
J. Functional Programming 8 (4): 323–333, July 1998. Printed in the United Kingdom

c© 1998 Cambridge University Press

323

Efficient graph algorithms

using lazy monolithic arrays

THOMAS JOHNSSON
Department of Computer Science, Chalmers University of Technology,

S-412 96 Göteborg, Sweden

(e-mail: johnsson@cs.chalmers.se)

1 Introduction

Many, perhaps even most, algorithms that involve data structures are traditionally

expressed by incremental updates of the data structures. In functional languages,

however, incremental updates are usually both clumsy and inefficient, especially

when the data structure is an array.

In functional languages, we instead prefer to express such array algorithms using

monolithic arrays – wholesale creation of the final answer – both for succinctness of

expression, efficiency (only one array created) and (sometimes) implicit parallelism.

The ease with which the solution can be reformulated of course depends on the

problem, and varies from trivial (e.g. matrix multiplication), to challenging (e.g.

solving linear equation systems using Gauss elimination, which in fact can be done

by creating only two arrays, recursively defined, of which one is the answer). Other

problems have been notoriously resistant to attack; these usually involve some

unpredictable processing order of the elements. One such problem is graph marking,

i.e. marking the nodes reachable from a set of roots. Hitherto, no functional method

has been known except emulating the traditional imperative solution (King &

Launchbury, 1995; Launchbury & Peyton Jones, 1995).

The contribution of this paper is to show how this problem, and some related

ones, can be solved using a novel array creation primitive, lazier than previous ones.

Thus, in section 2 we specify the array creation primitive lazyArray. In section 3 we

give the solution to the graph marking and depth-first numbering problems using

our lazy arrays. In section 4 we show how a related and more general problem,

that of computing the transitive closure of a binary relation, can be solved in a

similar manner. Graph based unification is an essential ingredient in a time and

space efficient type inferencer: in section 5 we give such an algorithm in the same

style. In section 6 we show how lazy arrays can be implemented efficiently with

low-level graph reduction code. In section 7 we discuss space efficiency. Finally, in

section 8 we relate our approach to state monadic computations, and show how to

cast lazy array programs into monadic form. Programs in this paper will be given

in the non-strict purely functional language Haskell.

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

324 T. Johnsson

2 Lazy arrays

The array creation primitive array in Haskell takes a list of associations, i.e. index-

value pairs (i,v). Each index may occur only once in the list, and must be inside

the bounds specified in the array call. With accumArray (⊕) z each index may

occur more than once, and each value is ⊕’ed into the corresponding index (with z

as the initial value). Both array and accumArray evaluate the entire association list

and all indices (but not the values) before returning an array. This is too strict for

our purposes.

We will be using a new array creation primitive, which we shall call lazyArray.

The semantics of lazyArray could be expressed in terms of ordinary Haskell arrays

as follows (for the sake of simplicity we assume the one-dimensional case):

lazyArray (1,n) xs = array (1,n) [(i , [v | (j,v) <- xs, i==j])

| i <- [1..n]

]

That is, for each index i of the resulting array a list of the elements with the

appropriate index are filtered out (elements out of range are silently ignored). This

is akin to accumArray (:) [] bounds xs in Haskell, except that lazyArray is

lazier: the key point is that the array is created before the the list xs is demanded,

and so the value of this list is allowed to depend on the contents of the array just

being created.

The above definition of lazyArray has a bad time complexity. Since each element

of the resulting array is an independent filtering of the association list xs, the

complexity of lazyArray becomes O(n|xs|) if all array elements are eventually

demanded in their entirety. However, it is possible to implement lazyArray in

O(|xs|) using low-level graph reduction code – see section 6.

3 Graph marking and depth-first numbering

Many graph algorithms work by visiting nodes while also filling in information in the

nodes. A very basic algorithm of this kind, for which no previous purely functional

monolithic array solution has been found, is depth-first numbering: starting from

a root or set of roots, visit nodes in depth first order, and if a node is previously

unvisited assign an order number and visit its successor nodes. (The related algorithm

for obtaining a depth-first spanning forest by King and Launchbury (1995) uses

incrementally updateable arrays in a state monad (Wadler, 1992; Peyton Jones &

Wadler, 1993; Launchbury & Peyton Jones, 1995).)

