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ON THE BOUNDEDNESS A N D RANGE OF THE 
EXTENDED HANKEL TRANSFORMATION 

BY 
P. G. ROONEY 

1. Introduction. For l<p<oc5 peU, let5£^pdenote the collection of func­
tions /, measurable on (0, <*) and such that 

, i / p 

,M> = {J |x7(*)lp <**/*} <oc. 

Let C0 be the collection of functions continuous and compactly supported on 
(0, oc); it is known that C0 is dense ini^p—see [2; Lemma 2.2]. If X and Y are 
Banach spaces, denote by [X, Y] the collection of bounded linear operators 
from X into Y, abbreviating [X, X] to [X]. 

In [2] and [3] we studied the Hankel transformation on i ^ p . Here if v>-l, 
feC0, the Hankel transformation of order v, Hv is defined by 

(HJ)(x) = (xt)ll2Uxt)f(t) dt, 

and by continuous extension o n i ^ p when justified. In [2], as an application of 
a Mellin multiplier technique, we showed that if Kp<oc , y{p)^t*<<v+\, 
where 

y(p) = m2Lx(p-\p'-1), 

then for all q>p such that q'_1</x, Hv eESP^p^i-^J, while in [3] we gave a 
complete description of Hv(5£^p). 

The Hankel transformation Hv has been extended to veR, v¥"-l, - 3 , . . . 
follows. For m > 0, let 

T ,, v (-i) fc&cr2t , , , -y1 (-Dk(kxY+2k 

Jvm is sometimes called a "cut" Bessel function. If v€(R, i># —1, - 3 , . . . , there 
is a least integer mâO such that i> + 2 m > - l , and then for feC0, we define 

(HJ)(x)- (xty'%m(xt)f(t) dt. 

This extended Hankel transformation has been considerably studied; see [1], 
for example. 
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Our object in this paper is to obtain the boundedness properties of the 
extended Hankel transformation on the j£^p spaces, and to characterize its 
range on these spaces. Our technique will be that of [2], as used in [2; §7] and 
in [3]. The boundedness is shown in section 2 below, while the range is 
characterized in section 3; section 4 contains some concluding remarks. 

The reader should note that SE^V is slightly different from the space L^p 

defined in [2], and make the necessary adjustments in the statements of the 
theorems of [2]. 

2. Boundedness. The following theorem gives the boundedness properties 
of the extended Hankel transformation on t h e ^ p spaces, p > l . 

THEOREM 1. Suppose K p < ° c , y(p)<jLL<i/ + 2 m + | . Then for all q>p so 

that q"1^^ H V G [ ^ ( P , ^ _ M ] . 

Proof. We may suppose v<-l; for if v>-l, m = 0 and the result is 
known—see [2; §7]. Now if I / < - 1 , then - K i / + 2 m < l ; for, as m is the least 
non-negative integer such that v + 2 m > - 1 , and if v + 2m>l, then 
i/ + 2 ( m - l ) > - l , a contradiction, while if v + 2m = l, then the condition 
v # - 1 , - 3 , . . . , is violated. 

We use [2; Theorem 3(a)] with SX = HV, 5 2 - H ^ where r} = \v + 2m\. Clearly 
T J > - 1 . From [1; §§2 and 3], S1 and S2e[£em,2] and 

„ (t) - 2 f t r & * + i + ft)) m _ »r(S(T| + i + ft)) 

and thus 

^i(0 = r(è(v+i + it))r(é(r] + i-iO) 
Û>2(0 r(Kî] + i + îO)r(è(v+i-if))' 

Let 
r(è(v+è+s))r(è(r,+l-s)) 

m(s) = 
mvH+svmv+ï-s))' 

Then m is holomorphic in the strip S = {s | a ( m ) < R e s</3(m)} where a(m) = 
-(2m + v)-\ and |3(m) = - (2m + i/)+§, since T j+f>- (2m + i>)+§. Also since 
|r(x + iy)|~V27r lyl*-1/2^-^!/2 as |y|—>°°, uniformly in x for x in any bounded 
interval, then |m(cr + i f ) |~ l as |r| —>oc9 uniformly in a for o - i ^ a ^ ^ , where 
a(m)<a1^a2<P(m), and hence on the closed strip o - 1 < R e s < a 2 , m(s) is 
bounded. Further since from [2; p. 1100], 

