from our models (such
as rotation) may improve agreement. However it is more likely that because the ratio is
based on a small number of observed RSGs, especially when metallicity is greater than
Z = 0.008 our assumptions in calculating the predicted ratios are not appropriate. For
example with only a few stars we cannot be certain we are sampling the IMF fully nor
looking at a sample with constant star formation.

In summary binary models improve agreement between predicted and observed stellar
population ratios. The agreement is not always perfect and extra details still need to be
added to our models.

3. Relative supernova rates

The final outcomes of massive stellar evolution, supernovae (SNe), can also be used
to provide a constraint on stellar models because the SN type depends on the final
stellar type. These events come in three broad types. Type Ia SNe are thought to be
thermonuclear explosions of carbon-oxygen white dwarfs and are not of relevance here.
The remaining two types are core-collapse SNe where either an oxygen-neon or iron core
is formed which collapses when electron degeneracy pressure or nuclear burning can no
longer provide support against gravitational collapse. This collapse releases a tremendous
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Figure 2. Ratio of the numbers of Wolf-Rayet stars to O-supergiants versus metallicity. Ob-
servations are taken from Maeder & Meynet (1994). The solid line is our single star models
while the dashed line is our binary models. The dashed-dotted line is from the Geneva models
(Meynet & Maeder 2005). The y-axis error bars are an assumed error of 50 percent of the values
given by Maeder & Meynet (1994).
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amount of energy that is transferred into the envelope causing the subsequent SN (Heger
et al. 2003; Eldridge & Tout 2004).

While there are many subtypes of SN the broadest definitions are type II, when hy-
drogen is detected in the SN spectrum and type Ib/c where hydrogen is undetected. The
relative rate of type Ib/c to type II SNe indicates the number of stars that experienced
mass loss strong enough to remove their hydrogen envelope before core-collapse. Prantzos
& Boissier (2003) first showed that this ratio decreases with metallicity. However, they
only estimated the SN metallicities from the host galaxy magnitude. Recently Prieto,
Stanek & Beacom (2008) presented a more detailed analysis, estimating the metallicity
by spectroscopy. We compare both observed trends in Figure 4. They agree within the
errors but Prieto, Stanek & Beacom (2008) tend to have slightly lower ratios around
solar metallicity and predict a much shallower evolution with metallicity. The lowest
metallicity bin is uncertain and is based on one type Ib/c SN.

Comparing to the model predictions we see that the binary models and Geneva rotating
models provide the best agreement. A large fraction of the type Ib/c progenitors are not
WR stars but are helium stars with M < 5Mg. In the stellar population ratios above for
a star to be a WR star we required that log(L/Lg) > 4.9 which is similar to the least
luminous WR star that has been observed. However from our binary models there are
many stars that lose their hydrogen envelopes and explode as type Ib/c SN but are not
WR stars, this has been discussed by others (Vanbeveren, Van Rensbergen & De Loore
1998; Pols & Dewi 2002). The question then becomes where are these helium stars or
low-mass WR stars. They remain unobserved. They would be similar to stars such as
those described by Wood & Lockley (2000) and Oliveira, Steiner & Cieslinski (2003).
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Figure 3. Ratio of the number of red supergiants to Wolf-Rayet stars versus metallicity. The
observations are taken from Massey (2003). The solid line is from our single star models while
the dashed line is from our binary models.

https://doi.org/10.1017/51743921308020474 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921308020474

Binaries, Stellar Populations and Supernova Progenitors 183

4. Progenitors of type Ib/c supernovae

To support the above conclusion that many type Ib/c SN progenitors must be low-
mass helium stars we have compared our binary models to the detection limits placed
on the progenitors by studies such as that of Crockett et al. (2007). If we compare the
deepest B-band magnitude limit for a type Ib/c SN to date, that of SN 2002ap, to
model B-band magnitudes calculated by combining our models and the WR atmosphere
models of Hamann, Gréfener & Liermann (2006), then we find that helium/WR, stars
more massive than 3Mg would have been observed while only the less massive stars
would remain undetected. This confirms the conclusion of Crockett et al. (2007) that if
the progenitor was a normal massive WR star it would have been observed in the pre-
explosion images. The number of such non-detections is growing and therefore a large
number of type Ib/c SN may not have WR progenitors as previously thought.

5. For the future

The next step with this large set of binary models is to find further problems to apply
it to. One extension is to model an instantaneous burst of star formation rather than
continuous star formation.

Where are these helium stars or low-mass WR stars? We infer they exist but answering
this question requires an observational solution. The reason why they have remained un-
observed to date is that they may be in binaries and may be hidden by their companions,
or they could be copious producers of dust and therefore obscured. Regions where they
may exist must be identified and observed more extensively.
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Figure 4. The observed and predicted ratios of the type Ib/c supernova rate to the type II
supernova rate. Observations are taken from Prantzos & Boissier (2003) (circles) and Prieto,
Stanek & Beacom (2008) (squares). The Geneva model predictions are taken from Meynet &
Maeder (2005). The line is for their rotating models.
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Discussion

MAEDER: It would be interesting to combine the results of single and binary evolution
with ratios between them based on the binary rates given yesterday by Tony Moffat.
Now, as a side remark, I am surprised by the smallness of the blue loops of your tracks
in the HR diagram.

ELDRIDGE: The ratio of the single and binary populations is fixed by the assumed initial
binary parameter distribution. The number of interacting binaries we find is similar to
the numbers given by Tony Moffat yesterday. We could consider this an independent
check of to determine single/binary ratio. To answer the blue loops remark I should say
myself and Richard Stancliffe are very interested in them and are looking into them. We
are looking into them observationally and theoretically.

GAYLEY: The nomenclature of “single star” and “binary” is confusing because theorists
tend to mean objects whose evolution is altered, and observers tend to mean objects
that offer unique observational diagnostics. So I'd like to enter a plea that we routinely
distinguish three types, rather than two: evolutionary binaries, observational binaries
and stars of unknown or unobservable binarity. Note these overlap: interacting binaries
are the overlap of the first two, runaways are the overlap of the first and the third.

ELDRIDGE: I think this is a great idea. One thing I intend to do is to calculate such
details as how many binaries we would expect to observe, how many stars we might not
observe as binaries and also details such as runaways. But the situation is confusing and
you are right that we must be clear about how we apply the adjective “binary” to stars.
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