We now present an algorithm to do depth first numbering of a graph, which

constructs a single monolithic lazy array. We represent nodes by indices into an

array, and the graph itself is an array of lists of successor nodes. Consider the

following function, dfn, which visits nodes in a graph.1

1 In Haskell, ! is the array indexing operator, and bounds of an array returns a pair with
the lower and upper bound.

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

Efficient graph algorithms using lazy monolithic arrays 325

dfn graph roots = a

where

a = lazyArray (bounds graph) (visit 1 roots)

visit u [] = []

visit u (i:l) = (i,u) : if head(a!i) == u

then visit (u+1) (graph!i ++ l)

else visit u l

By visiting a node i, we put a number u into the list of the ith element of the array.

If this is the first time node i is visited, this number u will be the first element of

the list in the i’th element and thus head(a!i) == u yields true. In that case the

depth-first traversal is continued by first considering the successor nodes graph!i.

So for example with the graph

1 2

3 4

taking 1 as the single root node, we get the following call to dfn:

dfn (array (1,4) [(1, [2,3]), (2, []), (3, [2,1]), (4, [3])]) [1]

which returns

array (1,4) [(1, [1,4]), (2, [2,4]), (3, [3]), (4, [])] .

The nodes reachable from a set of roots are those whose element lists are non-empty:

reachable graph roots = amap (not . null) (dfn graph roots)

where amap maps a function over an array. To get a proper depth-first numbering

of all the nodes in the graph, (corresponding to the order in which nodes are visited

in a depth-first traversal of the depth-first spanning forest), just consider the head

elements of the result from dfn (we must take all nodes as potential roots.2):

depthFirstNumbering graph = amap head (dfn graph (indices graph))

from which the depth-first spanning forest can be obtained easily.

4 Transitive closure

In the previous section, each list in the array has the rôle of a mark bit or a ‘sticky’

value, in that only the head element of the list is of interest. In a more general use

of this technique, one would make use of the entire list up to the most recent value

put there.

A graph can be thought of as defining a binary relation; thus, graph marking is

only a special case of a more general problem: computing the transitive closure. As

an interesting generalisation of the program in the last section, we want to compute

2 In Haskell the function indices returns a list of all valid indices of an array.

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

326 T. Johnsson

the set of all node names (indices) that can reach a certain node (index) by following

one or more arcs in the graph. We want the result to be an array of lists. Computing

the closure proceeds as follows: The function propagate keeps a list of pairs (i, x),

where x is to be propagated to i. If x propagates to i, it also propagates to the nodes

graph!i. However, we need to be able to stop the potentially infinite process of just

adding the same elements to a node over and over again, so we accompany the x’s

by unique numbers. The solution is given below.

closure graph = amap (nub . map snd) a

where

a = lazyArray (bounds graph)

(propagate 1 [(j,i)|i <- indices graph,

j <- graph!i])

propagate u [] = []

propagate u ((i,x):l) =

(i, (u,x)) :

if head[u’ | (u’,v’)<-a!i, v’==x] == u

then propagate (u+1) ([(j,x) | j <- graph!i] ++ l)

else propagate u l

The array a is now an array of lists of pairs of a unique number and an actual

value propagated there. The expression head[u’ | (u’,v’)<-a!i, v’==x] == u

returns true if the element x just added to the list a!i has not been added and

propagated previously, by comparing the unique numbers. The function nub removes

duplicates in a list. Taking the same graph as in section 3 as an example of its use,

closure (array (1,4) [(1, [2,3]), (2, []), (3, [2,1]), (4, [3])])

returns

array (1,4) [(1, [1,3,4]), (2, [1,3,4]), (3, [1,3,4]), (4, [])] .

