Small Prime Solutions to Cubic Diophantine Equations II

Zhixin Liu

Abstract. Let a_{1}, \ldots, a_{9} be non-zero integers and n any integer. Suppose that $a_{1}+\cdots+a_{9} \equiv n$ $(\bmod 2)$ and $\left(a_{i}, a_{j}\right)=1$ for $1 \leq i<j \leq 9$. In this paper we prove that
(i) if a_{j} are not all of the same sign, then the cubic equation $a_{1} p_{1}^{3}+\cdots+a_{9} p_{9}^{3}=n$ has prime solutions satisfying $p_{j} \ll|n|^{1 / 3}+\max \left\{\left|a_{j}\right|\right\}^{8+\varepsilon}$;
(ii) if all a_{j} are positive and $n \gg \max \left\{\left|a_{j}\right|\right\}^{25+\varepsilon}$, then $a_{1} p_{1}^{3}+\cdots+a_{9} p_{9}^{3}=n$ is soluble in primes p_{j}. These results improve our previous results with the bounds $\max \left\{\left|a_{j}\right|\right\}^{14+\varepsilon}$ and $\max \left\{\left|a_{j}\right|\right\}^{43+\varepsilon}$ in place of $\max \left\{\left|a_{j}\right|\right\}^{8+\varepsilon}$ and $\max \left\{\left|a_{j}\right|\right\}^{25+\varepsilon}$ above, respectively.

1 Introduction

Let n be an integer, and let a_{1}, \ldots, a_{9} be non-zero integers. We consider cubic equations in the form

$$
\begin{equation*}
a_{1} p_{1}^{3}+\cdots+a_{9} p_{9}^{3}=n \tag{1.1}
\end{equation*}
$$

where p_{j} are prime variables. A necessary condition for the solubility of (1.1) is

$$
\begin{equation*}
a_{1}+\cdots+a_{9} \equiv n(\bmod 2) \tag{1.2}
\end{equation*}
$$

We also suppose

$$
\begin{equation*}
\left(a_{i}, a_{j}\right)=1, \quad 1 \leq i<j \leq 9 \tag{1.3}
\end{equation*}
$$

and write $A=\max \left\{2,\left|a_{1}\right|, \ldots,\left|a_{9}\right|\right\}$. The main results in this paper are the following two theorems.

Theorem 1.1 Suppose (1.2) and (1.3). If a_{1}, \ldots, a_{9} are not all of the same sign, then (1.1) has solutions in primes p_{j} satisfying $p_{j} \ll|n|^{1 / 3}+A^{8+\varepsilon}$, where the implied constant depends only on ε.

Theorem 1.2 Suppose (1.2) and (1.3). If a_{1}, \ldots, a_{9} are all positive, then (1.1) is soluble whenever $n \gg A^{25+\varepsilon}$, where the implied constant depends only on ε.

Theorem 1.2 with $a_{1}=\cdots=a_{9}=1$ is a classical result of Hua [3] in 1938. Theorems 1.1 and 1.2 improve our previous results in [4] with the bounds $A^{14+\varepsilon}$ and $A^{43}+\varepsilon$ in the place of $A^{8+\varepsilon}$ and $A^{25+\varepsilon}$, respectively. Our investigation on (1.1) is also motivated

[^0]by the linear and quadratic relative problems. (See [1] and [2] and their references for the linear and quadratic relative problems, respectively).

Most of the arguments are similar to those in [4] and we therefore only sketch the proof in this note. We refer the reader to [4] for all the details and only emphasize the main difference between the arguments.

