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Abstract

Let W = {Wn : n ∈ N} be a sequence of random vectors in R
d , d ≥ 1. In this paper we

consider the logarithmic asymptotics of the extremes of W , that is, for any vector q > 0
in R

d , we find that log P(∃n ∈ N : Wn > uq) as u → ∞. We follow the approach of
the restricted large deviation principle introduced in Duffy (2003). That is, we assume
that, for every q ≥ 0, and some scalings {an}, {vn}, (1/vn) log P(Wn/an ≥ uq) has a,
continuous in q, limit JW (q). We allow the scalings {an} and {vn} to be regularly varying
with a positive index. This approach is general enough to incorporate sequences W , such
that the probability law of Wn/an satisfies the large deviation principle with continuous,
not necessarily convex, rate functions. The equations for these asymptotics are in
agreement with the literature.
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1. Introduction

Let W = {Wn : n ∈ N} be a sequence of random variables taking values in R. Define
Q = supn≥0 Wn. The random variable Q has been extensively studied: if W is time-reversible,
then Q has the same distribution as the steady-state workload distribution in a queue with free
process W (see, e.g. Reich (1958)); Q has also various relations with finance and insurance
risk. It is in general difficult to determine the distribution of Q. One could therefore settle
for the less ambitious goal of identifying the corresponding tail asymptotics, that is, finding a
function f , such that P(Q > u) ∼ f (u) as u → ∞ (i.e. the ratio of the two tends to 1 as
u → ∞). This, however, requires us to impose a quite restrictive structure on W , even in the
Gaussian setting. Therefore, one usually resorts to determining the logarithmic asymptotics of
the (right) tail of the distribution of Q. It has been observed that, in great generality,

log P(Q > u) = log P(∃n ∈ N : Wn > u) ∼ log sup
n≥0

P(Wn > u) as u → ∞. (1)

The heuristic behind this claim is the principle of the largest term: rare events occur in the most
likely way. That is to say, if W is unlikely to ever reach level u, then conditional on W in fact
reaching u, with overwhelming probability this happens near to the most likely epoch.
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Using (1), the tail behavior of Q can be derived from the large deviation behavior of W ;
this was originally proposed by Kesidis et al. (1993) and later made rigorous by Glynn and
Whitt (1994). More formally, let � be the limiting cumulant generating function (CGF)
of W , that is, �(θ) = limn→∞ n−1 log E exp(θWn) when the limit exists, and let � satisfy
the assumptions of the Gärtner–Ellis theorem. Then, by its virtue, the sequence of probability
measures {μn : n ∈ N}, where μn is the law of Wn/n, satisfies the large deviation principle
(LDP) with rate function �∗, the Fenchel–Legendre transform of � (also known as the convex
conjugate of �); see Dembo and Zeitouni (1998) for the background on large deviations theory.
Under these assumptions, Glynn and Whitt (1994) assert that

lim
u→∞

1

u
log P(∃n ∈ N : Wn > u) = − sup{θ : �(θ) ≤ 0}. (2)

Owing to its generality, this result is useful in a broad range of applications.
The result in Glynn and Whitt (1994) has been extended in a notable paper by Duffield and

O’Connell (1995) (see also Lelarge (2008)). The authors consider the logarithmic asymptotics
of the tail of Q, by imposing assumptions on random variables Wn/an, where {an : n ∈ N} is
some (not necessarily linear) scaling. It is assumed that the scaled limiting CGF of W , defined
as �(θ) = limn→∞ v−1

n log E exp(θvnWn/an) for some sequence {vn : n ∈ N}, exists as an
extended real number. The considered class of admissible scaling sequences is quite broad. It
includes the case when a ∈ RV(A), v ∈ RV(V ) are two regularly varying sequences with
indices A, V > 0; this class is broad enough for most of the applications. Considering nonlinear
scalings allows us to incorporate, for instance, long/short range dependent sequences corre-
sponding to, for example, fractional Brownian motion. Similarly to Glynn and Whitt (1994),
it is assumed that � meets the assumptions of the Gärtner–Ellis theorem. Consequently, the
sequence of probability measures {μn : n ∈ N}, where μn is the law of Wn/an, satisfies the
LDP with speed vn and rate function �∗. The main result from Duffield and O’Connell (1995)
states that, under some additional assumptions,

lim
u→∞

1

h(u)
log P(∃n ∈ N : Wn > u) = − inf

c>0
c−V/A�∗(c), (3)

where h = v ◦ a−1 and a−1 denotes the right inverse of a. It can be verified that (2) follows
from (3) in case of the linear scaling: an = vn = n.

