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On Stieltjes-Volterra

integral equations

S.G. Pandit

A Stieltjes-Volterra integral equation system

xit) = fit) + f K[t, s, xis))duis)
t0

is firstly considered. Pointwise estimates and boundedness of

its solutions are obtained under various conditions on the

function K . To do this, the well-known Gronwall-Bellman

integral inequality is generalized. For a particular choice of

u , it is shown that the integral equation reduces to a

difference equation. The problem of existence (and non-

existence), uniqueness (and non-uniqueness) of the difference

equation is discussed. Gronwall-Bellman inequality is further

generalized to n linear terms and is subsequently applied to

obtain sufficient conditions in order that a certain stability of

the unperturbed Volterra system

xit) = fit) + ait, s)xis)ds
J +
*0

implies the corresponding local stability of the (discontinuously)

perturbed system

,t ft
xit) = fit) + ait, s)xis)ds + bit, S)F{S, xis))duis) .

' -h ' +

Received 11 January 1978.

321

https://doi.org/10.1017/S0004972700008200 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008200


322 S.G. Pand i t

1 .

In many problems of physics and engineering (optimal control theory in

particular), one can not expect perturbations to be well-behaved and it is

therefore important to consider the cases when the perturbations are

impulsive [3, 7]. Such systems would be described by differential

equations containing measures, which are equivalent to Volterra integral

equations with perturbations involving Lebesgue-Stieltjes integrals. The

purpose of this paper is to obtain pointwise estimates and boundedness of

solutions of Stieltjes-Volterra integral equations and to study a stability

property of Volterra integral equations with discontinuous perturbations.

The tools used for the purpose are the generalized Gronwall-Bellman

inequalities involving Lebesgue-Stieltjes integrals.

Let J = [t , °°) , t > 0 , and BV{j, Rn) = BV(J) denote the space

of all functions of bounded variation which are defined on J and taking

values in if" . The norm of x = x(t) i BV(J) is defined by

||a;|| = V(x, J) + \x[t^ | where V{x, J) is the total variation of x on

J and | • | is any norm in i? . Let u be a scalar function which is

right-continuous and of bounded variation on every compact subinterval of

J . We consider the following Volterra integral equations

rt
(1.1) x{t) = fit) + K{t, s, x(s))du(s) ,

(1.2) x(t) = f(t) + a{t, s)xis)ds ,

rt rt

(1.3) xit) = fit) + ait, s)xis)ds + bit, S)F{S, xis))duis) ,
t0 t0

where x, f € BViJ) , Kit, s , <f>) : J * J x if" -> i?" , F : J x if" -• if" ,

and ait, s), bit, s) are n x n matrices defined for t £ s 2 t < °° .

A special case of (l.l) is considered in [2] where the integrals are in the

Riemann-Stieltjes sense. (1.2) and (1.3) have been dealt with in [9]. [6,

JO] also treat these equations when ait, s) = bit, s) and u is
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absolutely continuous on J .

In Section 2, we generalize the Gronwall-Bellman integral inequality

and apply i t to obtain pointwise estimates and boundedness of solutions of

( l . l ) . Section 3 deals with a difference equation arising from ( l . l ) for a

particular choice of u . The existence (or non-existence) and uniqueness

(or non-uniqueness) of solutions of the difference equation are discussed.

Finally, in Section 4 , we further generalize the Gronwall-Bellman

inequality and study a s t ab i l i ty property of (1.3) in the l ight of (1 .2) .

In the following discussion, i t i s assumed that ( l . l ) - ( l . 3 ) possess

solutions on J .

2.

Let i < £„ < ... denote the discontinuities of u on J (note

that u is of bounded variation). We assume that the discontinuities are

isolated, u may be decomposed as u = u + wp where u is an

absolutely continuous function of bounded variation on J and w_ is a

sum of jump functions, the jumps being those of u . It follows that u'

exists [and is equal to u' almost everywhere) on J . Let

X, = u[tA - u[t,-) denote the jump of u at t = t, , k = 1, 2, ... .

In the following all functions of one variable are assumed to be defined,

real-valued, and measurable on J . Such a function W is said to "be

locally du-integrdble on J if, for each t € J , the Lebesgue-Stieltjes

rt
integral w(s)du(s) is finite.