2 Outline of the Method

As in [4], we denote by $r(n)$ the weighted number of solutions of (1.1), i.e.,

$$
r(n)=\sum_{\substack{n=a_{1} p_{1}^{3}+\cdots+a_{9} p_{9}^{3} \\ M<\left|a_{j}\right| p_{j}^{3} \leq N}}\left(\log p_{1}\right) \cdots\left(\log p_{9}\right),
$$

where $M=N / 200$. We will investigate $r(n)$ by the circle method. To this end, we set $N_{j}=\left(N / a_{j}\right)^{1 / 3}$, and

$$
\begin{equation*}
P=(N / A)^{3 / 13-\varepsilon}, \quad Q=N^{1-2 \varepsilon} P^{-1}, \quad \text { and } \quad L=\log N \tag{2.1}
\end{equation*}
$$

By Dirichlet's lemma on rational approximation, each $\alpha \in[1 / Q, 1+1 / Q]$ may be written in the form

$$
\begin{equation*}
\alpha=a / q+\lambda, \quad|\lambda| \leq 1 /(q Q) \tag{2.2}
\end{equation*}
$$

for some integers a, q with $1 \leq a \leq q \leq Q$, and $(a, q)=1$. We denote by $\mathfrak{M}(a, q)$ the set of α satisfying (2.2), and define the major arcs \mathfrak{M} and the minor arcs \mathfrak{m} as follows:

$$
\begin{equation*}
\mathfrak{M}=\mathfrak{M}(P)=\bigcup_{q \leq P} \bigcup_{\substack{a=1 \\(a, q)=1}}^{q} \mathfrak{M}(a, q), \quad \mathfrak{m}=\left[\frac{1}{Q}, 1+\frac{1}{Q}\right] \backslash \mathfrak{M} . \tag{2.3}
\end{equation*}
$$

It follows from $2 P \leq Q$ that the major arcs $\mathfrak{M}(a, q)$ are mutually disjoint. Let

$$
S_{j}(\alpha)=\sum_{M<\left|a_{j}\right| p^{3} \leq N}(\log p) e\left(a_{j} p^{3} \alpha\right)
$$

Then we have $r(n)=\int_{0}^{1} S_{1}(\alpha) \cdots S_{9}(\alpha) e(-n \alpha) d \alpha=\int_{\mathfrak{M}}+\int_{\mathfrak{m}}$.
The integral on the major arcs \mathfrak{M} causes the main difficulty, which is solved by Theorem 2.1 and Lemmas 2.3-2.4 in [4]. We state these here.

Theorem 2.1 Assume (1.3). Let \mathfrak{M} be as in (2.3) with P, Q determined by (2.1). Then we have

$$
\int_{\mathfrak{M}} S_{1}(\alpha) \cdots S_{9}(\alpha) e(-n \alpha) d \alpha=\frac{1}{3^{9}} \mathfrak{S}(n, P) \mathfrak{J}(n)+O\left(\frac{N^{2}}{\left|a_{1} \cdots a_{9}\right|^{1 / 3} L}\right)
$$

where $\mathfrak{S}(n, P)$ and $\mathfrak{J}(n)$ are defined in (2.4) and (2.5), respectively.
To derive Theorem 2.1, we need to bound $\mathfrak{S}(n, P)$ and $\mathfrak{J}(n)$ from below. For χ $\bmod q$, we define

$$
C(\chi, a)=\sum_{h=1}^{q} \bar{\chi}(h) e\left(\frac{a h^{3}}{q}\right), \quad C(q, a)=C\left(\chi^{0}, a\right) .
$$

If $\chi_{1}, \ldots, \chi_{9}$ are characters $\bmod q$, then we write

$$
\begin{gathered}
B\left(n, q, \chi_{1}, \ldots, \chi_{9}\right)=\sum_{\substack{h=1 \\
(h, q)=1}}^{q} e\left(-\frac{h n}{q}\right) C\left(\chi_{1}, a_{1} h\right) \cdots C\left(\chi_{9}, a_{9} h\right), \\
B(n, q)=B\left(n, q, \chi^{0}, \ldots, \chi^{0}\right), \quad A(n, q)=\frac{B(n, q)}{\varphi^{9}(q)},
\end{gathered}
$$

and

$$
\begin{equation*}
\mathfrak{S}(n, P)=\sum_{q \leq P} A(n, q) \tag{2.4}
\end{equation*}
$$

Lemma 2.2 Assuming (1.2), we have $\mathfrak{S}(n, P) \gg(\log \log A)^{-c}$ for some constant $c>0$.

Lemma 2.3 Suppose (1.3) and
(i) a_{1}, \ldots, a_{9} are not all of the same sign and $N \geq 27|n|$; or
(ii) a_{1}, \cdots, a_{9} are positive and $n=N$.

