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Anti-symmetric calculus

In almost every respect there exists a strong analogy between symmetric and
anti-symmetric tensors, between bosons and fermions. It is often convenient to
stress this analogy in terminology and notation.

Symmetric tensors over a vector space can be treated as polynomial functions
on its dual. Such functions can be multiplied, differentiated and integrated, and
we can change their variables.

There exists a similar language in the case of anti-symmetric tensors. It has
been developed mostly by Berezin, hence it is sometimes called the Berezin
calculus. It is often used by physicists, because it allows them to treat bosons
and fermions within the same formalism.

Anti-symmetric calculus has a great appeal – it often allows us to express the
analogy between the bosonic and fermionic cases in an elegant way. On the other
hand, readers who see it for the first time can find it quite confusing and strange.
Therefore, we devote this chapter to a presentation of elements of anti-symmetric
calculus.

Note that the main goal of this chapter is to present a certain intriguing
notation. Essentially no new concepts of independent importance are introduced
here. Therefore, a reader in a hurry can probably skip this chapter on the first
reading.

This chapter can be viewed as a continuation of Chap. 3, and especially of Sect.
3.6. In particular, we will use the anti-symmetric multiplication, differentiation
and the Hodge star introduced already in Chap. 3.

7.1 Basic anti-symmetric calculus

Let Y be a vector space over K of dimension m. Let v denote the generic variable
in Y# and y the generic variable in Y. We remind the reader that Γn

a (Y) denotes
the n-th anti-symmetric tensor power of Y.

7.1.1 Functional notation

Recall from Subsect. 3.5.1 that Ψ ∈ Γn
a (Y) can be considered as a multi-linear

anti-symmetric form

Y# × · · · × Y# � (v1 , . . . , vn ) �→ Ψ(v1 , . . . , vn ) = 〈Ψ|v1 ⊗a · · · ⊗a vn 〉. (7.1)
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160 Anti-symmetric calculus

When we want to stress the meaning of an anti-symmetric tensor as a multi-linear
form, we often write Polna (Y# ) instead of Γn

a (Y).

Definition 7.1 It is convenient to write Ψ(v) for (7.1), where v stands for the
generic name of the variable in Y# and not for an individual element of Y# . We
will call it the functional notation.

(We mentioned this notation already in Subsect. 3.5.1).
Sometimes we will consider a vector space with a different name, and then we

will change the generic name of its dual variable used in the functional notation.
For instance, Φ ∈ Pola(Yi), resp. Ψ ∈ Pola(Y1 ⊕ Y2), in the functional notation
will be written as Φ(vi), resp. Ψ(v1 , v2).

Remark 7.2 Note that the same symbols have a different meaning in (7.1) and
in the functional notation. In (7.1), vi stands for an “individual element of Y# ”.
In the functional notation, vi is the “name of the generic variable”.

7.1.2 Change of variables in anti-symmetric polynomials

Let Y1 ,Y2 be two finite-dimensional vector spaces. As mentioned above, v1 , v2

will denote the generic variables in Y#
1 and Y#

2 .
Consider r ∈ L(Y1 ,Y2) and Ψ ∈ Polna (Y#

1 ). Then Γ(r)Ψ, understood as a
multi-linear functional, acts as

Y# × · · · × Y# � (v1 , . . . , vn ) �→ Γ(r)Ψ(v1 , . . . , vn ) = Ψ(r# v1 , . . . , r
# vn ). (7.2)

Definition 7.3 The functional notation for Γ(r)Ψ is (Γ(r)Ψ)(v2) or, as sug-
gested by (7.2), Ψ(r# v2).

For example, let

j : Y → Y ⊕ Y
y �→ y ⊕ y,

(7.3)

so that j# (v1 , v2) = v1 + v2 . Then the two possible functional notations for Γ(j)Ψ
are (Γ(j)Ψ)(v1 , v2) or Ψ(v1 + v2).