THEOREM 2.1. Suppose that

f*( 2 . 1 ) x(t) s f{t) + g{t) h{s)x{s)du{s) , t k J ,
Jto

where

(i) x, f, g , and h are non-negative and locally du-

integrable on J , with f non-deoreasing and g > 1 ,

(ii) u is such that u' > 0 on J and
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< 1 , k = 1 , 2 , . .

(Hi) the series

k=l

converges absolutely.

(2.2)

I

(2.3)

Then

(2.1+)

where

{

Proof. Since / is non-decreasing and g > 1 on J , (2.1) may be

written as

rt
g{s)h{s)u'As)ds

0

, t i J .

Denote the bracket on the right side of (2.5) by r{t) . Firstly suppose

i £ t < t. • Since u is differentiable on [t , tA , by the classical

Gronwall-Bellman inequality [/, p. 58], we obtain

rt \
(2.6)

At t = t. we have

5 exp g(s)h(s)u!L(s)ds\ .

0

t j = r{t±-c) * J

where e > 0 . Taking the limit as £ •> 0 and using (2.6), we get

) £ exp
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which, in view of ( 2 . 2 ) , y i e l d s

r{t) 5 P"1 exp I g(s)h(s)u!(s)ds
J t o

where

k
pk = T T {i

n=l

By mathematical induction, it follows that

(2-7) p(*J-PmlexP

= i. 2,....

, m = 1, 2

Since P. > P. ., for each i > 1 and lim P. = P (which exists in view
i ^+l . v

of hypothesis (Hi)), we may write (2.7) as

, m = 1, 2, ... .

Now, given any t € J , there is a unique integer m > 0 such that

= r{t)
J\S

Hence we conclude that

xit) < f(t)g(t)r{t)

*0

This completes the proof.

As an illustration of Theorem 2.1, consider the inequality
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where

x(t) 5 t2 + e*

= 2-V-*j
fc-1
I tt+D

, t € [ l , ») ,

, fc = 2 , 3 ,

Here X. , the characteris t ic function of the set A , is defined as

X. ( t) = 1 i f t i A and equal to zero otherwise. I t is easily seen that

u'(t) = 2"1(2t- l) almost everywhere on [ l , «) ; t, = k , A, = (fe+l)"1

for fe = 2, 3, . . . ; X^t^ h{tj) = 2(fe3+l) "X < 1 for a l l k > 2 ; the

series

comparison t e s t and

Following the estimate in (2.U), we obtain

x{t) S | [t^-^+t2] e* , for all t > 1 .

We apply Theorem 2 . 1 , in the natural way, to Volterra integral

equations of the form ( l . l ) . To this end, we assume that there exist non-

negative functions g and h which are defined and locally du-integrat>le

on J and are such that

(2.8) \K{t, s, $J-K[t, s, cf>2] | 5 g(t)h(a)\^2\

for a l l 4 ^ , <|>2 € i?" .

THEOREM 2 . 2 . Suppose that

(i) ( l . l ) Tws a bounded solution x defined on J ,

(ii) g - 1 is bounded on J and
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(2.9) 1 g(s)h(s)v!L(s)ds

*0

where v = v + u is the decomposition of

v(t) = v{u(t), \t , t\) , the total variation function of

u{t) on \tQ, t\ ,

(Hi) v' 2 0 on J and \i,g[tAh[tA < 1 , where

V^ = v[tk) - v{tk-) , k = 1, 2, . . . ;

GO

series Y V-iydi^t^^i^v) converges absolutely.
k=l

If f* £ BV{J) is locally du-integrable on J and \\f{ t)-f*( t) \\ is
non-decreasing and bounded on J , then any solution of the equation

tt
(2.10)

it
y{t) = f*{t) + K{t, s, y{s))du{s) , t d J ,

0

is bounded.

P r o o f . From ( l . l ) , ( 2 . 8 ) , and ( 2 . 1 0 ) , we o b t a i n

+ git) h(s)\\x(s)-yis)\\dv(s) , t ZJ .
t0

Since y is a right-continuous function of bounded variation and has
discontinuities where u has, a suitable application oT Theorem 2.1 gives

(2.11) \\xit)-y(t)\\
'tt

5 P~1||/(*)-/*(*)||ff(t)exp

*0

As x, g , and 11/-/"* II are all bounded on J , the conclusion follows from
(2.9), (2.11), and the fact that \\y{t)\\ 5 \\y(t)-x{t)\\ + ||x(t)|| .