Then we have

$$
\begin{equation*}
\mathfrak{J}(n):=\sum_{\substack{a_{1} m_{1}+\cdots+a_{9} m_{9}=n \\ M<\left|a_{j}\right| m_{j} \leq N}}\left(m_{1} \cdots m_{9}\right)^{-2 / 3} \asymp \frac{N^{2}}{\left|a_{1} \cdots a_{9}\right|^{1 / 3}} . \tag{2.5}
\end{equation*}
$$

Now we turn to the estimation of $\int_{\mathfrak{m}}$. In section 4 , we will prove

$$
\int_{\mathfrak{m}}\left|S_{1}(\alpha) \cdots S_{9}(\alpha)\right| d \alpha \ll \frac{N^{47 / 24+\varepsilon}}{\left|a_{1} \cdots a_{9}\right|^{47 / 216}} .
$$

Thus,

$$
r(n)=\frac{1}{3^{9}} \mathfrak{S}(n, P) \mathfrak{J}(n)+O\left(\frac{N^{2}}{\left|a_{1} \cdots a_{9}\right|^{1 / 3} L}\right)+O\left(\frac{N^{47 / 24+\varepsilon}}{\left|a_{1} \cdots a_{9}\right|^{47 / 216}}\right)
$$

Then we conclude that $r(n) \gg\left|a_{1} \cdots a_{9}\right|^{-1 / 3} N^{2}(\log \log N)^{-c}$, provided that

$$
\frac{N^{47 / 24+\varepsilon}}{\left|a_{1} \cdots a_{9}\right|^{\mid 7 / 216}} \ll \frac{N^{2}}{\left|a_{1} \cdots a_{9}\right|^{1 / 3} L}
$$

or equivalently $N \gg A^{25+\varepsilon}$. Theorems 1.1 and 1.2 follow from this and the argument leading in [4]. Details are therefore omitted.

3 Some Lemmas

We derive estimates for the generating functions appearing in the proof from estimates for the exponential sum

$$
\begin{equation*}
S(\alpha)=\sum_{X<p \leq 2 X}(\log p) e\left(\alpha p^{3}\right) \tag{3.1}
\end{equation*}
$$

which are given in terms of the rational approximation

$$
\alpha=\frac{a}{q}+\lambda, \quad \text { with } 1 \leq a \leq q, \quad(a, q)=1 .
$$

We start by quoting the result of Zhao [6].
Lemma 3.1 Suppose that $\alpha \in \mathbb{R}$ and that exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfying

$$
1 \leq q \leq Q, \quad(a, q)=1, \quad|q \alpha-a|<Q^{-1}
$$

with $X^{1 / 2} \leq Q \leq X^{5 / 2}$. Then for any fixed $\varepsilon>0$,

$$
S(\alpha) \ll X^{11 / 12+\varepsilon}+\frac{X^{1+\varepsilon}}{q^{1 / 6} \sqrt{\left(1+X^{3}|\alpha-a / q|\right)}}
$$

where the implied constant depends at most on k and ε.
The next lemma generalizes Lemma 3.1 to $S(b \alpha)$, with b a non-zero integer.
Lemma 3.2 Let b be a non-zero integer and let $S(\alpha)$ be defined by (3.1). Suppose that there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfying

$$
\begin{equation*}
1 \leq q \leq|b| X^{3} P^{-1}, \quad(a, q)=1, \quad|q \alpha-a|<P /\left(|b| X^{3}\right) \tag{3.2}
\end{equation*}
$$

with P subject to

$$
\begin{equation*}
2|b| X^{1 / 6}<P \leq X \tag{3.3}
\end{equation*}
$$

Then for any fixed $\varepsilon>0$, we have

$$
\begin{equation*}
S(b \alpha) \ll X^{11 / 12+\varepsilon}+X^{1+\varepsilon} q_{1}^{-1 / 6} \Phi(\alpha)^{-1 / 2} \tag{3.4}
\end{equation*}
$$

