AN EXTENSION OF A THEOREM OF GORDON

by E. M. Wright \dagger

(Received 7 September, 1964)
In what follows all small Latin letters denote non-negative integers or functions whose values are non-negative integers. Let $N=\left(n_{1}, \ldots, n_{j}\right)$ be a j-dimensional vector and let $q=q(k ; N)=q\left(k ; n_{1}, \ldots, n_{j}\right)$ be the number of partitions of N into just k parts, each part being a vector whose components are non-negative integers. We write

$$
Q_{j}(k)=Q_{j}\left(k ; X_{1}, \ldots, X_{j}\right)=\sum_{n_{1}, \ldots, n_{j}=0}^{\infty} q\left(k ; n_{1}, \ldots, n_{j}\right) X_{1}^{n_{1}} \ldots X_{j}^{n_{j}}
$$

for the generating function of q. We have

$$
F_{J}=\prod_{h_{1}, \ldots, h_{j}=0}^{\infty}\left(1-X_{1}^{h_{1}} \ldots X_{j}^{h_{j}} Y\right)^{-1}=1+\sum_{k=1}^{\infty} Q_{j}(k) Y^{k}
$$

It is well known [3] that
so that

$$
F_{1}=\prod_{h=0}^{\infty}\left(1-X_{1}^{h} Y\right)^{-1}=1+\sum_{k=1}^{\infty} Y^{k} \prod_{s=1}^{k}\left(1-X_{1}^{s}\right)^{-1}
$$

so that

$$
Q_{1}(k)=\prod_{s=1}^{k}\left(1-X_{1}^{s}\right)^{-1}=U\left(X_{1}\right)
$$

(say), but until 1956 the form of $Q_{j}(k)$ for $j>1$ was not known. Carlitz [1] and I [4] showed independently that

$$
\begin{equation*}
Q_{j}(k)=P_{j}\left(k ; X_{1}, \ldots, X_{j}\right) \prod_{i=1}^{j} U\left(X_{i}\right) . \tag{1}
\end{equation*}
$$

(Carlitz dealt only with $j=2$ but this case presents the essential difficulties.) Here $P=P_{j}=$ $P_{j}(k)$ is a polynomial in the X, in which no term consists of a power of a single X_{i} only. Thus $P_{1}=1$ but, when $j>1, P_{j}$ is of degree $g=\frac{1}{2} k(k-1)$ in each X_{i}, so that

$$
P_{j}=\sum_{h_{1}, \ldots, h_{j}=0}^{g} \lambda\left(h_{1}, \ldots, h_{j}\right) X_{1}^{h_{1}} \ldots X_{j}^{h_{j}} .
$$

Hence, by (1),

$$
\begin{equation*}
q\left(k ; n_{1}, \ldots, n_{j}\right)=\sum_{h_{1}, \ldots, h_{j}=0}^{g} \lambda\left(h_{1}, \ldots, h_{j}\right) \prod_{i=1}^{j} q\left(1 ; n_{i}-h_{i}\right) . \tag{2}
\end{equation*}
$$

[^0]In [4] I conjectured that the λ are non-negative. Recently Gordon [2] proved this conjecture, essentially by finding the combinatorial interpretation of (2). I have nothing to add to his elegant proof of this result. But he goes on (by a quite different argument) to prove that

$$
\begin{equation*}
P_{j}\left(k ; \xi, \eta, X_{3}, \ldots, X_{j}\right)=0, \tag{3}
\end{equation*}
$$

where ξ, η are primitive u th and t th roots of unity respectively and $1 \leqq u<t \leqq k$. For this purpose he uses a recurrence relation for the $P_{j}(k)$, which both Carlitz [1] and I [4] found.

There is another expression for $P_{j}(k)$, which I found in [4] and which appears at first sight to be rather unpromising. In fact, however, it has proved [5, 7] unexpectedly useful to calculate explicit formulae for $q_{j}(k)$ for general j and not too large k and also asymptotic formulae for large n_{i} and all k. Recently [6] I found the combinatorial explanation of this expression. Here I use the expression to give an alternative proof of Gordon's result (3) and to take this particular approach to the problem of the form of $P_{j}(k)$ somewhat further.