The algorithm shown here can be characterised as a ‘work-list’ algorithm, in that

the argument of propagate is a list of remaining work to do. For comparison, with

iterative techniques which repeatedly construct arrays until the values stabilise, it is

entirely possible that sets stay the same iteration after iteration, and thus sets will

have been recomputed unnecessarily. With the work-list approach, only one array

is created, and individual set elements are propagated to nodes in the graph only

where necessary.

Very many other ‘monotonic set equation’ problems can be solved in a similar

manner: data flow (e.g. live variable) analysis in code generation, computing LR set

of items in LR parser generation, etc.

5 Graph-based unification

Polymorphic type inference in compilers for languages like ML, Haskell, etc. can

be a very time-consuming process. Milner (1978) gives two algorithms, one in a

functional style, and one in a more imperative style using one global substitution.

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

Efficient graph algorithms using lazy monolithic arrays 327

The traditional efficient (and imperative!) solution, as described by Cardelli (1987),

uses graph-based unification.

Type variables are represented by nodes, which when originally uninstantiated,

has the value of e.g. Tvar i. When instantiated, it is updated with the corresponding

type constructor, e.g. Tcon c ts, where c is the type constructor and ts is a list of

pointers to its type subexpressions.

We now give an algorithm for graph based unification using lazy arrays. Nodes

are represented by elements of a lazy array, which are now (lists of) pairs of a

unique number and a type expression.

Functions unifyA and unify take lists of pairs of type expressions to unify. The

key case is unifying a type variable with any other type expression; i.e.

unify u ((Tvar v1, t2) : eqs) .

The crux is that we don’t know whether type variable v1 has been instantiated

previously in the unification process, and we can’t just test it without risk of

entering a black hole! So we first assume that the variable is uninstantiated, and

‘emit’ (v1, (u, t2)) for the array a. We then look at the head element of a!v1 to

see if indeed we have just provided the first ‘update’ for v1, by looking at the unique

number. The complete algorithm is given below.

data Texpr = Tvar Int | Tcon String [Texpr]

unifyA n equations = a

where

a = lazyArray (1,n) (unify 1 equations)

unify u [] = []

unify u ((Tcon c1 as1, Tcon c2 as2) : eqs) =

if c1==c2 then unify u (zip as1 as2 ++ eqs)

else error"Type error"

unify u ((Tvar v1, Tvar v2) : eqs) | v1==v2 = unify u eqs

unify u ((Tvar v1, t2) : eqs) =

(v1, (u, t2)) :

case head(a!v1) of

(u’,t’) -> if u==u’ then unify (u+1) eqs

else unify u ((t’,t2) : eqs)

unify u ((t1, Tvar v2) : eqs) = unify u ((Tvar v2, t1) : eqs)

To take a concrete example of using this algorithm, consider the twice function

λ1f2.λ3x4.f2$5(f2$6x4)

where superscripts denote type variables for (sub) expressions, and $ denotes infix

function application. So type variable 1 denotes the type of the entire lambda

expression, 2 denotes the type for f, and 5 denotes the type of that function

application. We obtain a call of unifyA with the following type equations:

unifyA 6 [(Tvar 2, Tcon"->"[Tvar 4,Tvar 6]),

(Tvar 2, Tcon"->"[Tvar 6,Tvar 5]),

(Tvar 3, Tcon"->"[Tvar 4,Tvar 5]),

(Tvar 1, Tcon"->"[Tvar 2,Tvar 3])]

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

328 T. Johnsson

which yields the following answer:

array (1, 6) [

(1, [(5, Tcon"->"[Tvar 2, Tvar 3])]),

(2, [(1, Tcon"->"[Tvar 4, Tvar 6]),(2, Tcon"->"[Tvar 6, Tvar 5])]),

(3, [(4, Tcon"->"[Tvar 4, Tvar 5])]),

(4, [(2, Tvar 6)]),

(5, []),

(6, [(3, Tvar 5)])]

Note that the algorithm has (attempted to) instantiate variable 2 twice, and 5 not

at all. The resulting types have one free type variable represented by variable 5.