7.1.3 Multiplication and differentiation operators

Definition 7.4 If Ψ1 ,Ψ2 ∈ Γa(Y), then Ψ1 ⊗a Ψ2 will be denoted simply by
Ψ1 ·Ψ2 , if we consider Ψ1 , Ψ2 as elements of Pola(Y# ). The functional notation
will be either Ψ1 ·Ψ2(v) or Ψ1(v)Ψ2(v).

Recall that in Subsect. 3.5.2 we defined multiplication and differentiation oper-
ators. For Ψ ∈ Polna (Y# ) they are given by

y(v)Ψ := y ⊗a Ψ, y ∈ Y,

w(∇v )Ψ := n〈w| ⊗ 1l⊗(n−1)
Y Ψ, w ∈ Y# .
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7.1 Basic anti-symmetric calculus 161

Therefore, v can be given the meaning of a Y# -vector of anti-commuting oper-
ators on Pola(Y# ). Similarly, ∇v is a Y-vector of anti-commuting operators on
Pola(Y# ).

Let (e1 , . . . , em ) be a basis in Y and (e1 , . . . , em ) be the corresponding dual
basis in Y# . The following operator on Pola(Y# ⊕ Y# ) is clearly independent of
the choice of the basis:

v1 · ∇v2 :=
m∑

i=1

ei(v1)ei(∇v2 ).

As an exercise in anti-symmetric calculus, it is instructive to check the follow-
ing analog of Taylor’s formula:

Proposition 7.5 Let Ψ ∈ Pola(Y# ). Then

Ψ(v1 + v2) = ev1 ·∇v 2 Ψ(v2).

Note that (v1 · ∇v2 )
p = 0 for p > dimY, so the exponential is well defined.

Proof of Prop. 7.5. Let

d =
[

0 1l
0 0

]
∈ L(Y ⊕ Y),

j2 =
[

0
1l

]
, j =

[
1l
1l

]
∈ L(Y,Y ⊕ Y).

Then edj2 = j. This implies that Γ(j) = edΓ(d)Γ(j2). If we fix a basis (e1 , . . . , em )

of Y, then d =
m∑

i=1
|ei ⊕ 0〉〈0⊕ ei |. Hence,

dΓ(d) =
m∑

i=1

a∗(ei ⊕ 0)a(0⊕ ei)

=
m∑

i=1

ei(v1)ei(∇v2 ) = v1 · ∇v2 ,

where we have used the functional notation for creation and annihilation
operators:

a∗(ei ⊕ 0) = ei(v1), a(0⊕ ei) = ei(∇v2 ).

But

Γ(j)Ψ(v1 , v2) = Ψ(v1 + v2), Γ(j2)Ψ(v1 , v2) = Ψ(v2). �

7.1.4 Berezin integrals

Recall that in Subsects. 3.5.2 and 3.5.3 we defined the left and right differen-
tiation. Even though it sounds a little strange, the right differentiation will be
renamed as integration.
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162 Anti-symmetric calculus

Let us be more precise. Let Y1 be a subspace of Y of dimension m1 . Its generic
variable will be denoted v1 . Fix a volume form on Y1 , that is, let Ξ1 ∈ Polm 1

a (Y1)
be a non-zero form.

Definition 7.6 The partial right Berezin integral over Y1 of Ψ ∈ Pola(Y# ) is
defined as ˆ

Ψ(v)dv1 := Ξ1(
←−∇v )Ψ(v). (7.4)

Note that (7.4) depends only on (Y/Y1)# � Yan
1 , where the superscript an

stands for the annihilator (see Def. 1.11). Thus the Berezin integral produces an
element of Pola(Yan

1 ).
In particular, if we take a volume form Ξ on Y, i.e. a non-zero element of

Polma (Y), then the right Berezin integral over Yˆ
Ψ(v)dv = 〈Ξ|Ψ〉 (7.5)

yields a number.
Let Y = Y1 ⊕ Y2 . The generic variable on Y# = Y#

1 ⊕ Y#
2 is denoted v =

(v1 , v2). Fix volume forms Ξi ∈ Polmi
a (Yi). Equip Y# with the volume form

Ξ = Ξ2 ∧ Ξ1. The corresponding Berezin integrals are denoted
´ · dvi , and

´ · dv.
Then we have the following version of the Fubini theorem:ˆ

Ψ(v)dv =
ˆ (ˆ

Ψ(v1 , v2)dv1

)
dv2 . (7.6)

Thus, we can omit the parentheses and denote (7.6) by
´ ´

Ψ(v1 , v2)dv1dv2 .