Both Duffield and O’Connell (1995) and Glynn and Whitt (1994) impose additional con-
ditions on W only to infer that the sequence of probability measures {μn : n ∈ N}, whether μn is
the law of Wn/n or Wn/an, satisfies the LDP with some well-behaved rate function.
By exploiting the Gärtner–Ellis theorem, the considered class of possible rate functions is
limited to convex functions, whereas, in general, it could be any lower semicontinuous function.
Alternatively, therefore, one could assume that the LDP holds without any knowledge of how it
was inferred. Duffy et al. (2003) suggested a variant of this approach that allows us to consider
scaled sequences W with nonconvex rate functions. More formally, the authors proposed the
restricted large deviation principle (RLDP) instead of the classical LDP. That is, they required
that the limit

lim
n→∞

1

vn

log P

(
Wn

an

> c

)
= −JW (c) (4)

exists for every c ≥ 0 and the function JW is continuous on the interior of the set upon which it is
finite. Thus, if the LDP holds with a continuous (where finite) rate function IW (and speed vn),
then the RLDP holds with JW (c) = infx≥c IW (x). Nevertheless, it is not required that IW

has been inferred from the Gärtner–Ellis theorem, nor, in principle, that the LDP holds at all.
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Observe that JW does not give any information about the behavior of W for negative values
so that in general the LDP is not even a prerequisite for the RLDP to hold. The main result of
Duffy et al. (2003), under some additional assumptions, reads

lim
u→∞

1

h(u)
log P(∃n ∈ N : Wn > u) = − inf

c>0
c−V/AJW (c). (5)

It can be verified that if JW (c) = infx≥c IW (x) and IW is convex, then (5) reduces to (3) in the
special case when IW = �∗.

Note that (4) is a statement about the limiting behavior of P(Wn/an > c) with n growing
large. This condition does not extract any information about W for specific values of n, in
particular the initial values of W . The distribution of Q however, and, hence, the asymptotics
as well, does involve the whole sequence W . It is therefore possible that the asymptotics
of a single Wn could dominate those of Q. For instance, one can greatly alter Q by simply
substituting W0 with a properly chosen heavy-tailed random variable W̃0. To exclude such a
scenario, Duffy et al. (2003) introduced an additional, novel assumption referred to as the
uniform individual decay rate hypothesis; see Section 2.2. Roughly speaking it prevents
the sequence W from having an ‘unusual’ behavior for a single Wn. In fact, Duffy et al.
(2003, Section 4) points out that this issue was overlooked by Duffield and O’Connell (1995).
That is, in order for the results from Duffield and O’Connell (1995) to hold, one actually needs to
impose further conditions. In the light of the generality of the result by Duffy et al. (2003), their
paper can be treated as the most up to date treatment of the subject of logarithmic asymptotics
for the supremum of a stochastic sequence.

In this paper we generalize and extend the result from Duffy et al. (2003) in multiple ways.
Firstly, in Theorem 4 we show that, under the assumptions of Duffy et al. (2003), the sequence
of probability measures {μW

u : u ∈ R+}, where μW
u (A) = P(∃n ∈ N : Wn ∈ uA), satisfies the

LDP with speed h(u) and rate function ĨW , such that ĨW (x) = xV/A for x ≥ 0, and ĨW (x) = ∞
for x < 0. In particular, for any A ∈ B(R+),

lim
u→∞

1

h(u)
log P(∃n ∈ N : Wn ∈ uA) = − inf

x∈A
xV/A inf

c>0
c−V/AJW (c). (6)

We can see that (6) extends (5) by setting A = (1, ∞). Theorem 4 is presented in Section 3.1.
Furthermore, in Section 3.2 we allow the sequence W to take values in R

d for any d ≥ 1,
rather than just R. As it turns out, this multidimensional setting imposes substantial additional
challenges, as compared to the single-dimensional setting. Regarding notation, to explicitly
distinguish the multidimensional case from the one-dimensional counterpart we will make
use of the usual boldface fonts. That is, we write x for the vector x = (x1, . . . , xd), where
the dimension d should be clear from the context. All vector relations should be understood
coordinatewise; for instance, we write v ≥ w to mean vi ≥ wi for all i = 1, . . . , d. With this
notation, we consider a sequence W = {Wn : n ∈ N} of random vectors in R

d . The sequence W

is assumed to satisfy multidimensional analogues of the assumptions from Duffy et al. (2003);
see Section 2.2. In particular, it is assumed that the (multidimensional) RLDP holds, that is,
the limit

lim
n→∞

1

vn

log P

(
Wn

an

> q

)
= −JW (q)

exists for any q ≥ 0. Our second contribution, Theorem 5, states that, for any vector q > 0,

lim
n→∞

1

h(u)
log P(∃n ∈ N : Wn > uq) = − inf

c>0
c−V/AJW (cq). (7)

Obviously (7) is a generalization of (5) in the multidimensional sense.
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Another significant contribution is that we also discuss various relations and connections
with the existing literature. In Section 4.1 we present the relation between the RLDP approach,
as undertaken here and in Duffy et al. (2003), and the approach via the CGFs, as undertaken
in Duffield and O’Connell (1995) and Glynn and Whitt (1994). In Section 4.2 we discuss the
various results of Collamore (1996), who considered a sequence of random vectors {Yn : n ∈ N}
in R

d , such that the sequence of probability measures {μn : n ∈ N}, where μn corresponds to
the law of Yn/n, satisfies the LDP with a convex rate function. Collamore proved various LDP-
like statements for the sequence of probability measures {μY ,N

u : u ∈ R+}, where μ
Y ,N
u (A) =

P(∃n ≥ N : Yn ∈ uA). These results, not referred to in Duffy et al. (2003), coincide with
(5)–(7) in the case of N = 1, linear scaling and convex rate function. We provide a discussion
of these results also in Section 4.2.

