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i. The comfound Poisson process in the wide sense is defined as a
process for which the probability distribution of the number i of
changes in the random function attached to the process, while the
parameter passes from o to a fixed value T of the parameter measur-
ed on a suitable scale, is given by the Laplace-Stieltjes integral

/
(wr)V»! dv U{V,T), (I)

where U(v, T) for a fixed value of T defines the distribution of
v. U(v, T) is called the risk distribution and is either ^-independent or,
dependent on r.

2. The compound Poisson process in the narrow sense is defined
as a process for which the probability distribution of the number
of changes can be written in the form of (i) with a -r-independent
risk distribution.

In their general form these processes have been analyzed by
Ove Lundberg (1940) 1). For such processes the following relation
holds for the probability of i changes in the interval 0 to T, P» (T) say

i\Pi(T) = (-TYPW; (2)
this relation does not hold for processes with T-dependent risk
distribution. Hofmann (1955) has introduced a sub-set of the
processes concerned in this section for which the probability for
non-occurrence of a change in the interval 0 to T is defined as a
solution of the differential equation

/ / = yq (1 +? / / ) -* ,

*) Presented to the Colloquium 1962 in Juan-les-Pins
x) Literature references are given at the end of the paper.
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COMPOUND POISSON PROCESSES 21

q, / > o and x ^ o; the solutions may be written in the form
lx'v]T-?, where •/) is independent of q and of two alternative forms
one for x = i and one for other values of x. The probabilities for
i changes in the interval o to T in the processes defined by the
solutions of Hofmann's equation are derived by Leibniz's formula,
and are designated by ^ ( T ) and, in this paper, called Hofmann
probabilities.

For x = o the Hofmann probabilities define a Poisson process,
with application to the risk theory of insurance treated i.a. by
Filip Lundberg, Cramer, Esscher, Segerdahl (for references see
Philipson (1961) (b)). For x = 1 the Hofmann probabilities define
a Polya process, where the risk distribution is defined by a Pearson
type III density with two parameters, which by normalization can
be reduced to such a density with one parameter. Such processes
have been treated by Ove Lundberg as applied to sickness and
accident statistics, by Hofmann with the same scope of application,
by Ammeter to reinsurance policy and other problems of general
insurance, and by Campagne (1962) to conflagration between fire
insurance risks. Delaporte has applied a modified form of the
Polya distribution, where the risk distribution has three parameters,
which cannot be reduced to such a distribution of 1 or 2 such
parameters, to motor accident statistics [cf. Philipson (i960) (a)
and for references (1961) (b)]. The probability distribution of a
Polya process with a risk distribution containing two parameters
q, f can be written

T<7i = o, 1, 2 . . . with mean -=-.

The Hofmann probabilities are particular cases of a class of
probabilities for non-occurrence of a change of the form

n
1-1

where the YJ;T'S for all values of / are independent of qj for j = i, 2
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22 COMPOUND POISSON PROCESSES

. . . and, in the general case, not necessarily in the form for •/) in the
Hofmann probabilities for non-occurrence. It shall be remarked that
the mth power of a function of this class belongs to the class with the
exponents equal to —mqt. If all the YJ '̂S are in either of the alter-
native forms for Hofmann probabilities of non-occurrence the
product may be said to define a generalized Hofmann probability,
which may be designated (*1>x

 " ' ^ ^ ( T ) = ?7TS(T) say.

3. The change distribution, V(x, T), shall be written for the
conditioned distribution function of the size of one change in a
random function attached to a process, relative to the hypothesis
that one such change has occurred in parameter interval (T, T + dr)
for a fixed value of T. (In the application to Life Insurance and to
General Insurance this distribution function has been called the
risk sum distribution and the claim distribution respectively. It
seems to the author that these terms conceal that the theory has a
much wider scope of application.) In the particular case, where
V(x, T) is independent of T, we shall write V(x) for the change
distribution.