Definition 7.7 Apart from the right Berezin integral one considers the partial
left Berezin integral over Y1 . For Ψ ∈ Polna (Y# ), the left and right integrals are
related to one another byˆ

dv1Ψ(v) = (−1)m 1 n

ˆ
Ψ(v)dv1 .

In particular, we have the left Berezin integral over Y:ˆ
dvΨ(v) = (−1)m

ˆ
Ψ(v)dv.

The following identities are easy to check for Ψ ∈ Pola(Y# ):ˆ
Φ(∇v )Ψ(v)dv = 0, Φ ∈ Pol≥1

a (Y);
ˆ

Ψ(v + w)dv =
ˆ

Ψ(v)dv, w ∈ Y# ;
ˆ

Ψ(mv)dv = (detm)
ˆ

Ψ(v)dv, m ∈ L(Y# ). (7.7)

Remark 7.8 The identities of (7.7) are essentially the same as their analogs
in the case of the usual integral described in (3.50) except for one important
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7.1 Basic anti-symmetric calculus 163

difference: the determinant in the formula for the change of variables has the
opposite power.

This is related to another difference between the Berezin and the usual integral.
In the Berezin integral, such as (7.5), the natural meaning of the symbol dv is
a fixed volume form on Y. In the usual integral, in the analogous situation, its
meaning would be a volume form (or actually the corresponding density) on Y# .

Remark 7.9 In the definition of the Berezin integral it does not matter whether
the space Y is real or complex. However, if we want to have a closer analogy with
the usual integral, we should assume that it is real. In this case, we can allow
Ψ ∈ CPola(Y# ) in (7.4), so that we can integrate complex polynomials.

7.1.5 Berezin calculus in coordinates

So far, our presentation of anti-symmetric calculus has been coordinate-free. In
most of the literature, it is introduced in a different way. One assumes from
the very beginning that coordinates have been chosen and all definitions are
coordinate-dependent. This approach has its advantages; in particular, it is a
convenient way to check various identities. In this subsection we describe the
anti-symmetric calculus in coordinates.

Definition 7.10 v1 , . . . , vm denote symbols satisfying the relations

vivj = −vj vi. (7.8)

They are called Grassmann or anti-commuting variables. If I = {i1 , . . . , ip} with
1 ≤ i1 < · · · < ip ≤ m, we set Π

i∈I
vi := vi1 · · · vip

.

The space of expressions ∑
I⊂{1,...,m}

αI Π
i∈I

vi , αI ∈ K

is an algebra naturally isomorphic to Pola(Km ).

Remark 7.11 Recall that in Remark 7.2 we distinguished two meanings of sym-
bols v1 , v2 . . . . The same symbols are used in Def. 7.10 with a third meaning. They
stand for anti-commuting variables in Km (generators of the algebra Pola(Km )).
The first meaning was as individual vectors in Y# ; see e.g. (7.1) and (7.12). The
second was as the generic variables in Y#

i ; see (7.2).

Definition 7.12 Let I ⊂ {1, . . . , m}. We denote by sgn(I) the signature of
(i1 , . . . , ip , ip+1 , . . . , im ), where

I = {i1 , . . . , ip}, Ic := {1, . . . , m}\{i1 , . . . , ip} = {ip+1 , . . . , im},

with i1 < · · · < ip and ip+1 < · · · < im .
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164 Anti-symmetric calculus

Definition 7.13 The Hodge star operator is defined as

θvi1 · · · vip
:= sgn(I) vim

· · · vim −p + 1 , (7.9)

where {i1 , . . . , im} and sgn(I) are as in Def. 7.12.