We conclude our paper with Section 5, where we present an extension of Theorem 5 from
sequences {Wn : n ∈ N} to stochastic processes {Wt : t ∈ R+}. Furthermore, we apply our
results to two examples. In the first example we treat heavy-tailed processes which exhibit
nonconvex rate functions, an example that was not covered by results that were known so far.
In the second example we compare our results with Dȩbicki et al. (2010), which addresses a
similar problem for the case of W being Gaussian.

2. Preliminaries

In this paper we use the following notation. For a function f : R
d → R we denote its domain

by Df = {x : f (x) < ∞}. As already introduced in Section 1, we shall work with the following
two functions a, v : R+ → R+, which throughout the whole paper are assumed to be regularly
varying functions at infinity with positive indices A and V , respectively; we write a ∈ RV(A)

and v ∈ RV(V ). It is well known that, for any regularly varying function f ∈ RV(F ) with
a positive index F , it is possible to construct a strictly increasing and continuous function f ′
such that

lim
t→∞

f ′(ct)
f ′(t)

= lim
t→∞

f (ct)

f (t)
= lim

t→∞
f ′(ct)
f (t)

= cF .

Therefore, without loss of generality, we assume that both a and v are continuous and strictly in-
creasing. We shall also speak about regularly varying sequences an and vn defined by an = a(n)

and vn = v(n). Let a−1 denote the inverse of a. Define a new function h : R+ → R+ by
h = v ◦ a−1. The function h belongs to the class RV(V/A). For details on regular variation,
see, e.g. Bingham et al. (1987).

For any subset A of R
d we denote its cone by cone(A) = {λx : x ∈ A, λ ≥ 0}, its closure

by Ā, and interior by A◦. For any convex function f on R
d , we define its Fenchel–Legendre

transform f ∗ as f ∗(x) = supα∈Rd (〈α, x〉 − f (α)).

2.1. Large deviations theory

We follow the definitions and setup as used in Dembo and Zeitouni (1998). All probability
measures in this paper are assumed to be Borel measures. The function I : R

d → [0, ∞] is
called a rate function if I is lower semicontinuous and I �≡ ∞. We say that I is a good rate
function if, in addition, the level sets LaI = {x : I (x) ≤ a} are compact for each a ≥ 0 (which
in fact is equivalent to the level sets being bounded as a function f is lower semicontinuous if
and only if its level sets are closed). A sequence of probability measures {μn : n ∈ N} on R

d

is said to satisfy the (LDP) with rate function I if, for all � ∈ B(Rd),

− inf
x∈�◦ I (x) ≤ lim inf

n→∞
1

n
log μn(�) ≤ lim sup

n→∞
1

n
log μn(�) ≤ − inf

x∈�̄
I (x). (8)
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Consider the empirical mean Zn = (1/n)
∑n

i=1 Xi of a sequence of independent and identi-
cally distributed (i.i.d.) random vectors {Xn : n ∈ N} in R

d . Define μn as the law of Zn and let
�X = log Ee〈α,X1〉 be the (CGF) associated to the law of X1. In this case the classical theorem
of Cramér applies.

Theorem 1. (Cramér’s theorem.) Assume that 0 ∈ D◦
�X

, then {μn : n ∈ N} satisfies the LDP
on R

d with good rate function �∗
X.

Now consider a general sequence of random vectors {Zn : n ∈ N} in R
d , and let μn again

denote the law of Zn. The CGF associated with the law μn is defined as �n(α) = log Ee〈α,Zn〉.
Let �(α) = lim supn→∞(1/n)�n(nα) be the limiting CGF. With this notation, the following
well-known theorem holds.

Theorem 2. (Gärtner–Ellis theorem.) Assume that 0 ∈ D◦
� and � is an essentially smooth,

lower semicontinuous function. Then {μn : n ∈ N} satisfies the LDP on R
d with good rate

function �∗.

Note that if Zn = (1/n)
∑n

i=1 Xi as in the setting of Cramér’s theorem, then � = �X and
further regularity conditions are not required.

We can consider LDPs with the so-called speed {sn : n ∈ N} when 1/n in (8) is replaced by
1/sn → 0. The Gärtner–Ellis theorem remains valid if �(α) = lim supn→∞(1/sn)�n(snα),
the scaled limiting CGF, satisfies the assumptions. All results of this subsection carry through
to continuous parameter families {μu : u ∈ R+}.
2.2. Main assumptions

In this paper we consider sequences W = {Wn : n ∈ N} of random vectors in R
d , d ≥ 1,

satisfying the following assumptions.

Assumption 1. (Restricted LDP hypothesis.) There exists a function JW : R
d+ → [0, ∞] such

that, for every q ≥ 0,

lim
n→∞

1

vn

log P

(
Wn

an

> q

)
= −JW (q). (9)

Remark 1. If the sequence of probability measures {μn : n ∈ N}, where μn denotes the law
of Wn/an, satisfies the LDP with speed vn and rate function IW , which is continuous where
it is finite, then it also satisfies the RLDP hypothesis with JW (q) = infx≥q IW (x) (hence the
name of the hypothesis). If I is not continuous then it is easy to construct an example in which
the restricted LDP does not hold. The opposite implication is also not true in general, that
is, the restricted LDP hypothesis does not imply the LDP: property (9) does not provide any
information about the negative values of Wn/an.