6 A linear implementation of lazyArray

As pointed out in section 2, the straightforward formulation in Haskell of lazyArray

has an unnecessary factor of n in the time complexity; it is possible, however, to

implement it in O(|xs|), by letting the graph reduction ‘processes’ communicate a

little behind the scenes. As a starting point, let us reformulate lazyArray:

lazyArray (1,n) xs = array (1,n) [(i, fi i xs | i <- [1..n])]

where fi i [] = []

fi i ((j,x):ys) | i==j = x : fi i ys

fi i ((j,x):ys) | i!=j = fi i ys

The expression fi i xs filters from xs those entries pertinent to index i. In the

third case of fi, rather than throwing away x, fi i should add an entry under

index j on behalf of fi j ! To be able to find its ‘buddy’ closures, it is useful to have

an auxiliary array pointing to them. As a further simplification, it is useful to store

the list in one place, namely in conjunction with the auxiliary array, and have the

closures point to the auxiliary array rather than the association list. Figure 1 shows

the resulting implementation of fi, written in C (declarations of node structs etc

omitted). Variables xs etc correspond to the same variables in the functional version.

EVAL fi is assumed to be called from EVAL with the arguments of the closure, i.e.

the index i and a pointer to the auxiliary array auxp, plus a pointer fi p to the

same closure. In the NIL case an alternative action is to set all fi closures to NIL,

rather than just the one evaluated. Figure 2 shows the the graph constructed on the

heap by lazyArray, and figure 3 shows the state of this subgraph after evaluating

the fifth element of the array, which is a fi closure, with [(3,a), (4,b), (3,c),

(5,d), . . .] as the association list argument.

7 A note on space efficiency

The depth first numbering algorithm in section 3 has the same time complexity

as the imperative algorithm, but worse space complexity: lazyArray is a potential

source of space leaks. The reason is that all further attempts to number a node when

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

Efficient graph algorithms using lazy monolithic arrays 329

EVAL_fi(int i, Pointer auxp, Pointer fi_p){
Pointer xs = auxp->assoclist;

while(1){ /* exited with return. */

EVAL(xs);

switch(xs->tag){
case CONS:{ Pointer jp, x; int j;

Pointer jx = xs->head; Pointer ys = xs->tail;

EVAL(jx); jp = jx->fst; x = jx->snd;

EVAL(jp); j = jp->theint;

if(j is within the bounds of the array){
Pointer buddyp = auxp->arr[j];

buddyp->tag = CONS; buddyp->head = x;

buddyp->tail = allocnode(TAG_fi, j, auxp);

if(i==j){ auxp->assoclist = ys; return; }
}

}break;
case NIL: { fi_p->tag = NIL; return; }

} } }
Fig. 1. Low-level implementation in C of the function fi.

it is already numbered result in additional elements in the lists of the lazy array.3

This can be remedied by using a slightly more general version of lazyArray, which

maps a function over the elements:

lazyMapArray f b xs = amap f (lazyArray b xs)

The application of head can then be moved from the test to the application of

lazyMapArray:

depthFirstNumbering graph = a

where a = lazyMapArray head (bounds graph) (...)

visit u (i:l) = (i, u) : if a!i == u

then ... else ...

The space leak vanishes when all elements of a have been evaluated, or if the

garbage collector succeeds in reducing the head applications (Wadler, 1987). The

graph unification algorithm in section 5 has the same deficiency, which can be fixed

in the same manner.

Another way of implementing lazyMapArray is to build it directly, in the way

described in section 6, by also building the application of the mapped function while

building the rest. This is the way we implemented it in Lazy ML (where it is called

array and is the only array constructor). An even more efficient implementation for

the important case lazyMapArray head is possible, which avoids using an auxiliary

array. Again taking a Haskell formulation as a starting point:

lazyArrayHead (1,n) xs = array (1,n) [(i, fi i xs) | i <- [1..n]]

where fi i ((j,x):ys) | i==j = x

fi i ((j,x):ys) | i!=j = fi i ys

3 I’m grateful to John Launchbury for this observation.

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

330 T. Johnsson

 returned array

Arr
3: 4: 5:

Arr
3: 4: 5:

fi 3 fi 4 fi 5

(,) 3 a (,) 4 b (,) 3 c (,) 5 d

: : : :

Fig. 2. Graph constructed by lazyArray bnds [(3,a), (4,b), (3,c), (5,d), . . .].