We write

$$
\beta(m)=\prod_{i=1}^{j}\left(1-X_{i}^{m}\right), \quad \gamma(m)=\prod_{i=1}^{j} \prod_{\rho}\left(1-\rho X_{i}\right),
$$

where ρ runs through all primitive m th roots of unity. Thus

$$
\beta(m)=\prod_{d \mid m} \gamma(d)
$$

Again $\pi=\pi(k)$ denotes the partition of k into $h(1)$ parts $1, h(2)$ parts 2 , and so on, and $\sum_{\pi(k)}$ denotes summation over all partitions π of k. Then (6) and (9) of [4] give us

$$
P_{j}(k)=\sum_{\pi(k)} \Omega(\pi)
$$

where

$$
\Omega(\pi)=\left\{\prod_{h=1}^{k} \beta(h)\right\} / \prod_{m}^{k}\left\{h(m)!(m \beta(m))^{h(m)}\right\},
$$

a polynomial in the X.
Let $1 \leqq u \leqq k$ and write $v=[k / u]$ and $k=u v+w$, so that $0 \leqq w<u$. We consider separately those partitions π_{1} of k which have v parts u and the remaining partitions π_{2} in which there are at most $v-1$ parts u. We have

$$
P_{j}(k)=\sum_{\pi_{1}} \Omega\left(\pi_{1}\right)+\sum_{\pi_{2}} \Omega\left(\pi_{2}\right)=S_{1}+S_{2}
$$

(say). In the numerator of $\Omega\left(\pi_{2}\right)$, the factor $\gamma(u)$ occurs just v times (once in $\beta(h)$ for $h=u, 2 u$, $3 u, \ldots, v u$), while it occurs at most $v-1$ times in the denominator. Hence $\Omega\left(\pi_{2}\right)$ has the factor $\gamma(u)$. Thus

$$
S_{2}=\sum_{n_{1}} \Omega\left(\pi_{2}\right)=\gamma(u) T_{2}
$$

where T_{2} is a polynomial in the X. Again

$$
\begin{aligned}
S_{1} & =\sum_{\pi_{1}} \Omega\left(\pi_{1}\right) \\
& =(v!)^{-1}\{u \beta(u)\}^{-v} \prod_{h=1}^{k} \beta(h) \sum_{\pi(w)} \prod_{m}\{h(m)!\}^{-1}\{m \beta(m)\}^{-h(m)} \\
& =(v!)^{-1}\{u \beta(u)\}^{-v} P_{j}(w) \prod_{h=w+1}^{k} \beta(h)=T_{1} P_{j}(w),
\end{aligned}
$$

where T_{1} is a polynomial in the X. If $u<t \leqq k$, then $\gamma(t)$ is a factor of $\prod_{h=w+1}^{k} \beta(h)$, but not of $\beta(u)$. Hence $\gamma(t)$ is a factor of T_{1}. Thus, if ξ is a root of $\gamma(u)$ and η a root of $\gamma(t)$, we have

$$
S_{2}\left(\xi, X_{2}, \ldots\right)=0, \quad S_{1}\left(X_{1}, \eta, X_{3}, \ldots\right)=0, \quad P_{j}\left(k ; \xi, \eta, X_{3}, \ldots\right)=0
$$

which is Gordon's result.
By a fairly obvious extension of our argument, we find more generally that, if

$$
1 \leqq u_{1}<u_{2}<\ldots<u_{a} \leqq k, \quad v_{b}=\left[k / u_{b}\right], \quad w_{b}=k-u_{b} v_{b},
$$

then

$$
P_{j}(k)=\sum_{b=1}^{a} \frac{P_{j}\left(w_{b}\right) \prod_{h=w_{b}+1}^{k} \beta(h)}{v_{b}!\left\{u_{b} \beta\left(u_{b}\right)\right\}^{v_{b}}}+T \prod_{b=1}^{a} \gamma\left(u_{b}\right),
$$

where T is a polynomial in the X.

REFERENCES

1. L. Carlitz, The expansion of certain products, Proc. American Math. Soc. 7 (1956), 558-564.
2. B. Gordon, Two theorems on multipartite partitions, J. London Math. Soc. 38 (1963), 459-464.
3. P. A. Macmahon, Combinatory analysis, vol. 2 (Cambridge, 1916), 4.
4. E. M. Wright, Partitions of multipartite numbers, Proc. American Math. Soc. 7 (1956), 880-890.
5. E. M. Wright, Partitions of multipartite numbers into a fixed number of parts, Proc. London Math. Soc. (3) 11 (1961), 499-510.
6. E. M. Wright, Direct proof of the basic theorem on multipartite partitions, Proc. American Math. Soc. 15 (1964), 469-472.
7. E. M. Wright, Partition of multipartite numbers into k parts, J. für. Math. 216 (1964), 101-112.

University of Aberdeen

[^0]: \dagger The research reported herein has been sponsored by the Office, Chief of Research and Development, U.S. Department of the Army, through its European Research Office under contract DA-91-591-EUC-3256.