Assumption 2. (Stability and continuity hypothesis.) It holds that JW (0) > 0 and there exists
y > 0 such that JW (y) < ∞. Furthermore, JW is assumed to be continuous on D◦

JW
.

In the queueing context, JW (0) > 0 is the usual stability condition. If JW (x) = ∞ for all
x ∈ R

d+ \ {0} then P(∃n ∈ N : Wn > uq) will have superexponential decay.
The restricted LDP hypothesis refers to the limiting behavior of log P(Wn > uanq) for

large n, not values for specific n. The asymptotic of a single Wn could dominate those of
P(∃n ∈ N : Wn > uq). The condition below excludes this possibility.
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Condition 1. (Uniform individual decay rate hypothesis.) For a fixed vector q > 0, there exist
constants F = F(q) > V/A and K = K(q) > 0 so that, for all n and all c > K ,

1

vn

log P

(
Wn

an

> cq

)
≤ −cF .

Remark 2. The restricted LDP hypothesis, the stability and continuity hypothesis, and the
uniform individual decay rate hypothesis were originally introduced in Duffy et al. (2003) in
the one-dimensional case. That is, if we set d = 1 then all the above hypotheses reduce to
those of Duffy et al. (2003). The hypotheses presented above can therefore be seen as natural
extensions of the hypotheses from Duffy et al. (2003) to the multidimensional setting.

Theorem 3. (One-dimensional case Duffy et al. (2003, Theorem 2.2).) If the sequence W =
{Wn : n ∈ N} of random variables satisfies all the hypotheses of this subsection then

lim
u→∞

1

h(u)
log P(∃n ∈ N : Wn > u) = − inf

c>0
c−V/AJW (c). (10)

3. Two extensions

In this section we present two generalizations of Theorem 3. Firstly, we consider families of
measures μW

u (A) = P(∃n ∈ N : Wn ∈ uA) for a general set A; we can easily see that Theorem 3
considers the case of A = (1, ∞). Secondly, we consider the situation when the sequence W

takes values in R
d , d ≥ 1, rather than just R.

3.1. Extension to the LDP

Define a lower semicontinuous function ĨW by

ĨW (x) =
{

∞ for x < 0,

kJW
xV/A for x ≥ 0,

where kJW
= infc>0 c−V/AJW (c) is the constant appearing on the right-hand side of (10).

In this subsection we assume that the sequence of random variables W = {Wn : n ∈ N} is
such that W0 = 0. This assures that Q = supn≥0 Wn is a nonnegative random variable.
Let μW

u be a probability measure on R defined as μW
u (A) = P(∃n ∈ N : Wn ∈ uA).

The following theorem is the main result of this subsection.

Theorem 4. Under the assumptions of Theorem 3, the family {μW
u : u ∈ R+} satisfies the LDP

with speed function h and good rate function ĨW .

Proof. First note that, for any k > 0,

lim
u→∞

1

h(u)
log μW

u ((k, ∞)) = −ĨW (k). (11)

Indeed,
1

h(u)
log μW

u ((k, ∞)) = h(ku)

h(u)

1

h(ku)
log μW

ku((1, ∞)),

so that (11) follows from Theorem 3 combined with the fact that h(ku)/h(u) tends to kV/A.
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Let� be any set inB(R). Now, if for somey, infx∈�̄ ĨW (x) = ĨW (y) then, for anyη ∈ (0, y),
the monotonicity of ĨW on R+ implies that

μW
u (�) ≤ μW

u ([y, ∞)) ≤ μW
u ((y − η, ∞)).

Hence, by (11),

lim sup
u→∞

1

h(u)
log μW

u (�) ≤ −ĨW (y − η).

This combined with the continuity of ĨW on R+ implies the upper bound:

lim sup
u→∞

1

h(u)
log P(∃n ∈ N : Wn ∈ u�) ≤ − inf

x∈�̄
ĨW (x).

If infx∈�̄ ĨW (x) = 0 or infx∈�̄ ĨW (x) = ∞, then the above bound holds trivially.
Now, if �◦ ∩ R+ = ∅ then the lower bound

lim inf
u→∞

1

h(u)
log P(∃n ∈ N : Wn ∈ u�) ≥ − inf

x∈�◦ ĨW (x)

holds immediately. Therefore, let �◦ ⊂ R+ and s ∈ �◦, η > 0 be such that (s−η, s+η] ⊂ �◦.
Obviously, μW

u (�) ≥ μW
u ((s − η, s + η]) = μW

u ((s − η, ∞)) − μW
u ((s + η, ∞)). From (11),

for sufficiently large u, μW
u ((s + η, ∞)) ≤ μW

u ((s − η, ∞))/2. Hence,

lim inf
u→∞

1

h(u)
log μW

u (�) ≥ lim inf
u→∞

1

h(u)
log

(
μW

u ((s − η, ∞))

2

)
= −ĨW (s − η) ≥ −ĨW (s).

Now the lower bound follows after optimization over s ∈ �◦.

Remark 3. The assumption that W0 = 0 is natural and is fulfilled in many applications. If
it does not hold, however, then the LDP from Theorem 4 remains true on B(R+). In both of
these cases, the continuity of ĨW on R+ implies that for any set A ∈ B(R+),

lim
u→∞

1

h(u)
log P(∃n ∈ N : Wn ∈ uA) = − inf

x∈A
ĨW (x).