Esscher (1932), Cramer (1955) and others have proved that the
distribution functions defining a Poisson process with the change
distribution V(x, T) can be written

z t),

where t is the parameter measured on the operational scale, W(x, f)
a transform of V(x, T) and the asterisk power i* of any function
for i > 0 denotes the ith convolution of the function with itself
and for i = 0 is equal to unity. This formula has earlier been
extended by the present author (Philipson, (1961) (c)) to a formula
of a similar form for the distribution function of a random function
attached to a process defined by generalized Hofmann probabilities
for non-occurrence of at most three factors, the restriction of the
number of factors is, however, not likely to be necessary. 1)

J) In a report to the Congress in London, to be published it its Transac-
tions, this formula has been extended for processes defined by (2) with the
same transform W(x, t) as for a Poisson process.
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4. A stationary or non-stationary compound Poisson process is
defined as a process for which the probability distribution of the
number of changes is defined by (i) with U(v, r) being in the form
of the distribution functions defining (another) random process,
called the primary process. Matern (i960) has applied the station-
ary compound Poisson process, i.e. a process, where U(v, T) is
stationary in the weak sense, to sampling problems in forestry
statistics, Thyrion has introduced a very general class of processes
which contains both stationary and non-stationary compound
Poisson processes. In this paper only such processes, generated by
primary processes with -r-independent change distributions, U(v) say,

shall be dealt with. Under this assumption U(v, T) = 2 Pffi(x) Um*(v).
m-Q

In this case the probability distribution of the number i of changes
in the random function attached to a process defined by (1) can, as
was previously found by the present author, be written in the form

P,«(T) J dU»*{v) = > Pm{x) Pi{x, m), say. (4)

The process, defined by (4), is said to be of a type defined by
Pi(T, 1). In the particular cases, where Pi(r, 1) is defined by the
Hofmann probabilities <V^I(T) for x = 0, 1, the process defined
by (4) is of type Poisson for x = o arid of type Poly a for x = 1.
In these cases, using a Poisson distribution with one parameter
and a Polya distribution with two parameters in the risk distri-
bution, which is essential for the derivation, the functions P»(T, m)
take the following forms.

( [(mqxYlil} e-»»h for x = o, i.e. for type Poisson

T. m) = / - mg\ ( - T / fr ^ ^ . g for (5)

A random function attached to processes defined by (4) and (5)
and with ^-independent change distribution V(x) shall be designated
by Y*(T) .

5. A random function attached to a process, where the probability
distribution of the number m of changes is defined by the generalized
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24 COMPOUND POISSON PROCESSES

Hofmann probabilities qTzm{-:) and where the change distribution
depends on T, V(X, T) say, and is such that its transform W(x, T) as
defined in section 3, can be written in the form

W(x, T) = 2 (1^(T) Vi*(x), x = 0, 1 (6)

where |X T̂C»(T) for x = 0, 1 has one respectively two parameters in
the risk distribution and V(x) is equal to that of Y*(x), shall be
designated by X*{x).

A random function attached to a compound Poisson process with a
^-independent risk distribution, or such a process in the narrow sense,
the probability distribution of the number i of changes being defined
by (1) with U(v, T) = U(v) independently of T and the change distri-
bution by V(x) independently of 1, shall be designated by X*(t)-

6. Writing qx for the means of both POT(T) and ?rcOT(-r), c for the
mean of V(x), the means of Y*(x) and X*(r) are both equal to
cqq T2//* for x = 0,1. If qx is the mean of PJ(T) defined by (1) with
U(v, T) = U(v) independently of x, the mean of X*(T) is equal to
cq\. The normalization of the distribution functions of Y*(T),

X*(t) and X*{t) in order to render the means of the normalized
functions equal to t involves the substitution of [/* tjcqq)1^ for T
in the two first cases and of t\cq for T in the third case. After this
transformation the random functions will be designated by Y(t),
X(t) and X(t) respectively and their distribution functions for a
fixed value of t by 'Y-F^.^)- ^F(x,t) and xF(x,t) respectively. Then,
the following relation holds, where

Lp~\TjLH-Tr)v {x)forx = °'Le-f0'type

i.e. for type Polya

<c,t) has the form of (7) with the substitution of qnm for Pm (8)
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7. Aimer (1957) has proved a theorem implying that every
(statistical or theoretical) change distribution may—within a finite
interval of its argument—be approximated by upper and lower
approximations in the form of weighted sums of exponential
distribution functions such that the area between the curves repre-
senting the upper and the lower approximation can be made as
small as we want. He has graduated data from extensive motor
accident statistics later extended to other branches of general
insurance (Aimer, 1962) by such sums containing only 3 to 4 terms.
These graduations showed a very good agreement with the data.
His deductions (1957) lead to an expression for the distribution
functions defining a Poisson process, with the change distribution
defined by a weighted sum of exponential terms, in the form of a
convolution of a limited number of Bessel functions.