Definition 7.14 For i = 1, . . . ,m, vi will denote not only an element of
Pola(Km ), but also the operator of left multiplication by vi acting on Pola(Km ).
These operators clearly satisfy the relations (7.8). We consider also the partial
derivatives ∇vi

satisfying the relations

[∇vi
,∇vi

]+ = 0, [∇vi
, vj ]+ = δij .

The action of the partial derivatives on the variables is given by

∇vi
1 = 0, ∇vi

vj = δij .

We introduce also the Berezin integral w.r.t. the variable vi. Its notation con-
sists of two symbols:

´
and dvi. The rules of manipulating with dvi are

dvidvj = −dvjdvi, dvivj = −vjdvi.

The rules of evaluating the integrals areˆ
dvi = 0,

ˆ
vidvj = δij .

For example, if σ ∈ Sm , then
ˆ

vσ (1) · · · vσ (p)dvm · · · dv1 =
{

0, if p < m,

sgn(σ), if p = m.

Now let Y be a vector space of dimension m. If we fix a basis (e1 , ..., em ) of
Y, we can identify Y and Y# with Km , and hence Pola(Y# ) and Pola(Y) with
Pola(Km ). We see that vi coincide with ei(v), ∇vi

with ei(∇v ), and the Hodge
star defined in (7.9) coincides with the Hodge star defined in Subsect. 3.6.2. If
we use the volume form em ∧ · · · ∧ e1 on Y, thenˆ

Ψ(v)dv =
ˆ

Ψ(v1 , . . . , vm )dvm · · · dv1 ,

ˆ
dvΨ(v) =

ˆ
dvm · · · dv1Ψ(v1 , . . . , vm ).

7.1.6 Differential operators and convolutions

The Hodge star operator transforms differentiation into convolution:

Theorem 7.15 Let Ψ,Φ ∈ Pola(Y# ). Then

(θΨ)(∇v )Φ(v) = (−1)m

ˆ
dwΨ(w)Φ(v + w).
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7.1 Basic anti-symmetric calculus 165

If dimY is even, then the formula simplifies to

(θΨ)(∇v )Φ(v) =
ˆ

Ψ(w)Φ(v + w)dw.

Proof We fix a basis (e1 , . . . , em ) of Y and use the anti-symmetric calculus in
coordinates. Without loss of generality we can assume that Φ(v) = v1 · · · vn and
Ψ(v) =

∏
j∈J

vj . Then, using the notation of Def. 7.12,

Ψ(w)Φ(v + w) =
∑

I⊂{1,...,n}
sgn(I) Π

j∈J
wj Π

i∈I
wi Π

k∈{1,...,n}\I
vk . (7.10)

The Berezin integral ˆ
dwΨ(w)Φ(v + w) (7.11)

is non-zero only if J = {j1 , . . . , jp , n + 1, . . . ,m}. The only term on the r.h.s. of
(7.10) giving a non-zero contribution corresponds to I = {jp+1 , . . . , jn}. We have
´

dwm · · · dw1 sgn(jp+1 , . . . , jn , j1 , . . . , jp , n + 1, . . . , m)

× wj1 · · ·wjp
· wn+1 · · ·wm · wjp + 1 · · ·wjn

vj1 · · · vjp

= (−1)m sgn(jp+1 , . . . , jn , j1 , . . . , jp , n + 1, . . . ,m)

× sgn(j1 , . . . , jp , n + 1, . . . ,m, jp+1 , . . . , jn )vj1 · · · vjp
.

On the other hand, using that

θΨ(y) = sgn(j1 , . . . , jp , n + 1, . . . ,m, jp+1 , . . . , jn )yjn
· · · yjp + 1

and

Φ(v) = sgn(jp+1 , . . . , jn , j1 , . . . , jp , n + 1, . . . ,m) vjp + 1 · · · vjn
· vj1 · · · vjp

,

we get

(θΨ)(∇v )Ψ(v) = sgn(jp+1 , . . . , jn , j1 , . . . , jp , n + 1, . . . ,m)

× sgn(j1 , . . . jp , n + 1, . . . ,m, jp+1 , . . . , jn ) vj1 · · · vjp
.