Hz) = r(z)(iog z - (2Z)-1 + o(|z|-2)) 

as z ^ 0 0 in |argz|<7r — 8, and m is bounded 

|m'(cr + i'0| = O(|r|-2) as |t|oo. 
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Thus me si—see [2; Definition 3.1]. Also since - K i > + 2 m < l , a(m)<\< 

Now by [2; § 7], if 1 < p <oc, y(p) < ^ < v +§, then for all q > p with g ' - 1 < JLL, 
H,, e t i f^pj^x.^J . Hence, by [2; Theorem 3(a)], if the above conditions on p, q 
and /x are satisfied, and in addition y + 2 m - § < j L i < + 2 r a + § , H v e 
[ i ^ p ^ i - ^ J . But v + 2 m - | < | < y ( p ) , and since Tj>i> + 2m, i/ + 2 m + | < T j + | . 
Thus if K p < o o , Y(p)<ju,<z/ + 2m+1, then for all q ^ p such that q'-1<jUL, 

3. The range of Hv. We could have said something about the range of Hv 

already, for [2; Theorem 3(a)] also says that under the conditions of Theorem 
1, H . ^ p J ç H ^ ^ p ) , and the range of H^ on<2^p was characterized by us 
recently—see [3]. However, except in one isolated case, we can be much more 
precise, as the following theorem shows. 

THEOREM 2. Suppose l < p < o ° , y(p)<|UL < v + 2m +§, TJ = |i/ + 2m|. Then ex -
cept when JLL = —(V + 2m) + §, I / < - 1 , 

Proof. For i / > - l , the result is either obvious (v>0) or contained in [3, 
Theorem 1]. Hence we may assume v<-\. The proof for v<-\ is a 
continuation of that of Theorem 1, using [2; Theorem 3(c)]. For this we need 
to study 

... , ,r(è(T)+à+s))r(à(v+|-s)) 

Now r( |(i /+|—s)) is holomorphic in each of the strips Sr = 
{v + 2r-^<Res<v + 2r + | } , r = l , 2 , . . . , and in the half-plane S0 = {Res< 
i>+§}. The intersection of these strips with the strip S depends on whether 
i> + 2m = 0, î  + 2 m > 0 , or */ + 2 m < 0 , and thus we must divide our proof into 
three cases. 

Case (i). v + 2m = 0. In this case, J\ = 0, and IXKTJ +è + s)) is holomorphic in 
R e s > - | . Also Sm = S, S r HS = 0, r ^ m . Hence we may take aim'1)^ 
a(m) = — I, /3(ra_1) = )3(m) = f, and by the same argument as given for m in the 
proof of Theorem 1, or since m"1 is the same function as m with v and t] 
interchanged, m~1es&. Thus by [2; Theorem 3(c)], if K p < o c , y ( p ) < / x < | , 
-\<ix<l Hv(^p) = H0(^p) = Hr](^p). The condition -\<ix<\ is clearly 
superfluous since y ( p ) > | , and thus the result of our Theorem is true in this 
case. 

Case (ii). v + 2m>0. In this case rj = i/ + 2m, and I X K T J + I + S)) is holomor­
phic in Re s>—(y + 2m) — \= a(ra). Also, since a(m) = -(v + 2m)-j< 
v + 2m-\<-{v + 2m) + \ = j3(m), and since the right hand boundary of Sm_x 
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and the left hand boundary of Sm are the lines Re s = v + 2m -\, it follows that 
Sr H S = 0 unless r = m - 1 or r=m. Thus there are two possible choices for 
aim'1) and 0(ra_1) namely a ^ r a - 1 ) ^ - ( v + 2 m ) - | , /3x(m_1)= v + 2m-\, and 
a2{m~1) = v + 2m-\, / 3 2 ( m l ) = ^ + 2ra+§. Relative to each of the intervals 
a J (m~ 1 )<Res<|3 J (m" 1 ) , j = l,2,l/mes& by the same argument as in Case 
(i). Hence by [2; Theorem 3(c)], if K p < « , y ( p ) < / i < i / + 2 m + l , and either 
max(i> + 2 m - i -(*> + 2m)-4 )< /x <min(i/ + 2m+§, - ( i / + 2m)+ | ) or 
max(^ + 2 m - i -(*/ + 2 m + l ) < / x 0 + 2m+§, Hv(&tLtP) = Hv(&tltP). But since 
i> + 2 m > 0 , these last two conditions on /x come down to v + 2m-\<\L< 
-(j> + 2m) + § and -(i> + 2m) + i< ju<i> + 2m+§, and thus since v + 2m-\<\< 
y(p), if K p < o c , y(p)<ju,<i> + 2ra+§, then except when JH = —(i> + 2m) + §, 
Hv(i^5p) = H^Ci^p), proving the theorem in this case. 