8. Esscher (1961-1962) has suggested that the change distribution
shall be defined as a weighted sum of at least two exponential
distribution functions and the distribution function E(x—-a), where a
is a constant and E(%) is the unity distribution, i.e. equal to 0,1
depending on \ being negative or non-negative respectively.
Further, Esscher has deduced a relation for the distribution
functions defining a Poisson process with such a change distri-
bution, implying that the distribution function for a fixed value
of t can be expressed as a convolution of a number of Bessel func-
tions equal to the number of exponential terms in the change
distribution with a distribution function based on the term E(x—a).
This relation is consistent with Aimer's results quoted in the pre-
vious section, Esscher has also deduced a similar relation for the
Polya process with a somewhat modified change distribution.

9. In the sequel, it will always be assumed that V(x) is of the
following form, in agreement with Esscher's suggestion.

= 1 , 2 . . .s}, b > 0 (10)
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26 COMPOUND POISSON PROCESSES

If b = o, so is Ba. By definition Bo + S ^4p = i. The function

is assumed to be normalised so that its mean Bob + S (^P/Pp)
 = I-

It is easily seen, that if ex is substituted for x in (10) the change
distribution can be written in the form

aVs(cx) = Bo E(cx-a) + £ Ap (i-e"V*); ocp = h, a = cb

P-I

with the mean i.

The characteristic function of bVs(x), &zs(«), « being an entirely
imaginary variable, can be written

bzs («) = B o e>>« +
p - l

where we have introduced &/?3 ^ (M)=e*« (i—w/(3) "^ which corresponds
to the distribution function ji71(^; p, (3) defined by a Pearson type
III density function represented by a curve beginning at b > o.
Let, further, the function aHs(x; lv l2. . . ls, <x1( <x2. . . <xs) be the
convolution of sH^x; lx, ax) with (s—i) components in the form
o # i ( * : ;p> «p) f o r P = 2 . 3 - • -s.

Let i0 be the largest integer less than xja and let Ao represent a
modification of Bo such that az\ (o) will be equal to i. Then, az\{u)
for i < i < •?'„ can be written in the following form, derived by
the iterated use of Newton's binomial formula.

for i > iQ,az\(u) is in the form of (n) with truncation of the first
sum at i0. By definition the conversion of (n) leads to an expression
for V** (x) in the same form with the substitution of

laHz {x;i — j — I, j , ocj, a2) for el™ o
h
ai,i-j-i M oK2,j (u)-

io. Let the distribution function of X(t), as defined by (9), with
the insertion of (10) be denoted bxFs(x, t), where the upper index
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x shall be added, if Pi(t), particularly, is defined by a Hofmann
probability ™TZi(t). Let, further, Qs(t) denote the necessary correc-
tion for the term for i = o, if this term should differ from P0(t).

axF2(x, t) can by (9) and (10) be expressed in the form

By the introduction of a new variable of summation in two
stages, first by replacing i with i -\- I, and, after reversing the order
of the summation over * and /, by replacing i with i + j , the following
expression is obtained for axF2(x, t), where (— t/cq)1*^1 p"+7+/>( tjcq)
has been inserted for (* + / + /)! Pi+j+i{tjcq) according to the
identity given in (2).

x

. *.
By an analogous deduction the relation (12) is extended to

s = 3, which leads to a quadruple sum similar to the triple sum
in (12). By mathematical induction this result is extended to
s = 4,5 . . ., the result in each case containing a (s + 1) — tuple
sum.

11. In the particular cases, where Pj(^) are defined either by a
Poisson probability distribution or a Polya probability distribution,
i.e. by Hofmann probabilities with x = 0 or 1 respectively, the
distribution functions of X(t) can be written in the following
comprehensive form.

<o l

%F(cx, t) = ™QS (t) + £ !!^° £>Gs (ex; «1( « , , . . . «s), (13)

0 for s = 2
where ™QS (*) = }

I ™Po(tlcq) [1 — (XTS] for s > 2,

and (x)rs will be defined here below in section 14.
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X aHs (ex; lv l2 . . .ls, «x a2 • . . as)

9=Ap (tic) (tjc + q) ~* for p = 1,2... s, x = 0,1 and for p = 0, if s = 2.

r / in/ \ ] -x
Mt0 = J o (*/c) (*/c + q) 1— --i—-— , if s > 2 (of reasons to be

L V 1 —0, + Oj/l evident later)

MPQ(t/cq) =

evident later).