where $\Phi(\alpha)=1+|b| X^{3}|\alpha-a / q|$ and $q_{1}=q /(b, q)$.
Proof By Dirichlet's theorem, there exist integers a_{1} and q_{1} such that

$$
1 \leq q_{1} \leq Q, \quad\left(a_{1}, q_{1}\right)=1, \quad\left|q_{1} b \alpha-a_{1}\right|<Q^{-1}
$$

with some Q satisfying $X^{1 / 2} \leq Q \leq X^{5 / 2}$. Hence, by Lemma 3.1 with $\alpha=b \alpha, q=q_{1}$, and $a=a_{1}$,

$$
\begin{equation*}
S(b \alpha) \ll X^{11 / 12+\varepsilon}+\frac{X^{1+\varepsilon}}{q_{1}^{1 / 6} \sqrt{1+X^{3}\left|q_{1} b \alpha-a_{1}\right|}} \tag{3.5}
\end{equation*}
$$

If $q_{1}>X^{1 / 2}$ or $\left|q_{1} b \alpha-a_{1}\right|>X^{-17 / 6}$, the first term on the right-hand side of (3.5) dominates the second and (3.4) follows. Otherwise, recalling (3.2) and (3.3), we get

$$
\begin{aligned}
\left|q_{1} b a-q a_{1}\right| & \leq q_{1}|b||q \alpha-a|+q\left|q_{1} b \alpha-a_{1}\right| \\
& \leq P X^{-3 / 2}+|b| X^{1 / 6} P^{-1}<1
\end{aligned}
$$

Thus $\frac{a_{1}}{q_{1}}=\frac{a b}{q}$ and $q_{1}=\frac{q}{(q, b)}$, and (3.5) turns into (3.4).
The following lemma is Lemma 3.3 in [4] which generalizes Theorem 1.1 in [5].

Lemma 3.3 Let b be a non-zero integer and let $S(\alpha)$ be defined by (3.1). Suppose that there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfying

$$
1 \leq q \leq P, \quad(a, q)=1, \quad|q \alpha-a|<P /\left(|b| X^{3}\right),
$$

with $P<X / 2$. Then for any fixed $\varepsilon>0$, we have

$$
S(b \alpha) \ll\left(X^{1 / 2} \Phi(\alpha)^{1 / 2}+X^{4 / 5}+X \Phi(\alpha)^{-1 / 2}\right) q^{\varepsilon} \log ^{c} X
$$

where $\Phi(\alpha)=q_{1}\left(1+|b| X^{3}|\alpha-a / q|\right)$ and $q_{1}=q /(b, q)$.

4 The Estimation of $\int_{\mathfrak{m}}$

Let N be a parameter with $N \geq A^{25+\varepsilon}$ that also satisfies hypothesis (i) or (ii) of Lemma 2.3 according as a_{1}, \ldots, a_{9} are all positive or not. Now we turn to the estimation of $\int_{\mathfrak{m}}$.

By Dirichlet's approximation theorem, when $\alpha \in \mathfrak{m}$, there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfying (3.2) with $b=a_{9}$ and $X=N_{9}$ such that $q+N_{9}|q \alpha-a| \geq P$.

We decompose the minor arcs into three parts, $\mathfrak{m}=\mathfrak{m}_{1} \cup \mathfrak{m}_{2} \cup \mathfrak{m}_{3}$, where

$$
\begin{aligned}
\mathfrak{m}_{1} & =\mathfrak{m} \cup\left\{q \leq N_{9}^{1 / 2}\left|a_{9}\right| \text { and }|\alpha-a / q| \leq 1 /\left(q N_{9}^{5 / 2}\right)\right\}, \\
\mathfrak{m}_{2} & =\mathfrak{m} \cup\left\{q \geq N_{9}^{1 / 2}\left|a_{9}\right|\right\}, \\
\mathfrak{m}_{3} & =\mathfrak{m} \cup\left\{q \leq N_{9}^{1 / 2}\left|a_{9}\right| \text { and }|\alpha-a / q| \geq 1 /\left(q N_{9}^{5 / 2}\right)\right\} .
\end{aligned}
$$