Hence, Theorem 4 generalizes Theorem 3, which can be seen by taking A = (1, ∞).

3.2. Extension to the multidimensional case

In this subsection we generalize Theorem 3 to the multidimensional case. Theorem 3 itself
serves as a building block in the proof of the following theorem.

Theorem 5. (Multidimensional case.) If the sequence W = {Wn : n ∈ N} of random vectors
in R

d , d ≥ 1, satisfies the hypotheses of Section 2.2, then, for any q > 0,

lim
u→∞

1

h(u)
log P(∃n ∈ N : Wn > uq) = − inf

c>0
c−V/AJW (cq).

Proof. Note that P(Wn > uq) = P(Zn > u), where Z = {Zn : n ∈ N} is a sequence
of random variables such that Zn = mini=1,...,d (Wn,i/qi). The sequence Z satisfies the
assumptions of Theorem 3 with a function JZ given by JZ(c) = JW (cq). Indeed, by the
restricted LDP hypothesis, it follows that, for every c ≥ 0,

lim
n→∞

1

vn

log P

(
Zn

an

> c

)
= lim

n→∞
1

vn

log P

(
Wn

an

> cq

)
= −JW (cq).

https://doi.org/10.1239/jap/1429282607 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1429282607


Logarithmic asymptotics for multidimensional extremes 75

The stability and continuity hypothesis for JZ easily follows from the stability and continuity
hypothesis forJW . The same applies to the uniform individual decay rate hypothesis. Therefore,
Theorem 3 yields

lim
u→∞

1

h(u)
log P(∃n ∈ N : Wn > uq)

= lim
u→∞

1

h(u)
log P(∃n ∈ N : Zn > u)

= − inf
c>0

c−V/AJZ(c)

= − inf
c>0

c−V/AJW (cq).

This completes the proof.

4. Connections with existing literature

We have already discussed the relations of our results to Duffy et al. (2003). In this section
we shall discuss our findings in light of already existing results of Collamore (1996), Duffield
and O’Connell (1995), and Glynn and Whitt (1994).

4.1. The CGF approach

The analyses in Duffield and O’Connell (1995) and Glynn and Whitt (1994) are based on the
CGF. They both consider the d = 1 case, but only Duffield and O’Connell (1995) allows for
nonlinear scaling. In this subsection we present conditions under which the main assumptions
of the present paper are fulfilled. Recall that,

�n(α) = log E exp

(〈
α,

Wn

an

〉)
is the CGF of the law of Wn/an. Here it is assumed that �n exists as a finite real number for
all α ∈ R

d and all n ∈ N. The hypotheses of our paper have simple expressions in terms of
the CGF. The conditions we specify here for the CGF case, based on their one-dimensional
analogues in Duffy et al. (2003), are intended for easy applicability rather than maximum
generality. Under these assumptions, the large deviation rate function is convex. The CGF
technique is not applicable to models which have nonconvex rate functions.

Assumption 3. (LDP hypothesis, CGF case.) For each α ∈ R
d , the scaled limiting CGF

�(α) = limn→∞(1/vn)�n(vnα) exists. Furthermore, � is assumed to be continuously
differentiable.

Under the above assumption, by the Gärtner–Ellis theorem, the sequence of probability
measures {μn : n ∈ N}, where μn is the law of Wn/an, satisfies the LDP with rate function
IW = �∗ and speed vn. This implies that IW is convex and continuous on the set where it is
finite and, therefore, the RLDP holds with JW (q) = infx≥q �∗(x), which is also continuous
on D◦

JW
. Hence, in order to assure that the stability and continuity hypothesis holds, we require

the following conditions.

Condition 2. (Stability hypothesis, CGF case.) There exists α� > 0 such that �(α�) < 0.

The above hypothesis implies that JW (0) ≥ −�(α�) > 0. Indeed,

JW (0) = inf
x≥0

sup
α∈Rd

(〈α, x〉 − �(α)) ≥ sup
α∈R

d+
inf
x≥0

(〈α, x〉 − �(α)) = − inf
α∈R

d+
�(α) ≥ −�(α�).
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Condition 3. (Uniform individual decay rate hypothesis, CGF case.) There exist constants F ′
and M such that F ′ > max{V/A, 1} and (1/vn)�n(vnα) ≤ M‖α‖F ′/(F ′−1) for all α > 0 and
all n ∈ N.

Under this hypothesis, for each F ∈ (1, F ′), there exists a constant KF = KF (q) such that,
for all c > KF and all n ∈ N,

1

vn

log P

(
Wn

an

> cq

)
≤ −cF .

That is, the uniform individual decay rate hypothesis certainly holds. Indeed, an elementary
consequence of Chernoff’s inequality is

log P(Wn > canq) ≤ −vn

(
c〈α, q〉 − 1

vn

�n(vnα)

)

for any α > 0. It then follows that

log P(Wn > canq) ≤ −vn(c〈α, q〉 − M‖α‖F ′/(F ′−1)).