'c = ^ • + ' 4 ' + ' - ' ^ ) " c fo rx = 0

+t/cq)-9= (1 + ^ ) - ^ » + ^ + ---^^for x = 1

for L > o, (y)0 =

Ao is defined by the assumptions that, for x = 0, (A^lc)1' e'A°tlcllo'-
and, for x = 1, [A0(tlc) {tjc + q)'1]1" [1 + tjcq\~A^jh\ represent discon-
tinous, truncated probability distributions of the integer l0, which
cannot assume values greater than i0, defined in section 9 as the
greatest integer less than exja.

12. The principal solution of Kummer's differential equation is
called Kummer's function, here designated by C(q, -p -{- q; x) for
all real and complex values of p, q, x, excluding p + q equal to
zero or to a negative integer; it belongs to the class of confluent
hypergeometric functions defined as the general solution of Kum-
mer's equation. This function can be expressed by an absolutely
convergent series given in (14a) below (cf. Slater, i960, 1.1.8).
It is connected with several well-known functions such as the Ist

kind Bessel function of the order of q — 1/2, here designated by
1q-i't{x)> by Kummer's 2nd theorem, and as the general incom-
plete gamma-function, here designated by y(q,x), the relations to
these functions are given in (14b), (14c) respectively here below
(Slater, 1.8.1. —1.8.3, 5.6.2 and 5.6.4). A relation, implying a
transformation of C(q, p + q; x), which will be used in the sequel,
is asserted in Kummer's Ist theorem and is given in (i4d) here
below (Slater, 1.4.1). If the real parts of q and of p -f- q both are
> 0, the Kummer function may be expressed in terms of certain
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integrals given in (i4e), (i4f) here below (Slater, 5.6.9 and 3.1.2).
The notation (q)v has been defined under (13).

(?+l)v
(14c)

1 + ?; — x) = q x~q f e~v dv, Rlq > o (14c)

0 ( l 4 f )

13. In the deduction of expressions for aHs(cx), it is assumed
that ax < a2. . . as. If this assumption should not be true the
definition of aHs(x) is such that (ax, Zx), (a2, l2) . . . (as, /s) may be
permutated, without change of aHs(x); this implies that the
assumption does not restrict the generality of our deductions.

By definition we have

By introducing the new variables of integration u, \ by the
substitution of u\ for z and of \ for r;—a, the inner integral of (15)
becomes, equal to

1r = «2

https://doi.org/10.1017/S0515036100007790 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100007790


30 COMPOUND POISSON PROCESSES

which by (i4f) can be expressed in terms of C(q,p -\- q, — S^)-
By the transformation of the Kummer function by (i4<i)—equiva-
lent to the aforesaid permutation of the parameters—the double
integral can by (14a) be written in the following form, where, on
account of the absolute convergency of (14a) and of the integral
over the Pearson type III density, the order of summation and
integration has been reverted.

V ^ + P») «f ^ f 4+q+»ip+q+»-1
 e.^d, (l6)

ZJ r(^)og.^Pa! J T(p+q+p2) ^ K '
pa-o 0

which, with respect to the definition of aH2(x), is defined for real
values of the variable and of the parameters with x > o, a > o,
p > 0, q > 0, ax > 0, a2 > o. In fact, (16) is an expression for
(15), also if (15) should have been defined for complex valued
variable and parameters, provided that their real parts fulfil the
same inequalities.

By the substitution of 0H2 (ex — a; p + q -\- p2,r, a2, a3) for
the integral in (16) and by an analogous deduction for the inserted
form of 0H2 (ex — a) an expression for aH3 (ex, p, q, r, alt a2, a3) is
obtained, which is in the form of a weighted sum of (16) with
similar weight functions as those appearing in (16). By mathematical
induction the expression can be extended to s = 4,5 . . . which
leads to the following Theorem 1.

Theorem 1. Let 0 < ax < a 2 . . . < as be an increasing sequence
of real parameters, X1( X2, . . . Xs be a sequence of positive numbers,
b1 = a>o and 6V for v ^ 1 equal to zero. Let xv x2. . . xv, xv+1. . . xs

be a sequence of random variables, each of which being distributed
with a distribution function in the form

and let the functions / for each value of v = 2,3 . . . s be defined by

v-l) Pv' \ <*v / \ Ov
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where Av = > X,, Rv = N pf,
r - i

Then, the distribution function of * = % + x2 . . . + xs is
given by the (s — i)-tuple sum