This proves the first statement of the theorem. If m is even, then the left and
right Berezin integrals coincide, which proves the second statement. �

7.1.7 Anti-symmetric exponential

Definition 7.16 The anti-symmetric exponential of Φ ∈ Pola(Y# ) is defined as

eΦ(v) :=
∞∑

n=0

1
n!

Φn (v).

(Note that the series terminates after a finite number of terms.)
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166 Anti-symmetric calculus

If at least one of the terms Φ1, Φ2 is even, then

eΦ1 +Φ2 (v) = eΦ1 eΦ2 (v).

The following propositions justify the analogy between the Hodge star operator
and the Fourier transform.

Let Y be a vector space equipped with the volume form Ξ. Let us equip Y#

with the volume form Ξdual.

Proposition 7.17 Let Ψ ∈ Pola(Y# ). Then

θΨ(y) = (−1)m

ˆ
dvΨ(v) · ev ·y ,

Ψ(v) = (−1)m

ˆ
dyθΨ(y) · ey ·v .

In particular, if m is even, then

θΨ(y) =
ˆ

Ψ(v) · ev ·ydv,

Ψ(v) =
ˆ

θΨ(y) · ey ·vdy.

Proof We use the anti-symmetric calculus in coordinates and assume that
Ψ(v) = v1 · · · vp . We have

ev ·y = e
∑m

i = 1 vi ·yi =
∑

K⊂{1,...,m}
Π

i∈K
vi · yi.

This yieldsˆ
dvΨ(v)ev ·y =

ˆ
dvm · · · dv1v1 · · · vp · vp+1 · yp+1 · · · vm · ym

=
ˆ

dvm · · · dv1v1 · · · vm ym · · · yp+1 = (−1)m ym · · · yp+1 = θΨ(y).

The second identity can be proved similarly, using that dy = dy1 · · · dym . �

7.1.8 Anti-symmetric Gaussians

Let ζ ∈ Pol2a(Y# ) � La(Y# ,Y).

Definition 7.18 The functional notation for

Y# × Y# � (v1 , v2) �→ v1 ·ζv2 (7.12)

will be either ζ(v) or, more often, v · ζv. The functional notation for eζ will be
either eζ (v) or ev ·ζ v .

The following proposition should be compared to (4.11) and (4.14), the corres-
ponding identities for the usual Gaussians.
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7.2 Operators and anti-symmetric calculus 167

Proposition 7.19 Let Y be a vector space of even dimension equipped with a
volume form. Then

(1)
(
θe

1
2 ζ
)
(y) =

´
ey ·v e

1
2 v ·ζ vdv = Pf(ζ)e

1
2 y ·ζ−1 y .

(2) e
1
2 ∇v ·ζ−1 ∇v Φ(v) = Pf(ζ)−1

´
e

1
2 w ·ζw Φ(v + w)dw, Φ ∈ Pola(Y# ).

(3)
´

e
1
2 v ·ζ vdv = Pf(ζ).

Proof Let us consider ζ as an element of La(Y# ,Y). Let us equip Y with a
Euclidean structure ν compatible with the volume form Ξ and note that ζν is
an anti-self-adjoint operator on Y. Applying Corollary 2.85, we can find a basis
(e1 , . . . , e2m ) of Y such that

ζ =
m∑

i=1

μi (|e2i−1〉〈e2i | − |e2i〉〈e2i−1 |) . (7.13)

Note that

Pf(ζ) =
m

Π
i=1

μi.

We can rewrite (7.13) as

1
2
ζ =

m∑
i=1

ζi,

where ζi = μie2i−1 · e2i . Since ζ2
i = 0 and ζiζj = ζj ζi , we have

e
1
2 ζ =

∑
I⊂{1,...,m}

Π
i∈I

ζi .