Choosing α = (c(F ′ − 1)‖q‖/(MF ′))F ′−1q, we have

log P(Wn > canq) ≤ −vn(c‖q‖2)F
′
(M1−F ′

F ′−F ′
(F ′ − 1)F

′−1). (12)

Since M and F ′ are constants, for each F ∈ (max{V/A, 1}, F ′), there exists KF = KF (q)

such that, for all c > KF , the right-hand side of (12) will be less than −vnc
F .

4.2. The LDP with a convex rate function

The purpose of this subsection is to discuss the differences between the approach from
Collamore (1996) and the one in our paper.

Collamore (1996) considered a sequence Y = {Yn : n ∈ N} of random vectors in R
d .

The main assumption of his paper is that the sequence of probability measures {μn : n ∈ N},
where μn is the law of Yn/n, satisfies the LDP with a convex rate function IY , such that
L0IY �= ∅, that is IY (x) = 0 for some x ∈ R

d . Furthermore, it is assumed that (using the
notation from Collamore (1996)):

(H1’): supn≥N(1/n) log E exp〈α, Yn〉 < ∞ for all α ∈ L0I
∗
Y and N greater than or equal to

some N0.

Remark 4. (H1’) is a regularity condition on the sequence Y . It is satisfied if Y is, for example,
the nth partial sum of an i.i.d. sequence of random vectors satisfying the condition given in
Cramér’s theorem, or the weaker condition given by Ney and Robinson (1995). It also holds
when Y is a Markov-additive process satisfying the uniform recurrence condition (6.2) of
Ney and Nummelin (1987). In both these cases N0 can be taken to be 1. Also, Y can be
a general sequence satisfying the conditions of the Gärtner–Ellis theorem and (i) �(α) is
finite in the neighborhood of each α ∈ L0�; (ii) the level sets of � are compact; recall that
�(α) = lim supn→∞(1/n) log E exp〈α, Yn〉.
Theorem 6. (Collamore (1996, Theorem 2.2).) Suppose A is a general set in R

d and (H1’)
and

(H2): for some δ > 0, A ∩ cone(Cδ) = ∅, where Cδ = {x : infy∈L0IY ‖x − y‖ < δ};
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are satisfied. Then, for any N ≥ N0,

lim inf
u→∞

1

u
log P(∃n ≥ N : Yn ∈ uA) ≥ − inf

x∈A◦ ĨY (x)

and

lim sup
u→∞

1

u
log P(∃n ≥ N : Yn ∈ uA) ≤ − inf

x∈Ā
ĨY (x),

where ĨY (x) = supα∈L0I
∗
Y
〈α, x〉 is the support function of L0I

∗
Y .

Remark 5. Condition (H2) is an admissibility condition on sets A. Recall that L0IY is the set
of all the points y for which IY (y) = 0. Intuitively, these are the points of the typical behavior
of Y . Recall also that in the setting of Cramér’s theorem, when Yn = X1 + · · · + Xn, for an
i.i.d. sequence of random vectors {Xn : n ∈ N} in R

d , L0IY = {EX1}. Therefore, the set Cδ

can be thought of as the δ-neighborhood of all such points of typical behavior of Y , and, thus, A
can be any general set that avoids the ‘central tendency’ cone(Cδ) = {λx : λ > 0, x ∈ Cδ}
of Y .

The straightforward major differences between the current approach and the one of Col-
lamore (1996) are the following. Collamore (1996) considers the multidimensional case and
sets satisfying (H2), but only allows linear scaling. The sequence Y has to satisfy (H1’) and
the sequence of measures corresponding to Yn/n, the LDP with convex rate function. In our
setup we considered the multidimensional case and regularly varying scalings, general sets in
the d = 1 case, but only quadrants {x ∈ R

d : x > q}, for any q > 0, in the d > 1 case.
Furthermore, we do not require the LDP to hold, but impose the restricted LDP hypothesis
allowing for continuous rate functions. We have already explained that nonlinear scalings
allow us to incorporate, for instance, long/short range dependent sequences stemming from,
for example, fractional Brownian motion. Also, as explained in Theorem 1, it is possible that
the restricted LDP holds when the LDP does not and vice versa.

Observe that, if IY is continuous where finite, then the restricted LDP holds with JY (q) =
infx≥q IY (x). By Rockafellar (1970, Theorem 13.5), ĨY (x) is equal to the closure of L(x) =
infτ>0 τ−1IY (τx), that is, the greatest lower semicontinuous function majorized by L. Fur-
thermore, if A = {x ∈ R

d : x > q}, for some q > 0, satisfies (H2) then the upper and the
lower bound in Theorem 6 are equal to

inf
x≥q

ĨY (x) = inf
x≥q

inf
τ>0

τ−1IY (τx) = inf
τ>0

τ−1 inf
x≥q

IY (τx) = inf
τ>0

τ−1JY (τq).

Hence, if, in addition, we are allowed to take N0 = 1 then Theorem 6 coincides with Theorem 5
in the case of linear scaling and convex rate functions.

5. Examples

In this section we discuss some of the examples in which the theory of this paper can
be applied. Firstly, we shall consider an example that does not fit in the framework of any
of the previous literature. This is due to its multidimensional nature and the fact that the
rate function appearing there is nonconvex. Secondly, we shall consider a multidimensional
Gaussian example and we shall try to recover some previously known results.