J,t 2 J ^ P . • • • ^jfesaHi ix'< 9s + As, as).
P2-0 P3-0 ps-o

14. The following expression for a ^ i (^ ; p, $) in (17a) is obtained
by using the relations (14c), (14c). A particular case of this expres-
sion is the expansion of the distribution function of x-square, as
commonly used in statistical tables (cf. e.g. Fisher and Yates
(1938) p. 1; Pearson and Hartley (1954), pp. 18-20). It has also
been used with (3 = 1 and t — x substituted for x — a for the
deduction of the distribution functions defining a Poisson process
with the change distribution defined by a single exponential term
by Cramer (1955, p. 41). The function aHs {x; lx, l2 • • • h, «i, «a • • •<*s)
shall be defined by the integral

(v — a) dv aHs (v; lv l2 . . . h, xv a 2 . . . <xs).

An expression for affx (x; p, (3) similar to (17a) is easily obtained
by this definition.

By definition, x > 0, a > 0, p > o, p > o are real-valued. The
deduction holds even, if these magnitudes are allowed to be complex
provided that the same inequalities hold for the real parts. It shall
be observed, however, that if the 3rd membrum of (17a) is taken as
definition for aH1 (x) we may extend the definition to p = 0, in
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which case this membrum reduces to unity. Also aHi(x) may be
defined by the 3rd membrum of (17b), for p = 0 inclusive, in which
case this membrum vanishes. By inserting the relation (17a) in
m

aGl (x, 04) according to its definition under (13) this function can
be written in the form

where TX = at^A^; \ = x — a and Iv (x) the Ist kind Bessel function
defined in (14b). If (17b) is inserted for aii^ (x) in the relation
defining i0JlG1 (x), the function obtained being denoted with a
bar, a similar expression for this function is obtained, namely,

These relations lead to simple numerical calculation for x = 0,
s = 1; as, however, the corresponding expressions for x = 1 and
for s > 1 are more complicated, the author refrains from following
this line any further.

15. If the expression for aH2 (ex; i, j ; xv a2) for i, j being positive
integers according to Theorem 1 is inserted in the relation defining
l°ap2 (x)> under (13), and if the new variables of summation [x2, r
are introduced by the substitution of y.2 — i for p2 and of r — fx2

for / the function (0jG2 (ex; a.v a2) can be written as follows

v-i n r-i / , .

where Sv = av + 1 — 0^; (X)TV = 0^ Mtv.

By (17a), (18) can be expressed in the form of a quadruple sum.
If in this sum the variable / is reintroduced by substituing / + \x2

for r, the sum will be of the form
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As, independently of c, all the summations refer to an absolutely
convergent series of terms, which follows from the definitions under
(13) and under (18), the order of summations may be reversed by
the identities

i i -1 z «* i i -1 i
this leads to an expression for m

aG2 {ex), where c can be chosen
equal to unity, in a form which is consistent with the general
relations given here below. The relation is easily extended to
™G2 (x) by its definition under (13).

If in (18) aH2(cx; r, k, oc2, a3) is substituted for aHx {ex; r, a2) and
if the expression obtained is multiplied by m^jk\ and summed
over k from k = o to k = 00, an expression for l0^G3 {ex; a1( a2, a3)
is obtained. Inserting in this expression the expression for
aH2 {ex; r, k, oc2, <x3) in accordance with the deduction of (18) and by
using (17a) a 6-tuple sum is obtained. If in this sum the variables
j , (x2 and k are reintroduced, an expression is obtained, which can
be written as a product of a double sum and a quadruple sum in the
form of (ojG2 {ex). By the application of the same deduction to
("G3 {ex), it is found that a similar double sum appears in each
term of the quadruple sum. For x = 0,1 the double sum just
mentioned can be written

i\ x Z-J p2!

If Sx = <x2 — ocj > 0 is < 1, the inner sum of this expression
converges to (1 — S^"* for each value of i, and, for x = o, the
double sum reduces to exp [""-̂ /(i — 8^]. If, in addition, 04/(1 — 8X)
< 1, the double sum for x = 1 converges, as by definition a)i1 < 1,
to [1 — H V ( i — Si)]-*-''-*-'. If the change distribution bVs (x) has
parameters Pp such that these conditions are not fulfilled for c = 1,
it is always possible to choose c as a constant, for x = 0, >
Max (pp+1 — |3p), and, forx = 1, > Max (pp+1 — (Jp) pa). By this choice
8p < 1 for p = 1,2 . . . s independently of x and, for x = 1, 04/(1— 8X)
< 1. Choosing c in this way, the expression for (0jG3 {ex) reduces
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to '°aG2 (cx; a2, a3) multiplied by an exponential factor and m
aG3(cx)