When $\alpha \in \mathfrak{m}_{1}$, using Lemma 3.3, we have

$$
\begin{aligned}
S_{9}(\alpha) & \ll\left(N_{9}^{1 / 2} \sqrt{q_{1}\left(1+\left|a_{9}\right| N_{9}^{3}|\alpha-a / q|\right)}+N_{9}^{4 / 5}\right. \\
& \left.+\frac{N_{9}}{\sqrt{q_{1}\left(1+\left|a_{9}\right| N_{9}^{3}|\alpha-a / q|\right)}}\right) q^{\varepsilon} \log ^{c} X \\
& \ll N_{9}^{1 / 2} q_{1}^{1 / 2}+N_{9}^{1 / 2}+N_{9}^{4 / 5}+\frac{N_{9}\left(q,\left|a_{9}\right|\right)^{1 / 2}}{\sqrt{q(1+N|\alpha-a / q|)}} \\
& \ll N_{9}^{3 / 4}\left|a_{9}\right|^{1 / 2}+\frac{N_{9}\left(q,\left|a_{9}\right|\right)^{1 / 2}}{\sqrt{P}} \\
& \ll N_{9}^{11 / 12+\varepsilon} .
\end{aligned}
$$

We apply Lemma 3.2 for $\alpha \in \mathfrak{m}_{2}$ and $\alpha \in \mathfrak{m}_{3}$,

$$
\begin{aligned}
S_{9}(\alpha) & \ll N_{9}^{11 / 12+\varepsilon}+\frac{N_{9}^{1+\varepsilon}}{q_{1}^{1 / 6} \sqrt{1+\left|a_{9}\right| N_{9}^{3}|\alpha-a / q|}} \\
& \ll N_{9}^{11 / 12+\varepsilon}+\frac{N_{9}^{1+\varepsilon}}{q_{1}^{1 / 6}} \\
& \ll N_{9}^{11 / 12+\varepsilon}+\frac{N_{9}^{1+\varepsilon}\left|a_{9}\right|^{1 / 6}}{q^{1 / 6}} \\
& \ll N_{9}^{11 / 12+\varepsilon},
\end{aligned}
$$

and

$$
\begin{aligned}
S_{9}(\alpha) & \ll N_{9}^{11 / 12+\varepsilon}+\frac{N_{9}^{1+\varepsilon}}{q_{1}^{1 / 6} \sqrt{1+\left|a_{9}\right| N_{9}^{3}|\alpha-a / q|}} \\
& \ll N_{9}^{11 / 12+\varepsilon}+\frac{N_{9}^{1+\varepsilon} q^{1 / 2} N_{9}^{5 / 4}}{q_{1}^{1 / 6}\left|a_{9}\right|^{1 / 2} N_{9}^{3 / 2}} \\
& \ll N_{9}^{11 / 12+\varepsilon}+\frac{N_{9}^{3 / 4+\varepsilon}\left(q,\left|a_{9}\right|\right)^{1 / 6} q^{1 / 2}}{q^{1 / 6}\left|a_{9}\right|^{1 / 2}} \\
& \ll N_{9}^{11 / 12+\varepsilon}+\frac{N_{9}^{3 / 4+\varepsilon}\left(q,\left|a_{9}\right|\right)^{1 / 6} q^{1 / 2}}{q^{1 / 6}\left|a_{9}\right|^{1 / 2}} \\
& \ll N_{9}^{11 / 12+\varepsilon}+\frac{N_{9}^{3 / 4+\varepsilon}\left|a_{9}\right|^{1 / 6} q^{1 / 2}}{q^{1 / 6}\left|a_{9}\right|^{1 / 2}} \\
& \ll N_{9}^{11 / 12+\varepsilon} .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\max _{\alpha \in \mathfrak{m}}\left|S_{9}(\alpha)\right| \ll N_{9}^{11 / 12+\varepsilon} \tag{4.1}
\end{equation*}
$$

