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Small Prime Solutions to Cubic
Diophantine Equations II

Zhixin Liu

Abstract. Let a1 , . . . , a9 be non-zero integers and n any integer. Suppose that a1 + ⋅ ⋅ ⋅ + a9 ≡ n
(mod 2) and (a i , a j) = 1 for 1 ≤ i < j ≤ 9. In this paper we prove that

(i) if a j are not all of the same sign, then the cubic equation a1p3
1 + ⋅ ⋅ ⋅ + a9p3

9 = n has prime
solutions satisfying p j ≪ ∣n∣1/3 +max{∣a j ∣}8+ε ;

(ii) if all a j are positive and n ≫ max{∣a j ∣}25+ε , then a1p3
1 +⋅ ⋅ ⋅+a9p3

9 = n is soluble in primes p j .

_ese results improve our previous results with the bounds max{∣a j ∣}14+ε and max{∣a j ∣}43+ε in
place ofmax{∣a j ∣}8+ε andmax{∣a j ∣}25+ε above, respectively.

1 Introduction

Let n be an integer, and let a1 , . . . , a9 be non-zero integers. We consider cubic equa-
tions in the form

(1.1) a1p3
1 + ⋅ ⋅ ⋅ + a9p3

9 = n,

where p j are prime variables. A necessary condition for the solubility of (1.1) is

(1.2) a1 + ⋅ ⋅ ⋅ + a9 ≡ n (mod 2).
We also suppose

(1.3) (a i , a j) = 1, 1 ≤ i < j ≤ 9,

and write A = max{2, ∣a1∣, . . . , ∣a9∣}. _emain results in this paper are the following
two theorems.

_eorem 1.1 Suppose (1.2) and (1.3). If a1 , . . . , a9 are not all of the same sign, then
(1.1) has solutions in primes p j satisfying p j ≪ ∣n∣1/3+A8+ε , where the implied constant
depends only on ε.

_eorem 1.2 Suppose (1.2) and (1.3). If a1 , . . . , a9 are all positive, then (1.1) is soluble
whenever n ≫ A25+ε , where the implied constant depends only on ε.

_eorem 1.2 with a1 = ⋅ ⋅ ⋅ = a9 = 1 is a classical result ofHua [3] in 1938. _eorems
1.1 and 1.2 improve our previous results in [4] with the bounds A14+ε and A43 + ε in
the place of A8+ε and A25+ε , respectively. Our investigation on (1.1) is also motivated
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by the linear and quadratic relative problems. (See [1] and [2] and their references for
the linear and quadratic relative problems, respectively).

Most of the arguments are similar to those in [4] and we therefore only sketch the
proof in this note. We refer the reader to [4] for all the details and only emphasize the
main diòerence between the arguments.

2 Outline of the Method

As in [4], we denote by r(n) the weighted number of solutions of (1.1), i.e.,

r(n) = ∑
n=a1 p31+⋅⋅⋅+a9 p39

M<∣a j ∣p3j≤N

(log p1) ⋅ ⋅ ⋅ (log p9),

where M = N/200. We will investigate r(n) by the circlemethod. To this end, we set
N j = (N/a j)1/3, and

(2.1) P = (N/A)3/13−ε , Q = N 1−2εP−1 , and L = logN .

ByDirichlet’s lemma on rational approximation, each α ∈ [1/Q , 1+ 1/Q]may bewrit-
ten in the form

(2.2) α = a/q + λ, ∣λ∣ ≤ 1/(qQ)
for some integers a, q with 1 ≤ a ≤ q ≤ Q, and (a, q) = 1. We denote byM(a, q) the
set of α satisfying (2.2), and deûne themajor arcsM and theminor arcsm as follows:

(2.3) M =M(P) = ⋃
q≤P

q

⋃
a=1
(a ,q)=1

M(a, q), m = [ 1
Q
, 1 + 1

Q
] ∖M.

It follows from 2P ≤ Q that themajor arcs M(a, q) aremutually disjoint. Let

S j(α) = ∑
M<∣a j ∣p3≤N

(log p)e(a jp3α).

_en we have r(n) = ∫
1
0 S1(α) ⋅ ⋅ ⋅ S9(α)e(−nα) dα = ∫M + ∫m.

_e integral on the major arcs M causes the main diõculty, which is solved by
_eorem 2.1 and Lemmas 2.3–2.4 in [4]. We state these here.

_eorem 2.1 Assume (1.3). LetM be as in (2.3) with P, Q determined by (2.1). _en
we have

∫
M

S1(α) ⋅ ⋅ ⋅ S9(α)e(−nα)dα =
1
39S(n, P)J(n) + O( N2

∣a1 ⋅ ⋅ ⋅ a9∣1/3L
) ,

whereS(n, P) and J(n) are deûned in (2.4) and (2.5), respectively.