to a function in the same form, with the substitution of a power of
i — mz1l (i — 8-L) for the exponential factor and of 36p =
'\l[*— < 1V(I — si)] for<(%, p = 2,3 respectively. For* = o the result
may in an analogous way be extended to an expression for (0jG4 (cx),
and, by mathematical induction, to '"Jfis (cx), s > 4. And as ("G3 (cx)
is in the form of m

aGs (cx) the extension to (1jGs (cx), s > 3 immediately
follows. By (17b) similar relations for '^Gs (cx), defined at the end
of the previous section, are obtained. The deductions given here
above in this section lead to the following theorem.

Theorem 2. Let for x = 0,1 and

for s = 1,2; and for s > 2
(iep = «p^p (tic) (t/c + ? r x ; (iep = «p AP (tfcf

[(*/£ + ?) ( 1 - ' ^ / ( i - S J ) ] - * ;

p = I.2...S,
v

V fl7 v •
<*>7T \ s s ^ \ ' ' - • \—l (\1

)f» J-4
' (x)7T _i , , <x)rr . (x)c \ sus-i°s-i

- SU^ + ILS SUV , ^ 2

and 5 = x — b, then

the function aGs (cx) appearing in (13), which defines the normalized
distribution functions of ~X(t), for x = 0, attached to a Poisson
process with the change distribution aVs (cx) as defined under (10)
and, forx = 1, to a Polya process with the same change distribution
can be written in the following form for s > 1, x = 0,1.
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^ x: {cx; a.v a 2 . . . as) =
 ( X )PO (tjcq) <ras<* ('A)

ST ) - i — -

x 2 J -^f- »^ (19a)

and the function aGs (Ĉ K) defined at the end of the previous section
for s > 1, x = 0,1.

UaGs {cx;ai, <x«... as) =
 (K)P0 {tjcq) UIT ) -1^1 sl x

as
 s

 Z-J a ^

x

If in (19a), (19b) 2 is replaced by its term for y.s = o the
(1,-0

relations hold for s = i.

With the purpose of giving (19a), (19b) in forms apt for the
numerical calculation with an electronic computer, the relations
are transformed to the following expressions for s > 2 and for s = 1.

Starting with the simpler case, we denote the vth term of the
sums appearing in the expression (19a) and (19b) for s = 1 by
( X X , <K^V respectively. Then,

v(v

1 V g [ ^ v 1 w l X r ^
v + I v(v— I)

= [ulgv-*
iOkXxlNv-1 (20b)

Denote the |i.th term of the sums appearing in the expressions
(19a) and (19b) for s > 1 by MS^ ™L^ and " % r ^ + ' ^ J
respectively. Then, for a fixed value of s > 2, we have, simplifying
the notations by writing y., 0p for y.s,

 (*s'0p respectively, the following
recurrence relations for ^L^, '^L^ and ^K^-

https://doi.org/10.1017/S0515036100007790 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100007790


36 COMPOUND POISSON PROCESSES

( x ) /

<x>y

^V (21a)

^ _ i ; (21b)

For the calculation of ""S^ we write N 9(i_i
 <X)XJ for '"'S^ and,

then, ™Xi = ^ T 1 "'fc.x; 9x = ^ <Px-i-

6s_i^(^ I) A
16. The main part of the calculation for s = 1 of (19a), (19b)

consists in the successive computation of (20a), (20b) from the
initial values, v = 1, and the successive accumulation of the results.
Provided that these calculations are performed simultaneously for
(20a), (20b) and for x = 0,1, this implies, for each given vector
XjE,, T-fe and for each value of v, 13 "multiplications" (the word
here taken to mean multiplication or division) and 16 additions.
The number of values of v needed for the computation depends
on the precision wanted and on the order of magnitude of a^,
T^. In order to obtain a basis of comparison for the computation
of (19a), (19b) for higher values of s of the time required on an
electronic computer available, a ,,computational unit" shall be
defined as the time needed for the calculation of (20a), (20b) for
s = I, for each given vector o î;, T ^ and for each value of v. Thus,
the calculation of a sum of n terms will require n computational
units, if s = 1.

