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ON THE BOUNDEDNESS AND RANGE OF THE
EXTENDED HANKEL TRANSFORMATION

BY

P. G. ROONEY

1. Introduction. For 1=p<x, neR, let EL’M,pdenote the collection of func-
tions f, measurable on (0, <) and such that

Il ={ [ o ] <o

Let C, be the collection of functions continuous and compactly supported on
(0, »); it is known that C, is dense in, ,—see [2; Lemma 2.2]. If X and Y are
Banach spaces, denote by [X, Y] the collection of bounded linear operators
from X into Y, abbreviating [X, X] to [X].

In [2] and [3] we studied the Hankel transformation on ¥, ,. Here if v > -1,
fe C,, the Hankel transformation of order v, H, is defined by

(H,f)(x) = Jm(xt)“zlv(xt)f(t) i

and by continuous extension on &, , when justified. In [2], as an application of
a Mellin multiplier technique, we showed that if 1<p<oe, y(p)=p<v+3,
where
y(p) =max(p~’, p'™"),

then for all g=p such that ¢''=p, H,€[%, .
complete description of H,(Z, ).

The Hankel transformation H, has been extended to veR, v#—1,-3,...
follows. For m =0, let

&, .4, while in [3] we gave a

oo (_ 1)k(%x)v+2k m-—1 (—l)k(%x)v+2k
T = A ¥ S - ~ 7 2R .
wim (%) k;m kTorken ™ k; KTw+k+1)’
J,.m is sometimes called a ““cut” Bessel function. If veR, v# -1, -3, ..., there

is a least integer m =0 such that v+2m >—1, and then for fe C,, we define

(HLf)(x) = jw(xt)“mm(xt)f(r) .

This extended Hankel transformation has been considerably studied; see [1],
for example.
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Our object in this paper is to obtain the boundedness properties of the
extended Hankel transformation on the 56’“,[, spaces, and to characterize its
range on these spaces. Our technique will be that of [2], as used in [2; §7] and
in [3]. The boundedness is shown in section 2 below, while the range is
characterized in section 3; section 4 contains some concluding remarks.

The reader should note that £, , is slightly different from the space L, ,
defined in [2], and make the necessary adjustments in the statements of the
theorems of [2].

2. Boundedness. The following theorem gives the boundedness properties
of the extended Hankel transformation on the &, , spaces, p>1.

THEOREM 1. Suppose 1<p<c, y(p)=p <v+2m+3. Then for all g=p so
that ¢ '=p, H,€l%, &1 .q)

Proof. We may suppose v<-—1; for if v>—1, m=0 and the result is
known—see [2; § 7]. Now if v <—1, then —1<v+2m <1; for, as m is the least
non-negative integer such that v+2m>-1, and if v+2m>1, then
v+2(m—1)>-1, a contradiction, while if v+2m =1, then the condition
v#—1,-3,..., is violated.

We use [2; Theorem 3(a)] with S, = H,, S,= H, where n = |v+2m|. Clearly
n>-1. From [1; §§ 2 and 3], S, and S,€[%,,,,2] and

IF'Gv+1+it)) I'G(n+1+it))

@O=2raoviciy T T am e oy
and thus
wi(t) TG +1+i)lG(n+1- i)
wy(t) TGm+1+it)FG(v+1-it)’
Let

_TGr+3+ )G +3-5))
LGn+3+ )G +3-3))

m(s)

Then m is holomorphic in the strip S ={s \ a(m)<Re s <B(m)} where a(m)=
—@2m+v)—1% and B(m)=—-2m+v)+3, since n+3=—-(2m +v)+3. Also since
IT(x + iy)| ~~27 |y|*""2e" ™2 as |y| — o, uniformly in x for x in any bounded
interval, then |m(o +it)|~1 as |t| — o, uniformly in o for o, <o =0,, where
a(m)<o,=o0,<B(m), and hence on the closed strip o; =Re s =0, m(s) is
bounded. Further since from [2; p. 1100],
I'(z) =T(z)(log z = (2z) ' + O(|z|7?))
as z— o in |arg z|<m—§, and m is bounded

|m'(o+it)|=O(|t|?) as |t|e.
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Thus m € f—see [2; Definition 3.1]. Also since —1<v+2m<1, a(m)<i<
B(m).

Now by [2; § 7], if 1<p <o, y(p)<um <m+3, then for all g=p with g’ *=p,
H, €[%, ,, % -, Hence, by [2; Theorem 3(a)], if the above conditions on p, q
and u are satisfied, and in addition v+2m—-i<u<+2m+3, H,e
(% prLi-pq)- But v+2m —3<3=1y(p), and since n=v+2m, v+2m+3=n+3.

Thus if 1<p<e, y(p)=p<v+2m+3, then for all g=p such that ¢'=p,
H,el&, . %,

w,p?

3. The range of H,. We could have said something about the range of H,
already, for [2; Theorem 3(a)] also says that under the conditions of Theorem
1, H(,,)=H,(,,), and the range of H, onZ, , was characterized by us
recently—see [3]. However, except in one isolated case, we can be much more
precise, as the following theorem shows.