To derive _eorem 2.1, we need to bound S(n, P) and J(n) from below. For χ
mod q, we deûne

C(χ, a) =
q

∑
h=1
χ(h)e( ah

3

q
) , C(q, a) = C(χ0 , a).
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If χ1 , . . . , χ9 are characters mod q, then we write

B(n, q, χ1 , . . . , χ9) =
q

∑
h=1
(h ,q)=1

e(−hn
q

)C(χ1 , a1h) ⋅ ⋅ ⋅C(χ9 , a9h),

B(n, q) = B(n, q, χ0 , . . . , χ0), A(n, q) = B(n, q)
φ9(q) ,

and

(2.4) S(n, P) = ∑
q≤P

A(n, q).

Lemma 2.2 Assuming (1.2), we have S(n, P) ≫ (log logA)−c for some constant
c > 0.

Lemma 2.3 Suppose (1.3) and
(i) a1 , . . . , a9 are not all of the same sign and N ≥ 27∣n∣; or
(ii) a1 , ⋅ ⋅ ⋅ , a9 are positive and n = N.
_en we have

(2.5) J(n) ∶= ∑
a1m1+⋅⋅⋅+a9m9=n

M<∣a j ∣m j≤N

(m1 ⋅ ⋅ ⋅m9)−2/3 ≍
N2

∣a1 ⋅ ⋅ ⋅ a9∣1/3
.

Now we turn to the estimation of ∫m. In section 4, we will prove

∫
m
∣S1(α) ⋅ ⋅ ⋅ S9(α)∣dα ≪

N47/24+ε

∣a1 ⋅ ⋅ ⋅ a9∣47/216
.

_us,

r(n) = 1
39S(n, P)J(n) + O ( N2

∣a1 ⋅ ⋅ ⋅ a9∣1/3L
) + O( N47/24+ε

∣a1 ⋅ ⋅ ⋅ a9∣47/216
) .

_en we conclude that r(n) ≫ ∣a1 ⋅ ⋅ ⋅ a9∣−1/3N2(log logN)−c , provided that

N47/24+ε

∣a1 ⋅ ⋅ ⋅ a9∣47/216
≪ N2

∣a1 ⋅ ⋅ ⋅ a9∣1/3L
,

or equivalently N ≫ A25+ε . _eorems 1.1 and 1.2 follow from this and the argument
leading in [4]. Details are therefore omitted.

3 Some Lemmas

We derive estimates for the generating functions appearing in the proof from esti-
mates for the exponential sum

(3.1) S(α) = ∑
X<p≤2X

(log p)e(αp3),

https://doi.org/10.4153/CMB-2015-079-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-079-6


602 Z. Liu

which are given in terms of the rational approximation

α = a
q
+ λ, with 1 ≤ a ≤ q, (a, q) = 1.

We start by quoting the result of Zhao [6].

Lemma 3.1 Suppose that α ∈ R and that exist a ∈ Z and q ∈ N satisfying

1 ≤ q ≤ Q , (a, q) = 1, ∣qα − a∣ < Q−1

with X1/2 ≤ Q ≤ X5/2. _en for any ûxed ε > 0,

S(α) ≪ X11/12+ε + X1+ε

q1/6
√

(1 + X3∣α − a/q∣)
,

where the implied constant depends at most on k and ε.

_e next lemma generalizes Lemma 3.1 to S(bα), with b a non-zero integer.

Lemma 3.2 Let b be a non-zero integer and let S(α) be deûned by (3.1). Suppose that
there exist a ∈ Z and q ∈ N satisfying

(3.2) 1 ≤ q ≤ ∣b∣X3P−1 , (a, q) = 1, ∣qα − a∣ < P/(∣b∣X3),
with P subject to

(3.3) 2∣b∣X1/6 < P ≤ X .

_en for any ûxed ε > 0, we have

(3.4) S(bα) ≪ X11/12+ε + X1+εq−1/61 Φ(α)−1/2 ,
where Φ(α) = 1 + ∣b∣X3∣α − a/q∣ and q1 = q/(b, q).

Proof By Dirichlet’s theorem, there exist integers a1 and q1 such that

1 ≤ q1 ≤ Q , (a1 , q1) = 1, ∣q1bα − a1∣ < Q−1 ,

with some Q satisfying X1/2 ≤ Q ≤ X5/2. Hence, by Lemma 3.1 with α = bα, q = q1,
and a = a1,

(3.5) S(bα) ≪ X11/12+ε + X1+ε

q1/6
1

√
1 + X3∣q1bα − a1∣

.

If q1 > X1/2 or ∣q1bα − a1∣ > X−17/6, the ûrst term on the right-hand side of (3.5)
dominates the second and (3.4) follows. Otherwise, recalling (3.2) and (3.3), we get

∣q1ba − qa1∣ ≤ q1∣b∣∣qα − a∣ + q∣q1bα − a1∣
≤ PX−3/2 + ∣b∣X1/6P−1 < 1.

_us a1
q1
= ab

q and q1 = q
(q ,b) , and (3.5) turns into (3.4).

_e following lemma is Lemma 3.3 in [4] which generalizes _eorem 1.1 in [5].
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Lemma 3.3 Let b be a non-zero integer and let S(α) be deûned by (3.1). Suppose that
there exist a ∈ Z and q ∈ N satisfying

1 ≤ q ≤ P, (a, q) = 1, ∣qα − a∣ < P/(∣b∣X3),
with P < X/2. _en for any ûxed ε > 0, we have

S(bα) ≪ (X1/2Φ(α)1/2 + X4/5 + XΦ(α)−1/2)qε logc X ,
where Φ(α) = q1(1 + ∣b∣X3∣α − a/q∣) and q1 = q/(b, q).