If (21c) has been precalculated, (21a), (21b) imply for x = 0
and 1, 24 "multiplications" and 22 additions, which corresponds
to about 2 computational units for a given vector, ci;, (KV1,

 U)t2,
ocs, as_j and for each value of v. The computation of (21c) can be
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performed as follows, let m be the highest value of i needed for
the precision wanted, thus, m depends on §s-i$s-\- <X>X* is> then,
calculated for each value of 2,3 . . . max (m) and each term is
stored, without accumulation, then, the arguments of the values
obtained are changed by the substitution of X for m—i. <px is calculated
by (21c) for each value of X and each term stored, without accumu-
lation. Thereinafter, (x>xm-x 9x *s calculated for each value of X
and m with successive accumulation of the results, so that MS^
is obtained for different values of [i. The number m of terms needed
does not depend on S;; a rough evaluation has shown that we might
expect m for a given value of 6S _!/§,,_! to be of the order of nJ2,
where n is the number of terms needed for calculating (21a), (21b).

Suppose that we want to calculate (19a), (19b) for a fixed value
of s > 2, for x = 0,1, for a fixed vector of the parameters in
bVs [x), and for t = 100 combined with 5 values of c£, for t = 500
combined with 12 values of c£, and for t = 1000 combined with
13 values of c\. Let us, further, assume that for each t the number
of values needed for the calculation of (21a), (21b), i.e. n, is on an
average equal to 1.6 t. The calculation of ""S^ for each fixed
vector of ""BJ.^SJ. , , x = 0 and 1, will, then require -^ (m\ -f-
m\ + w| + 4W3), where mv m2, m3 are values of m determined by
t = 100, 500, and 1 000 respectively. By the assumptions made,
this corresponds to about 227 n, where n = ^ (1 000 + 500 +
100) = 820. The computation of (21a), (21b) requires for the 30
values of the vector (t, c £) and for a given vector of <xs, as_j, As,
As_x about 60 n computational units. If, further, 40 000 compu-
tational units are allowed for the administration of the calculation
of (21a) — (21c) we should reach a total time for the calculation of
(19a), (19b) for s > 2 of 275 000 computational units which, if
50 000 such units should correspond to one hour, should be equiva-
lent to 5 1/2 hours for the series assumed. The corresponding figure
for s = 1 should be 25 minutes on similar assumptions.

The corresponding relations for s = 2, x = 1 lead to materially
more computation work because of the implications in '"£/„.
These implications have for s > 2 been eliminated by the limit
passage for the double sum discussed in the deduction of (xjG3 (ex).
This limit passage reduces, namely, (q)i +/ +/ + to a product
of several factors, each depending on only one of the variables of

https://doi.org/10.1017/S0515036100007790 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100007790


38 COMPOUND POISSON PROCESSES

summation. For s = 2, x = 0 similar relations hold as those derived
for s > 2, x = 0,1.

The numerical experience shows, that the number of terms in the
sum appearing in the expressions for jjfi7. (ex, t) according to (13)
is very restricted. The computation work implied in (13), if the
functions \%GS (ex; <x.v a2. . . <xs) have been precalculated, is, there-
fore, negligible. The series of calculations suggested here above, will
give a fairly good mapping of the distribution functions defined by
(13). The corresponding stop loss risk premiums are obtained, with
negligible extra work, from f^Gs (ex; a.v <x2. . . as) as determined in
the same series, by using the following formula

<o l

t — (ex — a) [1 — a%F (ex, t)] — \ —— f^Gs (ex; a.v a 2 . . . as) (22)

where (XVO for s > 2 have been defined under (13).

17. Esscher has made a remark with respect to the relation (1)
as a definition for the wide sense compound Poisson process,
implying that the Poisson expression in the integrand of (1) ought
to be dependent not only on time but also on the magnitude of
the population for which the compound process is studied, while
U(v,t) ought to be independent of this magnitude. On the other
hand, it is possible that U (v, t), at least in certain applications,
depends not only on time but also on another parameter, which
determines the distribution of v. — By choosing U (v, t) in a
suitable form to account for such circumstances, the approach in
(1) will be valid also with regard to Esscher's remark. In the
particular cases introduced in the deduction of (7), (8) the generality
has been restricted by the assumption that the means of the two
processes involved in (7), (8) before normalization are equal to
qT, q-z respectively for each given value of T. This implies, in fact,
that the magnitude of the population involved in each of the pro-
cesses is independent of time. The generalization of (7), (8) to
include also non-stationary populations may be easily made on
particular assumptions with respect to their variation with time.
This will, however, not be done in the present paper.