Let us begin by discussing an extension of Theorem 5 from sequences {Wn : n ∈ N}
to stochastic processes {Wt : t ∈ R+}. To this end, we formulate an additional necessary
hypothesis.
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Extension hypothesis. It holds that

lim
u→∞ sup

n∈N

log P(∃t ∈ (n, n + 1] : Wt > uq)

h(u)
= lim

u→∞ sup
n∈N

log P(Wn > uq)

h(u)
.

The above hypothesis was also introduced in Duffy et al. (2003) in the one-dimensional
case. Therein, it is argued that under this hypothesis, for the d = 1 case, Theorem 3 extends
from sequences {Wn : n ∈ N} to processes {Wt : t ∈ R+}. It is straightforward to conclude
from the proof of Theorem 5 that this is also the case if d > 1.

5.1. Application to heavy-tailed processes

Let us consider processes of the type described in Duffy et al. (2003, Section 3.2). To this
end, we first introduce the heavy-tailed distribution H by

P(H ≥ x) = l(x)e−v(x),

where l is a slowly varying function and v ∈ RV(V ) with V ∈ (0, 1).
Now consider a continuous time process {Yt : t ∈ R+} taking the values 0 and 1, with the

times spent in the 0 and 1 states being a sequence of i.i.d. random variables with the same
distribution as W . For c > 0, define a process {Zt : t ∈ R+} via

Zt =
∫ t

0
(Ys − c) ds. (13)

It was shown by Duffy and Sapozhnikov (2008) that the family of probability measures {μt : t ∈
R+}, where μt is the law of Zt/t , satisfies the LDP with speed function v(t) = tV and the
(nonconvex!) rate function

Ic(x) =

⎧⎪⎨
⎪⎩

(1 − 2(x + c))V if x ∈ [−c, 1
2 − c],

(2(x + c) − 1)V if x ∈ [ 1
2 − c, 1 − c],

∞ otherwise.

(14)

Now consider two independent processes {Y 1
t : t ∈ R+} and {Y 2

t : t ∈ R+} defined as above
and construct the corresponding processes Z1 = {Z1

t : t ∈ R+} and Z2 = {Z2
t : t ∈ R+}

via (13) with constants c1 > 0 and c2 > 0, respectively. Now let Z = {Zt : t ∈ R+}, where
Zt = (Z1

t , Z
2
t ). Note that the rate function IZ corresponding to Z is given by IZ(x) = Ic1(x1)+

Ic2(x2), where Ic1 and Ic2 are given by (14). Finally, define a new process W = {Wt : t ∈ R+}
via (W 1

t , W 2
t ) = (Z1

t , Z
1
t + Z2

t ). According to the contraction principle Dembo and Zeitouni
(1998, Theorem 4.2.1), the family of probability measures {μW

t : t ∈ R+} on R
2, where μW

t is
the law of Wt /t , satisfies the LDP with speed v(t) = tV and rate function IW given by

IW (x) = inf
v∈R2:(v1,v2)=(x1,x2−x1)

(Ic1(v1) + Ic2(v2)) = Ic1(x1) + Ic2(x2 − x1).

Hence, W satisfies the restricted LDP hypothesis with rate function JW (q) = infx≥q IW (x),
q ≥ 0.
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Let q̂1 = q1 + c1 and q̂2 = q2 + c1 + c2. Elementary calculus reveals that, with q ≥ 0,

JW (q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J 1
W (q)

J 2
W (q)

J 3
W (q)

∞
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IW (q1, q1 + 1
2 − c2)

IW (q2 + c2 − 1
2 , q2)

IW (1 − c1, q2)

∞

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I (q̂1) if q̂1 ∈ (c1, 1], q̂2 ∈ (c1 + c2,
1
2 + q̂1],

I (q̂2 − 1
2 ) if q̂1 ∈ (c1, 1], q̂2 ∈ [ 1

2 + q̂1,
3
2 ],

1 + I (q̂2 − 1) if q̂1 ∈ (c1, 1], q̂2 ∈ [ 3
2 , 2],

∞ if q̂1 > 1 or q̂2 > 2,

where I = I0. Recall that c1, c1 ∈ ( 1
2 , 1), thus, we do not define JW (q) for q̂1 ≤ 1

2 , q̂2 ≤ 1.
Note also that, if c1 + c2 ∈ [ 3

2 , 2), then q̂2 ≥ 3
2 , so that the first two cases in the definition of JW

do not occur. Finally, we can easily check that JW is continuous on the interior of the set where
it is finite and that JW (0) > 0. Hence, the stability and the continuity hypothesis holds. In
Figure 1 we illustrate the definition of the JW (q); c1 + c2 < 3

2 case.
When the coordinates of W are bounded above (by 1 − c1 and 2 − c1 − c2, respectively),

the uniform decay rate hypothesis is satisfied. Note also that, for every n and t ∈ (n, n + 1],
Wt = Wn + Rn,t , where Rn,t = (R1

n,t , R
1
n,t ) with both R1

n,t = ∫ t

n
(Y 1

s − c1) ds and R2
n,t =∫ t

n
(Y 1

s + Y 2
s − c1 − c2) ds bounded independently of t . This immediately implies the extension

hypothesis too. Therefore, the extended version of Theorem 5 applies. It gives, for every q > 0,

lim
u→∞

1

uV
log P

(
∃t ∈ R+ :∫ t

0
(Y 1

s − c1) ds > uq1,

∫ t

0
(Y 1

s + Y 2
s − c1 − c2) ds > uq2

)
= − inf

t≥0

JW (tq)

tV
.