REMARK 2.1. A result similar to Theorem 2.2 is proved in [5,
Theorem 3] where the integrals are in the Riemann-Stieltjes sense. Hence
i t is necessary that the integrand and the integrator should not have the
same discontinuities. In our case, x and u have the same
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discontinuities and therefore the methods of [5] are not applicable.

3.

In this section, we consider a special case of (l.l), namely

rt
(3.1) x{t) = f(t) + Ait, s)x(s)duis) , t i J ,

where A(t, s) is an n x n matrix defined for t. £ s 5 t < °° . We

show, under certain conditions, that (3.1) reduces to a difference

equation. Choose u to be a step function (that is u = 0 ) of the form

u(t) =
fc-1

i=0 ") ^k-l'"k}

where the a.'s are constants. Let J, = {t,\ , k = 0, 1, . . . . Denote

by B, the matrix I - a,i4(t, , tA , k = 1, 2, . . . , where J i s the

identi ty n x n matrix.

THEOREM 3.1 . On J, , (3.1) reduces to the difference equation
t0

(3.2) Vx{tk) = Vf[tk) + a.kA{tk, tk)x{tk) , x{tQ) = f[tQ) ,

where V is the operator such that Vx(t,) = x{t,) - x{t, ) . Further-

more, if B~ is non-singular for each k = 1, 2, . . . then the unique

solution of (3.2) is given by the recurrence formula

/ o o } x \ t \ — 3 ~ \ x i £ I + V ' P i t i r k — 1 2

Proof. I t is clear that x(.*0) = /(.*Q) • F o r *i ^ ^t ' w e h a v e

0
from (3.1),

Similarly
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f*1 fZ
J A{tx, s)x(s)du(s) + I A[t2, s)x(s)du(s)
t0 *x
t0

In general, by induction,

(3.U) a(*fc) =x{tk_x) + V(*fc)
 + V ^ ' **)*(*&) ' * = 1. 2, ... ,

•which is the same as (3.2). If B, is invertible, it follows from (3.1*)

that x{tA exists uniquely and is given by (3.3).

REMARK 3.1. If, for some k , a, is zero, then B. {= I) is

clearly invertible. If A{t, s) - A is a constant matrix and if a, •£ 0 ,

then a sufficient condition for B, to be invertible is that a.7 is not

an eigenvalue of A .

REMARK 3.2. Suppose B, is not invertible for some k . Then it

follows from (3A) that, in general, x\Py] does not exist. On the other

hand, if x(t, .) + V/(t,) = 0 , then x[tA is arbitrarily determined,

which means that there are infinitely many solutions at t, . It is to be

noted that if / E 0 , then x{tA = 0 for each k = 0, 1, ... .

EXAMPLE 3.1. Let f{t) = t and Ait, s) = (e*+t) sin ̂  .be scalar

scalar functions on [0, °°) . Choose

fc-1
I ^
i=0

At) , k = l, 2, ... .

Then u is discontinuous at isolated points t. = k and a, = k for

fe = 1, 2, ... . The difference equation corresponding to (3.1) is

x(0) = 0 ,

x(k) = x(k-l) + 1 + fe"1(efc-*) sin ^a;(fe) , k = 1, 2, ... .

Since (e +fc) sin ^- t k for any fe > 1 , the condition of Theorem 3.1 is

satisfied. x(k) can now be determined from (3.3).
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EXAMPLE 3.2. Let A(t, s) = A be the constant matrix

~2 -1/3

-6 1

and

.2
TJ — o "2

-1
Here a, = 3 is an eigenvalue of A , the corresponding eigenvector being

I 1 . If /(l) # ° , x(l) does not exist. Moreover, e l 1 is

also an eigenvector where a is any constant. Therefore, if /(l) =

then x(l) = a\ , , meaning thereby that there are infinitely many

solutions.

4.