Now

θ Π
i∈I

ζi =
(

m

Π
i=1

μi

)
Π

i∈I c
μ−1

i e2i · e2i−1 .

This yields θe
1
2 ζ = Pf(ζ)e

1
2 ζ−1

. By Prop. 7.17, we know that

θe
1
2 ζ (y) =

ˆ
e

1
2 v ·ζ v ev ·ydv. (7.14)

The two exponentials in the integral commute since they are both of even degree,
and the function on the l.h.s. is an even function of y, which proves that (7.14)
equals

´
ey ·v e

1
2 v ·ζ vdv.

(2) follows from (1) and statement (1) of Thm. 7.15 for Ψ(v) = e
1
2 v ·ζ v .

(3) follows from (2) for Φ = 1. �

7.2 Operators and anti-symmetric calculus

Throughout the section X is a vector space with dimX = d. Anti-symmetric
calculus is especially useful in the context of the space X ⊕ X # . This space has
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168 Anti-symmetric calculus

an even dimension and a natural volume form, which is helpful in the context of
anti-symmetric calculus. We will see that the space Pola(X ⊕ X # ) is well suited
to describe linear operators on Γa(X # ) = Pola(X ).

7.2.1 Berezin integral on X ⊕ X #

In Subsect. 1.1.16, and then in Subsect. 3.6.4, we considered symplectic spaces
of the form X # ⊕X and X ⊕ X # . They can be viewed as dual to one another.
The canonical symplectic form on X # ⊕X is denoted by ω. Consequently, the
canonical symplectic form on X ⊕ X # is denoted by ω−1 . The corresponding
Liouville forms are defined as 1

d! ∧d ω, resp. 1
d! ∧d ω−1 . If we choose a volume

form Ξ on X and the volume form Ξdual on X # , then the Liouville volume forms
on both X # ⊕X and X ⊕ X # are Ξdual ∧ Ξ.

The generic variable of X will be denoted by x and of X # by ξ. The cor-
responding Berezin integrals will be denoted by

´ ·dx, resp.
´ ·dξ. Hence the

Berezin integral of Φ ∈ Pola(X ⊕ X # ) w.r.t. the Liouville volume form will be
denoted by ˆ

Φ(x, ξ)dξdx.

If we fix a basis (e1 , . . . , ed) of X and if (e1 , . . . , ed) is the dual basis of X # ,
then the symplectic form ω on X # ⊕X and ω−1 on X ⊕ X # is

d∑
i=1

ei ∧ ei. (7.15)

The volume forms on X , resp. X # are ed ∧ · · · ∧ e1 , resp. e1 ∧ · · · ∧ ed , which,
inside Berezin, integrals, is written as dxd · · · dx1 , resp. dξ1 · · · dξd .

Definition 7.20 We will use the following shorthand functional notation:

x · ξ :=
∑

xiξi =
d∑

i=1

ei(x) · ei(ξ)

= −1
2
(x, ξ)·ω−1(x, ξ),

∇x · ∇ξ := ∇xi · ∇ξi
=

d∑
i=1

ei(∇x) · ei(∇ξ )

=
1
2
(∇x ,∇ξ )·ω(∇x ,∇ξ ),

where we have used various notational conventions to express the same object.

As an application we have the following proposition:

Proposition 7.21

et∇x ·∇ξ Φ(x, ξ) = td
ˆ

et−1 (ξ−ξ ′)·(x−x′)Φ(x′, ξ′)dx′dξ′.
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7.2 Operators and anti-symmetric calculus 169

Proof By (7.15), Pf(ω−1) = 1. Hence the proposition follows from Prop. 7.19
applied to ζ = tω−1 . �

7.2.2 Operators on the space of anti-symmetric polynomials

Let B ∈ L
(
Pola(X )

)
.