q1

q2

2 − c1− c2

−32 − c1− c2

1− c1

JW
2 (q)

JW
3 (q)

JW
1 (q)

Figure 1: Definition of JW (q); c1 + c2 < 3
2 case. The rate function is ∞ for q1, q2 > 0 outside the

shaded regions.
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Let h(t) = JW (tq)/tV , then with self-evident notation, if c1 + c2 ∈ [ 3
2 , 2),

inf
t≥0

h(t) =
⎧⎨
⎩

h3
(

1−c1
q1

)
h3

(
2−c1−c2

q2

)

=

⎧⎪⎨
⎪⎩

(
q1

1−c1

)V
(

1 +
[
2 q2

q1
(1 − c1) + 2(c1 + c2) − 3

]V
)

, q1/q2 ≥ 1−c1
2−c1−c2

,

2
(

q2
2−c1−c2

)V

, q1/q2 ≤ 1−c1
2−c1−c2

,

and if c1 + c2 ∈ (1, 3
2 ),

inf
t≥0

h(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h1
(

1−c1
q1

)

h2
(

3/2−c1−c2
q2

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
q1

1−c1

)V

, q1/q2 ≥ 1−c1
3/2−c1−c2

,

(
q2

3/2−c1−c2

)V

, q1/q2 ≤ 1−c1
3/2−c1−c2

.

5.2. Application to Gaussian processes

In this subsection we consider an example from Dȩbicki et al. (2010, Section 3.2). That
is, let Y = {Y (t) : t ∈ R+} be a centered Gaussian process in R

d with stationary increments
and covariance matrix �t = diag(c1σ

2(t), . . . , cdσ 2(t)), so that the coordinates of Y (t) =
(Y1(t), . . . , Yd(t)) are independent and, for each i = 1, . . . , d, Var(Yi(t)) = ciσ

2(t), for some
ci > 0, and σ 2 ∈ RV(γ ), where γ ∈ (0, 2); compare these assumptions with assumptions
C1–C3 of Dȩbicki et al. (2010, Section 3.2)

For an invertible matrix S, define a new Gaussian process W = {W (t) : t ∈ R+} in R
d via

W (t) = SY (t) − i(t), where i : R → R
d is such that i(t) = (t, . . . , t). Set a(t) = t and

v(t) = t2σ−2(t) and note that,

�t(α) = log E exp

(〈
α,

W (t)

a(t)

〉)
= 1

2

〈
α,

S�tS
T

t2 α

〉
− 〈α, i(1)〉,

so that the CGF variant of the uniform individual decay rate hypothesis holds with F ′ = 2.
Furthermore,

�(α) = lim
t→∞

1

v(t)
�t (v(t)α) = 1

2 〈α, SCST α〉 − 〈α, i(1)〉,

where C = diag(c1, . . . , cd), so that the CGF variant of the LDP hypothesis holds and the
RLDP is satisfied with

JW (q) = inf
x≥q

�∗(x) = 1
2 inf

x≥q
〈S−1(x + i(1)), C−1S−1(x + i(1))〉,

where the form of �∗ follows from Rockafellar (1970, Theorem 12.3). From this equation
it follows that the stability and continuity hypothesis holds. Finally, by the stationarity of
increments of Y , for any ε > 0,

P(∃t ∈ (n, n + 1] : W (t) > uq) ≤ P(∃t ∈ [0, 1] : W (t) > uεq)

+ P(W (n) > u(1 − ε)q). (15)

https://doi.org/10.1239/jap/1429282607 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1429282607


Logarithmic asymptotics for multidimensional extremes 81

Now, for any x > 0, define a new Gaussian process via Z(t) = 〈SY (t), x〉/〈x, εq〉. Using
Borell’s inequality (see, e.g. Adler (1990, Theorem 2.1)),

log P(∃t ∈ [0, 1] : W (t) > uεq) ≤ log P(∃t ∈ [0, 1] : Z(t) > u)

≤ − (u − μ)2

2σ 2 , (16)

where μ = E supt∈[0,1] Z(t) and σ 2 = supt∈[0,1] Var(Z(t)). Combining (15) and (16) we
retrieve the extension hypothesis after proper optimization in ε → 0. Hence, the extended
version of Theorem 5 implies that,

lim
u→∞

σ 2(u)

u2 log P(∃t ∈ R+ : W (t) > uq)

= −1

2
inf
c≥0

inf
x≥cq

〈S−1(x + i(1)), C−1S−1(x + i(1))〉
c2−γ

. (17)

From the change of variable c �→ t−1, it follows that

inf
c≥0

inf
x≥cq

〈S−1(x + i(1)), C−1S−1(x + i(1))〉
c2−γ

= inf
c≥0

inf
x≥q

〈S−1(x + i(c−1)), C−1S−1(x + i(c−1))〉
c−γ

= inf
t≥0

inf
x≥q

〈S−1(x + i(t)), C−1S−1(x + i(t))〉
tγ

.

Therefore, (17) coincides with Dȩbicki et al. (2010, Proposition 2).
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