Case (iii). ^ + 2 r a < 0 . In this case Tf = -(i> + 2m), and IXKTJ+^ + S)) is 
holomorphic in Res>i> + 2 m - | . Also since a(m) = -( i / + 2 m ) - § < 
v + 2m+§<-( i> + 2m) + §= |3(m), and since the right hand boundary of Sm 

and the left hand boundary of Sm+1 is the line Re s = v + 2m + §, it follows that 
Sr H S = 0 unless r = m or r = m + l. Thus again there are two possible values of 
aim~l) and j3(m_1) namely a1(m~1)= v + 2m -\, fixim~A)= v + 2m+\, and 
a2im~1)= v + 2m+%, fi2im~l)= v + 2m + | . Relative to each of the intervals 
ay < R e s < j8y, / = 1, 2, 1/m G ̂  by the same argument as in Case (i). Hence by 
[2; Theorem 3(c)], if K p <oo5 y(p)<|u, 0 + 2m+§, and either 

max(y + 2 m - i -( i / + 2m)-|)<jLL<min(i/ + 2 m + | , - ( i / + 2 m ) - | ) 
or 

max(i/ + 2 m - i - ( i / + 2m)-5)<fjL<min(i/ + 2 m + l , - ( j / + 2m)+l) , 

Hv&n,P) = HJ]&tXiP). But min(i/ + 2 m + | , - ( i / + 2 m ) - i ) = -(»/ + 2 m ) ~ | < ^ 
y(p), max(^ + 2 m - | , - ( v + 2m)-§) = - ( v + 2 m ) - | < y ( p ) , and min(i> + 2m + 
§,--(*' + 2m)+§) = i/ + 2m+§, so that if K p < o c , y(p)<jLt < i/ + 2m+§, 
Hv(S^,p) = HnCS?M.fP), and Case (iii) is proved. 

COROLLARY. K p < œ y ( p ) < j u , 0 + 2m+§, then except in the case v<-\, 
p, = -(*> + 2m)+§ 

*~*v \^C^p ) yip—Yrc ){çZ,yp), 

where for fe£g^p with JU. < 1, and a =2 0 

2x~a+' 
«,/)(*) = : (x2-r2)a-7(r)d/, a > 0 . 

T(a) 

= f(x), a = 0, 

Fc is the Fourier cosine transformation, that is, Fc = H_U2, and y = y(p). 

Proof. This follows from Theorem 2, and [3; Theorem 2]. 
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4. Conclusion. The reader should note that the condition in both theorems 
that y ( p ) < ^ + 2 m + | imposes limitations on the values of p allowed if v + 
2m<-\. For example, if v + 2m= - f the condition becomes f < p < 4 . 

The exceptional case, v< — l, ju, = -(i> + 2m)+§, which necessarily implies 
v + 2m>0, does not seem amenable to our techniques here, though certainly 
in this case H v ( i ^ p ) çH^( i^ > p ) , as mentioned earlier. Since this case corres­
ponds to a pole of 1/m, it seems most likely that in this case HvQ£^p) is some 
proper subset of H^CS^p)-

REFERENCES 

1. H. Kober, Hankelsche Transformationen, Quart. J. Math. 8 (Ser. 2, 1937), 186-199. 
2. P. G. Rooney, A technique for studying the boundedness and extendability of certain types of 

operators, Can. J. Math. 25 (1973), 1090-1102. 
3. , On the range of the Hankel transformation, Bull. Lond. Math. Soc. 11 

(1979), 45-48. 

UNIVERSITY OF TORONTO. 

https://doi.org/10.4153/CMB-1980-045-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1980-045-8