Arr
3: 4: 5:

Arr
3: 4: 5:

: a

: c

fi 3

: b

fi 4

: d

fi 5

(,) 3 a (,) 4 b (,) 3 c (,) 5 d

: : : :

Fig. 3. Graph reduction state after evaluating the fifth element of the array.

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

Efficient graph algorithms using lazy monolithic arrays 331

In the second case, fi would find its buddy closure via the single (returned) array,

and should update it if it exists, i.e. has not been reduced previously.

8 Abstracting it with monads

Coding algorithms in the manner shown in this paper, with a recursively defined

array and with careful threading of its association list, is quite tricky and it is all too

easy to make a mistake which results in a ‘black hole’ error. So in order to make

it safe, it is desirable to code up the essentials of the technique into higher order

functions. We will show how to do that in the form of a state monad, and we will

follow the recipe from Wadler (1992).

We first define the type of lazy array monads LA, with type parameters i which is

the type of indices, e which is the type of the elements, and a which is the type of

the value returned. The association list for the array plays the rôle of the state.

type LA i e a = [(i, (Int,e))] -> Int -> Array i [(Int,e)]

-> (a, [(i, (Int,e))], Int)

The obligatory unit and bind operations in the monad could be defined in the

manner shown below. The association list s is threaded backwards, while the count

u is threaded forwards, and the array a is passed in but never changes. (These

correspond respectively to backward state, forward state, and read-only state in

(Wadler, 1995).)

unitLA :: a -> LA i e a

unitLA x = \s u a -> (x, s, u)

bindLA :: LA i e a -> (a -> LA i e b) -> LA i e b

f ‘bindLA‘ g = \s u a -> let (x1, s1, u1) = f s2 u a

(x2, s2, u2) = g x1 s u1 a

in (x2, s1, u2)

Design of a comprehensive lazy array monad library that covers all possible situa-

tions is beyond the scope of this paper. However, for the problems discussed in this

paper we can distinguish between two main types of operations: setting the value

at an index, and adding an element to a set at an index.

In sections 3 and 5 the values of the arrays are ‘sticky’ single elements. The

following operation, setLA, should cover most such situations.

setLA :: (Ix i, Eq e) => i -> e -> LA i e (Bool,e)

setLA i x = \s u a -> let (u’,x’) = head(a!i)

in ((u’==u, x’), (i,(u,x)) : s, u+1)

It takes an index and a value, and returns a pair: a boolean, true if this was the first

time a value was set for this index, and the actual first value, i.e. the one that ‘stuck’.

In section 4, in the closure function, the array elements are regarded as sets. For

this particular problem, we need an operation in the monad for adding an element

x to the set at index i. As a value addLA returns a boolean value, true if this is the

first time a particular value is being added to the list at index i.

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

332 T. Johnsson

addLA :: (Ix i, Eq e) => i -> e -> LA i e Bool

addLA i x = \s u a -> (head[w|(w,y)<-a!i,y==x]==u, (i,(u,x)):s, u+1)

To execute an LA monad value, we provide the runLA function:

runLA :: (Ix i) => (i,i) -> LA i e a -> (Array i [e], a)

runLA b f = (amap (map snd) a, x)

where a = lazyArray b s’

(x, s’, u’) = f [] 0 a

Given these primitives, the closure program from section 4 can be reformulated as

follows.

closure graph = amap nub (fst(runLA (bounds graph)

(propagate [(j,i)

|i <- indices graph,

j <- graph!i])))

propagate [] = unitLA()

propagate ((i,x):l) = addLA i x ‘bindLA‘ \firsttime ->

if firsttime

then propagate ([(j,x) | j <- graph!i] ++ l)

else propagate l

This code looks strikingly similar to code for doing it in the monad of mutable

states (King & Launchbury, 1995; Launchbury & Peyton Jones, 1995)!