THEOREM 2. Suppose 1<p<w, y(p)=p <v+2m+3, n=|v+2m|. Then ex-
cept when w=—(v+2m)+3, v<-1,

H, (&, ,)=H,Z.,)-

Proof. For v>—1, the result is either obvious (¥=0) or contained in [3,
Theorem 1]. Hence we may assume »<-—1. The proof for v<—1 is a
continuation of that of Theorem 1, using [2; Theorem 3(c)]. For this we need
to study

IG(n+3+s)IG(r+3—5s))
FGr+3+s)FGn+3—s))

1/m(s) =

Now TI'(3(v+3—s)) is holomorphic in each of the strips S, =
{v+2r—3i<Res<v+2r+3}, r=1,2,..., and in the half-plane Sy;={Re s<
v+3}. The intersection of these strips with the strip S depends on whether
v+2m=0, v+2m>0, or v+2m <0, and thus we must divide our proof into
three cases.

Case (i). v+2m =0. In this case, n =0, and I'3(n +5+s)) is holomorphic in
Res>—3. Also S,=S, S;NS=0, r#m. Hence we may take a(m™')=
a(m)= —3, B(m™')= B(m) =3, and by the same argument as given for m in the
proof of Theorem 1, or since m™' is the same function as m with » and 7
interchanged, m™ '€ &. Thus by [2; Theorem 3(c)], if 1<p<e, y(p)=pn<3,
-3<u<3, H,(4,,)=Hy%.,)=H,(Z,,). The condition —3<p <3 is clearly
superfluous since y(p)=3, and thus the result of our Theorem is true in this
case.

Case (ii). v+2m>0. In this case n=v+2m, and ['G(n +3+s)) is holomor-
phic in Res>—(v+2m)—3=a(m). Also, since a(m)=—(v+2m)—3i<
v+2m—3<—(v+2m)+3=B(m), and since the right hand boundary of S,,_,
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and the left hand boundary of S,, are the lines Re s = v+2m —3, it follows that
S,NS=0 unless r=m—1 or r=m. Thus there are two possible choices for
a(m™') and B(m™?) namely a;(m™")=—(v+2m)—3, B;(m™")=v+2m—3, and
a,(m ) =v+2m—-3%, By(m™")=v+2m+3. Relative to each of the intervals
a(m ) <Res<B(m™), j=1,2,1/me s by the same argument as in Case
(i). Hence by [2; Theorem 3(c)], if 1<p<ce, y(p)=p <v+2m+3, and either
max(v+2m—3, —-(v+2m)-H<u<min(v+2m+3, —(v+2m)+3) or
max(v+2m—3%, —(v+2m+3)<p<v+2m+3, H(%,,)=H,(%,,). But since
v+2m >0, these last two conditions on u come down to v+2m—3<u <
—(v+2m)+3and (v +2m)+3<pu <v+2m+3, and thus since v +2m —3 <3<
v(p), if 1<p<e, y(p)=p <v+2m+3, then except when p=—(v+2m)+3,
H,(%,,)=H,(%,,), proving the theorem in this case.

Case (iii). v+2m<0. In this case n=—(v+2m), and T'G(n+3+s)) is
holomorphic in Res>v+2m—3 Also since a(m)=—(v+2m)—i<
v+2m+3<—(v+2m)+3=B(m), and since the right hand boundary of S,,
and the left hand boundary of S, ., is the line Re s = v+2m +3, it follows that
S.NS =0 unless r=m or r=m+ 1. Thus again there are two possible values of
a(m™) and B(m™") namely a;(m H=v+2m-3% B,(m H=v+2m+3, and
a,(m Y =v+2m+3, B,(m Y)=v+2m+Z. Relative to each of the intervals
a;<Res<p;, j=1,2,1/me s by the same argument as in Case (i). Hence by
[2; Theorem 3(¢c)], if 1<p <o, y(p)=p <v+2m+3, and either

max(v+2m—3, —(v+2m)—3) <p<min(v+2m +3, —(v +2m)—1
or

max(v+2m—3z, —(v+2m)—3) <u <min(v +2m+3, —(v+2m) +3),
H, &, ,)=H,(&£,,). But min(v+2m+3,—(v+2m)—3)=—(v+2m)—-3<3=
v(p), max(v+2m—3, —(v+2m)—3)=—(v+2m)—3=y(p), and min(v+2m+
S—(w+2m)+3)=v+2m+3, so that if 1<p<ec, y(p)=p<v+2m+3,
H,&,,)=H,(&,,), and Case (iii) is proved.

CorOLLARY. 1<p<c, y(p)=u<v+2m+3, then except in the case v<—1,
p=—(v+2m)+3

H, &, ,) =, F)&,,),
where for fe¥, , with u <1, and a =0

2x—a+l

(L)(x) = )

=f(x), a=0,

jx(xz—tz)“*‘f(t) dt, a>0.

F, is the Fourier cosine transformation, that is, F,= H_,,,, and vy =vy(p).

Proof. This follows from Theorem 2, and [3; Theorem 2].
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4. Conclusion. The reader should note that the condition in both theorems
that y(p) <v+2m+3 imposes limitations on the values of p allowed if v+
2m < —3. For example, if v+2m = —3 the condition becomes 3 <p <4.

The exceptional case, v<—1, w=—(v+2m)+3, which necessarily implies
v+2m >0, does not seem amenable to our techniques here, though certainly
in this case H,(¥,,) < H,(%,,,), as mentioned earlier. Since this case corres-
ponds to a pole of 1/m, it seems most likely that in this case H, (¥, ,) is some
proper subset of H, (£, ).
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