4 The Estimation of ∫m
Let N be a parameter with N ≥ A25+ε that also satisûes hypothesis (i) or (ii) of
Lemma 2.3 according as a1 , . . . , a9 are all positive or not. Now we turn to the esti-
mation of ∫m.
By Dirichlet’s approximation theorem, when α ∈ m, there exist a ∈ Z and q ∈ N

satisfying (3.2) with b = a9 and X = N9 such that q + N9∣qα − a∣ ≥ P.
We decompose theminor arcs into three parts,m = m1 ∪m2 ∪m3, where

m1 = m ∪ {q ≤ N 1/2
9 ∣a9∣ and ∣α − a/q∣ ≤ 1/(qN5/2

9 )},

m2 = m ∪ {q ≥ N 1/2
9 ∣a9∣},

m3 = m ∪ {q ≤ N 1/2
9 ∣a9∣ and ∣α − a/q∣ ≥ 1/(qN5/2

9 )}.
When α ∈ m1, using Lemma 3.3, we have

S9(α) ≪ (N 1/2
9

√
q1(1 + ∣a9∣N3

9 ∣α − a/q∣) + N4/5
9

+ N9√
q1(1 + ∣a9∣N3

9 ∣α − a/q∣)
)qε logc X

≪ N 1/2
9 q1/2

1 + N 1/2
9 + N4/5

9 + N9(q, ∣a9∣)1/2
√

q(1 + N ∣α − a/q∣)

≪ N3/4
9 ∣a9∣1/2 +

N9(q, ∣a9∣)1/2
√

P
≪ N 11/12+ε

9 .

We apply Lemma 3.2 for α ∈ m2 and α ∈ m3,

S9(α) ≪ N 11/12+ε
9 + N 1+ε

9

q1/6
1

√
1 + ∣a9∣N3

9 ∣α − a/q∣

≪ N 11/12+ε
9 + N 1+ε

9

q1/6
1

≪ N 11/12+ε
9 + N 1+ε

9 ∣a9∣1/6
q1/6

≪ N 11/12+ε
9 ,
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and

S9(α) ≪ N 11/12+ε
9 + N 1+ε

9

q1/6
1

√
1 + ∣a9∣N3

9 ∣α − a/q∣

≪ N 11/12+ε
9 + N 1+ε

9 q1/2N5/4
9

q1/6
1 ∣a9∣1/2N3/2

9

≪ N 11/12+ε
9 + N3/4+ε

9 (q, ∣a9∣)1/6q1/2

q1/6∣a9∣1/2

≪ N 11/12+ε
9 + N3/4+ε

9 (q, ∣a9∣)1/6q1/2

q1/6∣a9∣1/2

≪ N 11/12+ε
9 + N3/4+ε

9 ∣a9∣1/6q1/2

q1/6∣a9∣1/2

≪ N 11/12+ε
9 .

_us, we have

(4.1) max
α∈m

∣S9(α)∣ ≪ N 11/12+ε
9 .

We introduce the following notation: T(t) = ∫m ∣S9(α)∣tdα for t ≥ 1. On consid-
ering the underlying equation and applying Hua’s lemma (see [3])

T(8) ≪ ∫
1

0
∣S9(α)∣8dα ≪ L8 ∑

m3
1+⋅⋅⋅+m

3
4=m

3
5+⋅⋅⋅+m

3
8

mv≤N9 ,v=1, . . . ,8

1 ≪ N5+ε
9 .

_en by Schwartz’s inequality,

(4.2) T(9) ≪ N5/2+ε
9 T(10)1/2 .

By applying Lemmas 2.2 and 3.1 in [6], we obtain

(4.3) T(10) ≪ N3/4+ε
9 T(16)1/4T(9)1/2 + N7/8+ε

9 T(9).

We deduce from (4.1) that

(4.4) T(16) ≪ (N 11/12+ε
9 )6T(10).

Inserting (4.2) and (4.4) into (4.3), we have T(10) ≪ N27/8+ε
9 T(10)1/2, which implies

T(10) ≪ N27/4+ε
9 .

_is together with (4.2), we have T(9) ≪ N47/8+ε
9 . _erefore,

∫
m
∣S9(α)∣9 dα ≪ N47/8+ε

9 .

Similarly, we have ∫m ∣S i(α)∣9dα ≪ N47/8+ε
i , 1 ≤ i ≤ 8.
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_erefore,

∫
m
∣S1(α) ⋅ ⋅ ⋅ S9(α)∣ dα ≪ (∫

m
∣S1(α)∣9dα)

1/9
⋅ ⋅ ⋅ (∫

m
∣S9(α)∣9 dα)

1/9

≪ (N1 ⋅ ⋅ ⋅N9)47/72+ε

≪ N47/24+ε

∣a1 ⋅ ⋅ ⋅ a9∣47/216
.
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