Definition 7.22 The Bargmann kernel of B is an element of Pola(X ⊕ X # ),
denoted BBar, obtained from 1√

N !
B 1√

N !
by the following identification:

L
(
Pola(X )

) � Pola(X )⊗ Pola(X )#

� Pola(X )⊗ Pola(X # ) � Pola(X ⊕ X # ). (7.16)

In the first identification we use the identification of L(V) with V ⊗ V# described
in Subsect. 3.1.8. The second involves the identification of Pola(X )# with
Pola(X # ); see (3.4). The third is the exponential law for anti-symmetric ten-
sor algebras; see Subsect. 3.5.4.

Note that BBar is the fermionic analog of the Bargmann kernel of an operator
introduced in Def. 9.51.

Let us compute the Bargmann kernel in a basis. Recall that we have the
following notation: for I = {i1 , . . . , in} ⊂ {1, . . . , d} with i1 < · · · < in ,

eI := ei1 · · · ein
, eI := ein · · · ei1 .

In the functional notation these are written as

eI (ξ) := ei1 (ξ) · · · ein
(ξ), eI (x) := ein (x) · · · ei1 (x).

We saw in Subsect. 3.3.6 that {eI : I ⊂ {1, . . . , d}} is a basis of Pola(X )# , and
{#I!eI : I ⊂ {1, . . . , d}} is the dual basis of Pola(X ). Clearly, B ∈ L

(
Pola(X )

)
can be written in terms of its matrix elements as

B =
∑

I ,J⊂{1,...,d}
BI,J #I!|eI 〉〈eJ |,

for

BI,J = #J !〈eI |BeJ 〉.
Thus

1√
N !

B
1√
N !

=
∑

I ,J⊂{1,...,d}
BI,J

√
#I!|eI 〉〈eJ | 1√

#J !
.

Therefore, the identification (7.16) leads to the formula

BBar(x, ξ) =
∑

I ,J⊂{1,...,d}
BI,J

√
#I!eI (x) · eJ (ξ)

1√
#J !

. (7.17)
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Recall that Θk
a denotes the projection onto Polka (X ⊕ X # ) (see Def. 3.24).

Recall also that in Subsect. 3.5.7 we introduced the following notation: if Φ ∈
Pola(X # ), Ψ ∈ Pola(X ), then we write

Ψmod :=
1√
N !

Ψ, Φmod :=
1√
N !

Φ.

Theorem 7.23 (1) Let B ∈ L
(
Pola(X )

)
, 0 ≤ k ≤ d. Then

Tr BΘk
a =

1
(d− k)!

ˆ
(x · ξ)d−kBBar(x, ξ)dxdξ,

Tr B =
ˆ

ex·ξBBar(x, ξ)dxdξ.

(2) Let Φ ∈ Pola(X # ), Ψ ∈ Pola(X ). Then

〈Φ|Θk
a Ψ〉 =

1
(d− k)!

ˆ
(x · ξ)d−kΨmod(x)Φmod(ξ)dxdξ,

〈Φ|Ψ〉 =
ˆ

ex·ξΨmod(x)Φmod(ξ)dxdξ.

Proof Using the basis of X and X # , we can write

1
(d− k)!

(x · ξ)d−k =
∑

#K =d−k

∏
i∈K

ei(x) · ei(ξ).

By (7.17),
1

(d− k)!
(x · ξ)d−kBBar(x, ξ)

=
∑

#K =d−k

∏
i∈K

ei(x) · ei(ξ)
∑
I ,J

BI ,J

√
#I!eI (x) · eJ (ξ)

1√
#J !

. (7.18)

In the integral of (7.18), only the terms of degree (d, d) contribute. Therefore,
we can replace (7.18) by∑

#I=k

∏
i∈I c

ei(x) · ei(ξ)BI,I e
I (x) · eI (ξ).

Since eI · eI =
∏
i∈I

ei(x) · ei(ξ) and
d∏

i=1
ei · ei = ed · · · e1 · e1 · · · ed , we get

1
(d− k)!

ˆ
(x · ξ)d−kBBar(x, ξ)dxdξ =

∑
#I=k

BI ,I

= Tr(BΘk
a ).