9 Concluding remarks

The purpose of this paper has been to show the use and implementation of a

form of monolithic arrays, lazier than previously in, e.g. Haskell, and to show some

important example algorithms using them. No doubt, very many other algorithms

in the same style exist.

The implementation mechanism described in section 6 is quite similar to that

of Sparud (1993), but his was developed independently and for a different reason:

plugging space leaks caused by lazy pattern matching in let and where expressions.

In his case the structure is a tuple (rather than an array), and selection is done with

fst, snd etc (rather than indexing). In both cases, reduction of other closures than

the demanded one is performed ‘free of charge’, on the ‘buddies’; in his case the

buddies are the closures fst e, snd e, etc. With the suggested implementation of

lazyMapArrayHead the similarity is striking.

The behaviour of lazyArray and its suggested cousins is quite reminiscent of

I-structures in Id (Arvind et al., 1989), in that values arrive at the array in a ‘data

flow fashion’, in an order different from that prescribed by lazy evaluation.

Fully general updateable arrays can be emulated using lazyArray, at a cost. The

elements of the lists would then be (apart from the unique numbers) Write x and

Read. Indexing is done by first putting a value Read in the list of the index selected,

and then returning the last x in Write x before this Read. Of course, indexing gets

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

Efficient graph algorithms using lazy monolithic arrays 333

more and more expensive for each new read and write of the same index. But for

applications with a small number of reads and writes this is definitely a viable

alternative. Also, if we only ever wanted the most recent value, an implementation

could throw away the old values of the list and only keep the most recent one.

Although state monads with mutable arrays (Launchbury & Peyton Jones, 1995)

provide a more general language construct (many mutable arrays, arbitrary updating)

and thus any imperative algorithm can be coded in it, it is interesting that with the

‘dressing up’ of lazy arrays exemplified in section 8 we have arrived at basically the

the same language construct for updateable arrays section 6, but from a completely

different direction!

Acknowledgements

This work benefitted greatly from discussions with Shail Aditya, John Launchbury,

and many people in ‘multi group’, especially Lennart Augustsson and John Hughes.

This presentation also benefitted greatly from many constructive comments from

Phil Wadler. The lazy array primitives were implemented and added to Lazy ML

while the author was visiting Glasgow on an SERC visiting fellowship 1989-90.

References

Arvind, Nikhil, R. S. and Pingali, K. K. (1989) I-structures: Data structures for parallel

computing. ACM Trans. Programming Languages and Systems, 11(4), 598–632.

Cardelli, L. (1987) Basic polymorphic typechecking. Science of Computer Programming, 8,

147–172.

King, D. and Launchbury, J. (1995) Structuring depth-first search algorithms in Haskell.

Proceedings of the 22nd Symposium on Principles of Programming Languages.

Launchbury, J. and Peyton Jones, S. (1995) State in Haskell. Lisp and Symbolic Computation,

8(4), 293–341.

Milner, R. (1978) A theory of type polymorphism in programming. J. Computer and Systems

Sciences, 17, 348–375.

Peyton Jones, S. L. and Wadler, P. (1993) Imperative functional programming. Proc. 1993

Symposium Principles of Programming Languages.

Sparud, J. (1993) Fixing some space leaks without a garbage collector. Proc. 6th Int. Conf. on

Functional Programming Languages and Computer Architecture (FPCA’93), 117–122. ACM

Press.

Wadler, P. (1987) Fixing some space leaks with a garbage collector. Software–Practice and

Experience.

Wadler, P. (1992) The essence of functional programming. Proc. 1992 Symposium on Principles

of Programming Languages, 1–14.

Wadler, P. (1995) How to declare an imperative. Proc. International Logic Programming

Symposium, Portland, OR. MIT Press.

https://doi.org/10.1017/S0956796898003062 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003062