18. If in (7) bVs (x) is inserted for V (x), and by using, for x = 1,
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CO

J$FS (ex, t) = V Pm (ft/r0) a
loiFs lex, !^i\ (23a)

^̂ ™ \ ' n /
m-0

• [CX, I) — Y ^ r / ' i j a X r s \cx> ytlrl)

'0 1

m-0

-1

s > 2, (23b)

If, further, it is assumed that Pm(t), qKm(t) are defined by Poisson
and Polya probabilities and observing, that by assumption in the
deduction of (7), (8) it has been assumed that their means shall
be equal to qx, we obtain in these cases

Pm(ftlr0)=gnm(]/tlr0) = (qftlro)
me-*W*lm\ intheis tcase (24a)

= qnm (ftlH) = ( ? ) ^ = j ^ £ r f ™ the 2nd case (24b)

By combining each of (23a) and (23b) with both (24a) and (24b) we
have to deal with 4 different distribution functions of Y (t).

The numerical calculation of (23a) with the insertion of (24a),

(24b) implies the calculation of ^Fux, —=—I for each value of

m = 0,1 . . . to mi say, where mt shall be determined by the precision
wanted and by the order of magnitude of the wth term of the sum
appearing in (23a). A numerical estimation of this order for the
case where (24a) is inserted in (23a) has been made in the following
way. The probability of i changes in Y(t), while the parameter
passes from o to a fixed value t can be written

¥l\ V ri X e-<i-W°lro\,
r - l

where X = q \/le'^*'f»/f0. The maximal values of the rth terms
in this sum for different values of the constants q, q, r0 have been
calculated for i= 1.5 ]Tt and for y~t = 20 and 30. It was found that
the 11th term was of the order of 10 ~18 for \/t = 20 and of io"80

for Y~t = 30. It, is, thus, to be expected that the number of terms
needed for the calculation of the sum appearing in (23a), at least
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when (24a) has been inserted, is at most of the order of 20, say,

for t = ioo, 500 and 1 000. The calculation of a^t

can be performed by the formulae (21a)—(21c). It shall be remarked,
that the number of terms needed for this calculation for a fixed
value of m must, on an average, be much lower than the numbers
used in the numerical example of section 15. In this calculation we
shall, namely, multiply (0)TP appearing in (21a)—(21c) by the factor

—-r-, which on an average is less than 1 for t = 100, less than 1/2
royt
for t = 500 and less than 1/20 for t — 1 000. If the number of
terms needed for the calculation by (21a)—(21b), on this reason,
should, on an average for each value of m be reduced to 25 % of
the numbers used in the example of section 15, the number of
multiplications in the calculation of (21c) would be reduced to
about 2 % for each value of m. This should lead to a computation
time for the calculation of (23a), with the insertion of (24a) of
about the time required for the calculation by (21a) — (21c) according
to section 15. Should the same assumption hold also, if (24b) is
inserted in (23a), we should, thus, be able to perform the compu-
tation of (23a) for both cases in nearly the same time of computation.

If in (23b), (24a) and (24b) are inserted, the sum appearing in
(23b) reduces to closed expressions, for (24a) in the form of an
exponential function and for (24b) in the form of a power of a
binomial. In this case we have only to calculate ^Fs (ex, ^t\r-^
by the formulae (21a) — (21c), which according to the discussion
in the last paragraph, requires about 5 % of the time required
according to section 15.

The stop loss risk premium can in the 4 cases considered in this
section be computed with negligible additional work from the
functions ^G, the calculation of which has been included in the
estimations given above, by using similar expressions to that
given in (22).

19. The calculation of the distribution functions defined by
(7), (8), (9) and the corresponding stop loss risk premiums based on
processes, where all probability distributions of the number of
changes involved are defined either by Poisson or by Polya distri-
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butions and where the change distribution for (7) and (9) is defined
by bVs(x) and where the transform of the change distribution for
(8) is defined as a weighted average of this function, can, thus,
be performed on an electronic computer. For (9) it has been proved
that for a given vector of the parameters in bVs (x) the calculations
can be carried out in c: a 5 1/2 hours for s > 2, if the calculations
for s = 1 will require 25 minutes. The same assertion is likely to
hold for (7) for the compound Poisson process of type Poisson and
in the corresponding case for (8). For the determination to what
extent this is true, it seems easy to devise suitable experiments
on the computer. For the compound process of type Polya and
for the corresponding case of (8) the computation time required is
materially less than that required in the other cases,
(based on a lecture read to the ASTIN Colloquium 1962, Juan-les-
Pins)
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