We introduce the following notation: $T(t)=\int_{\mathfrak{m}}\left|S_{9}(\alpha)\right|^{t} d \alpha$ for $t \geq 1$. On considering the underlying equation and applying Hua's lemma (see [3])

$$
T(8) \ll \int_{0}^{1}\left|S_{9}(\alpha)\right|^{8} d \alpha \ll L^{8} \sum_{\substack{m_{1}^{3}+\ldots+m_{4}^{3}=m_{5}^{3}+\ldots+m_{8}^{3} \\ m_{v} \leq N_{9}, v=1, \ldots, 8}} 1 \ll N_{9}^{5+\varepsilon} .
$$

Then by Schwartz's inequality,

$$
\begin{equation*}
T(9) \ll N_{9}^{5 / 2+\varepsilon} T(10)^{1 / 2} \tag{4.2}
\end{equation*}
$$

By applying Lemmas 2.2 and 3.1 in [6], we obtain

$$
\begin{equation*}
T(10) \ll N_{9}^{3 / 4+\varepsilon} T(16)^{1 / 4} T(9)^{1 / 2}+N_{9}^{7 / 8+\varepsilon} T(9) \tag{4.3}
\end{equation*}
$$

We deduce from (4.1) that

$$
\begin{equation*}
T(16) \ll\left(N_{9}^{11 / 12+\varepsilon}\right)^{6} T(10) \tag{4.4}
\end{equation*}
$$

Inserting (4.2) and (4.4) into (4.3), we have $T(10) \ll N_{9}^{27 / 8+\varepsilon} T(10)^{1 / 2}$, which implies

$$
T(10) \ll N_{9}^{27 / 4+\varepsilon}
$$

This together with (4.2), we have $T(9) \ll N_{9}^{47 / 8+\varepsilon}$. Therefore,

$$
\int_{\mathfrak{m}}\left|S_{9}(\alpha)\right|^{9} d \alpha \ll N_{9}^{47 / 8+\varepsilon}
$$

Similarly, we have $\int_{\mathfrak{m}}\left|S_{i}(\alpha)\right|^{9} d \alpha \ll N_{i}^{47 / 8+\varepsilon}, 1 \leq i \leq 8$.

Therefore,

$$
\begin{aligned}
\int_{\mathfrak{m}}\left|S_{1}(\alpha) \cdots S_{9}(\alpha)\right| d \alpha & \ll\left(\int_{\mathfrak{m}}\left|S_{1}(\alpha)\right|^{9} d \alpha\right)^{1 / 9} \cdots\left(\int_{\mathfrak{m}}\left|S_{9}(\alpha)\right|^{9} d \alpha\right)^{1 / 9} \\
& \ll\left(N_{1} \cdots N_{9}\right)^{47 / 72+\varepsilon} \\
& \ll \frac{N^{47 / 24+\varepsilon}}{\left|a_{1} \cdots a_{9}\right|^{47 / 216}} .
\end{aligned}
$$

References

[1] K. K. Choi and A. V. Kumchev, Mean values of Dirichlet polynomials and applications to linear equations with prime variables. Acta Arith. 123(2006), no. 2, 125-142. http://dx.doi.org/10.4064/aa123-2-2
[2] G. Harman and A. V. Kumchev, On sums of squares of primes. Math. Proc. Cambridge Philos. Soc. 140(2006), no. 1, 1-13. http://dx.doi.org/10.1017/S0305004105008819
[3] L. K. Hua, Some results in the additive prime number theory, Quart. J. Math. (Oxford), 9 (1938), 68-80.
[4] Z. X. Liu, Small prime solutions to cubic Diophantine equations. Canad. Math. Bull. 56(2013), no. 4, 785-794.
[5] X. M. Ren, On exponential sums over primes and application in Waring-Goldbach problem. Sci. China Ser. A 48(2005), no. 6, 785-797. http://dx.doi.org/10.1360/03ys0341
[6] L. L. Zhao, On the Waring-Goldbach problem for fourth and sixth powers. Proc. London Math. Soc. 108(2014), no. 5, 1593-1622. http://dx.doi.org/10.1112/plms/pdt072

Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, P. R. China e-mail: zhixinliu@tju.edu.cn

[^0]: Received by the editors April 5, 2014.
 Published electronically April 13, 2016.
 AMS subject classification: 11P32, 11P05, 11 P 55.
 Keywords: small prime, Waring-Goldbach problem, circle method.