In this section, we obtain sufficient conditions in order that a

certain stability of the system (1.2) implies the corresponding local

stability of the system (1.3). The solutions y(t) and x(t) of (1.2)

and (1.3) are respectively given by (the variation of constants formula)

y(t) = fit) + 1 R(t, s)f{s)ds , t > tQ ,

and

rt
(U.2) x(t) = y{t) + I R*{t, s)F{s, x{s))du{s) , t 2 tQ ,

where i?(t, s) and R*(t, s) satisfy

(It.3) R(t, s) = ait, s) + R{t, x)a(x,

and
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(h.k) R*(t, s) = bit, s) + R*{t, T)2>(T, s)dx .
' s

The main result (Theorem k.l) of this section depends on the following

lemma, which is interesting in itself.

LEMMA 4.1. Assume

(i) x, f j and u are as in Theorem 2.1,

(ii) g., h. are non-negative functions, locally du-integrable

on J , and g^ > 1 for i = 1, 2, ..., n ,

(Hi) \hg.[tAh.[t,] < 1 for k > 1 and the n series

CO

k=l

converge absolutely for i = 1, 2, ..., n .

Then the inequality

rt

(U.5)

implies

where

(k.l)

n rt
X 9 •(*) h .(s)x(s)du(s) , t <L J ,

x(t) <

\(s)ds , r = 1, 2, ..., n ,

Pi=Tl l1"VJ = 1, 2, . . . . n ,

and

The proof can "be obtained "by applying Theorem 2.1 and the method of

Theorem 1 in [4]. We omit the details.
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Now consider equations (1.2) and (1.3) whose solutions are given by

(U.l) and (U.2) respectively. Assume that

Hj. There exists r > 0 such that

\F{t, x)\ 5 / U ) | | x | | for t > tn and ||a;|| < r ,
u

where f(t) is non-negative and du-integrable on J .

H2. R* satisfies

n
\R*(t, s)| 5 [ g.(t)h.(s) for t < s 5 t < » ,

£=1 t' "̂

where, for i = 1, 2, ..., n , g., h. are non-negative functions,

(fu-integrable on J , and £. > 1 ; vu/(i, ) ^ . (t. )fc . (t ) < 1 for fc > 1 ,

and the n series

converge abso lu t e ly where p, i s as defined in Theorem 2 . 2 .
K.

THEOREM 4 . 1 . Under the hypotheses Hi and H2., any solution x of

(1.3) satisfies

\\x{t)\\ < P

w^ere z/ i s awy solution of (1.2); ff" -is as defined in Lemma h .1

except that u' is replaced by v' ;

P. = J 7 {l-yj/(*t)^-(*J^-(*J} , i = 1, 2, •••, n and P = P P2 ... P

Proof. We have

||x(t)|| < ||jy(t)|| + I f(t)g.(t) h.(s)\\x(s)\\dv(s) , t € J .
i=l 't

Since ||y(t)|| is non-decreasing on J , an application of Lemma U.I gives

the desired conclusion.

REMARK 4.1. Theorem U.I may be regarded as a result on local
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s tabi l i ty of the system (1.3) with respect to the system (1.2) in the

following sense: given 6 > 0 and sufficiently small, the solution x

of (1.3) sat isf ies ||xU)|| < c6 , a > 0 , t > tQ , whenever \\y{t)\\ < 6

As an i l lus t ra t ion of Lemma U.I, consider the inequality

(U.8) xit) £ e* + t \ s'2x(s)du(s) + t2 f {hs
3)-1x(s)du(s) ,

J l J l

where

u(t) = t + ^ • " 1

Here t, = k , X, = k"1 for k = 2, 3, . . . ;

P = TT (l-^"2) = 1/2 ;1 fe2

,2.TT L O J . i .
^ k=2 [ hk2' 37T

In view of (U.6),

*(*) <

we

P" :

obtain

t exp
' ^ i

8
, for a l l t > 1 .

REMARK 4 . 1 . Lemma U.I has a d i s t i n c t advantage over Theorem 2 . 1 . To

see t h i s , consider the inequa l i ty (U.8) . Since t 2 s S 1 , we may wr i te

i t as

t 2 f* 2
x ( t ) < e + 2fc s a?(s)dw(s) , t > 1 ,

which is of the form (2.1). In the notation of Theorem 2.1, we see that

= 2k~ , k = 2, 3, ... • However, Theorem 2.1 is not

applicable here for two reasons; firstly because \^[t J/ift ) \ 1 , and

OO

secondly because the series £ 2k diverges.
k=2
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