This proves the first statement of (1). The second follows by taking the sum over
1 ≤ k ≤ d.

(2) follows from (1) by noting that if B = |Ψ〉〈Φ|, then BBar(x, ξ) = Ψmod(x) ·
Φmod(ξ) and Tr|Ψ〉〈Φ| = 〈Φ|Ψ〉. �
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7.2.3 Integral kernel of an operator

Let B ∈ L
(
Pola(X )

)
. It is easy to see that there exists a unique B(·, ·) ∈

Pola(X ⊕ X ) such that for Ψ ∈ Pola(X )

BΨ(x) =
ˆ

B(x, y)Ψ(y)dy,

where we use y as the generic variable in the second copy of X .

Definition 7.24 We will call B(x, y) the integral kernel of B (w.r.t. the volume
form Ξ).

Clearly, if X is real, the integral kernel introduced in the above definition is
the fermionic analog of the usual integral kernel, such as in Thm. 4.24.

7.2.4 x,∇x-quantization

Definition 7.25 We define the x,∇x -quantization, resp. the ∇x , x-quantization
as the maps

Pola(X ⊕ X # ) � b �→ Opx,∇x (b) ∈ L
(
Pola(X )

)
,

Pola(X ⊕ X # ) � b �→ Op∇x ,x(b) ∈ L
(
Pola(X )

)
,

defined as follows: Let b1 ∈ Pola(X ), b2 ∈ Pola(X # ). Then for b(x, ξ) =
b1(x)b2(ξ) we set

Opx,∇x (b) := b1(x)b2(∇x),

and for b(x, ξ) = b2(ξ)b1(x) we set

Opx,∇x (b) := b2(∇x)b1(x).

We extend the definition to Pola(X ⊕ X # ) by linearity.

If X is real, the (fermionic) ∇x , x- and x,∇x -quantizations introduced above
are parallel to the (bosonic) D,x- and x,D-quantizations discussed in Subsect.
4.3.1. If X is complex, they essentially coincide with the fermionic Wick and
anti-Wick quantizations, which will be discussed in Subsect. 13.3.1.

Theorem 7.26 Assume that d is even.

(1) Let b ∈ Pola(X ⊕ X # ). Then the integral kernels of the quantizations of b are

Opx,∇x (b)(x, y) =
ˆ

b(x, ξ)e(x−y )·ξdξ,

Op∇x ,x(b)(x, y) =
ˆ

b(y, ξ)e(x−y )·ξdξ.
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(2) If b+ , b− ∈ Pola(X ⊕ X # ) and Opx,∇x (b+) = Op∇x ,x(b−), then

b+(x, ξ) = e∇x ·∇ξ b−(x, ξ)

=
ˆ

b−(x1 , ξ1)e(ξ−ξ1 )·(x−x1 )dx1dξ1 .

(3) If b1 , b2 ∈ Pola(X ⊕ X # ) and Opx,∇x (b1)Opx,∇x (b2) = Opx,∇x (b), then

b(x, ξ) = e∇x 2 ·∇ξ 1 b1(x1 , ξ1)b2(x2 , ξ2)
∣∣∣
x1 = x2 = x,

ξ1 = ξ2 = ξ

=
ˆ

e(ξ−ξ1 )·(x−x1 )b1(x, ξ1)b2(x1 , ξ)dx1dξ1 .

Proof We will give a proof of (1) for the x,∇x -quantization. We can assume
that b(x, ξ) = b1(x)b2(ξ). Then using Thm. 7.15 and Prop. 7.17, we obtain

b1(x)b2(∇x)Ψ(x) =
ˆ

b1(x)θ−1b2(y)Ψ(x + y)dy

=
ˆ

b1(x)b2(ξ)eξ ·yΨ(x + y)dξdy

=
ˆ

b1(x)b2(ξ)e(x−y )·ξΨ(y)dξdy. �

7.3 Notes

The material of this chapter is based on the work of Berezin (1966, 1983).
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