COHOMOLOGICAL CHARACTERIZATION OF THE HILBERT SYMBOL OVER \mathbb{Q}_{p}^{*}

FERNANDO PABLOS ROMO

(Received 11 February 2004; revised 15 November 2004)

Communicated by K. F. Lai

Abstract

The aim of this work is to offer a new characterization of the Hilbert symbol over \mathbb{Q}_{p}^{*} from the commutator of a certain central extension of groups. We obtain a characterization for $\mathbb{Q}_{p}^{*}(p \neq 2)$ and a different one for \mathbb{Q}_{2}^{*}.

2000 Mathematics subject classification: primary 19F15, 20 F 12.

1. Introduction

In recent years, characterizations of algebraic symbols have been obtained from the properties of infinite-dimensional vector spaces in order to provide new interpretations for these symbols and to deduce standard theorems from the new definitions in an easy way.

Thus, in 1968 Tate [7] gave a definition of the residues of differentials on curves in terms of traces of certain linear operators on infinite-dimensional vector spaces.

A few years later, in 1989, Arbarello, de Concini and Kac [1] obtained a definition of the tame symbol of an algebraic curve from the commutator of a certain central extension of group. More recently, the author has given an interpretation of this central extension in terms of determinants associated with infinite-dimensional vector subspaces [3], and has defined the Parshin symbol on a surface as iterated tame symbols [4].

[^0]In all articles referred to above, the respective reciprocity laws (in particular, the residue theorem) are deduced directly from the finiteness of the cohomology groups $H^{0}\left(C, \mathscr{O}_{C}\right)$ and $H^{1}\left(C, \mathscr{O}_{C}\right)$.

The purpose of the present work is to give a new characterization of the Hilbert symbol over \mathbb{Q}_{p}^{*} by using the method described in [1] and [3]. This definition, which involves topics of Steinberg symbols, allows us to use the results of [1, 2, 3] to study the properties of this symbol. A remaining problem is to obtain a new proof of the Gauss Reciprocity Law from the statements of this characterization.

Similarly to the computation of the symbol ([6, page 20]), we obtain a characterization for \mathbb{Q}_{p}^{*} with $p \neq 2$ and a different one for \mathbb{Q}_{2}^{*}.

For a detailed study of p-adic fields and the Hilbert symbol, the reader is referred to [6].

2. Preliminaries

This section is added for the sake of completeness.
2.1. Definition of the Hilbert symbol If k denotes either the field \mathbb{R} of real numbers or the field \mathbb{Q}_{p} of p-adic numbers (p being a prime number), Serre [6] defines the Hilbert symbol $(,,)_{k}: k^{*} \times k^{*} \rightarrow \mu_{2}$ as:

$$
(a, b)_{k}= \begin{cases}1 & \text { if } z^{2}-a x^{2}-b y^{2}=0 \text { has a non-trivial solution in } k^{3} ; \\ -1 & \text { otherwise },\end{cases}
$$

where $a, b \in k^{*}$ and $\mu_{2}=\{1,-1\}$.
The Hilbert symbol is a Steinberg symbol ([2, page 94]) because it is bimultiplicative and satisfies $(a, 1-a)_{k}=1$. Moreover, $(a,-a)_{k}=1$ and $(a, b)_{k}=(b, a)_{k}$.

If $k=\mathbb{Q}_{p}$, we shall write $(a, b)_{p}=(a, b)_{k}$.
It is known that $\mathbb{Q}_{p}^{*} \simeq \mathbb{Z} \times \mathscr{U}^{p}$, where \mathscr{U}^{p} is the group of p -adic units. Hence, if v_{p} denotes the p-adic valuation, each element $a \in \mathbb{Q}_{p}^{*}$ can be written uniquely in the form $a=p^{\alpha} u$, with $\alpha=v_{p}(a)$ and $u \in \mathscr{U}^{p}$.

Moreover, if we denote by \mathscr{U}^{2} the group of units of \mathbb{Z}_{2}, we can define the morphisms of groups $\epsilon, \omega: \mathscr{U}^{2} \rightarrow \mathbb{Z} / 2$ as follows:

$$
\begin{gathered}
\epsilon(u)=\frac{u-1}{2} \quad(\bmod 2)=\left\{\begin{array}{lll}
0 & \text { if } u \equiv 1 & (\bmod 4) ; \\
1 & \text { if } u \equiv-1 & (\bmod 4),
\end{array}\right. \\
\omega(u)=\frac{u^{2}-1}{8} \quad(\bmod 2)=\left\{\begin{array}{lll}
0 & \text { if } u \equiv \pm 1 & (\bmod 8) ; \\
1 & \text { if } u \equiv \pm 5 & (\bmod 8),
\end{array}\right.
\end{gathered}
$$

Setting $\mathscr{U}_{n}^{p}=1+p^{n} \mathbb{Z}_{p}, \epsilon$ and ω determine isomorphisms of groups

$$
\epsilon: \mathscr{U}^{2} / \mathscr{U}_{2}^{2} \leftrightharpoons \mathbb{Z} / 2 \quad \text { and } \quad \omega: \mathscr{U}_{2}^{2} / \mathscr{U}_{3}^{2} \leftrightharpoons \mathbb{Z} / 2 .
$$

Furthermore, $\mathbb{Q}_{2}^{*} /\left(\mathbb{Q}_{2}^{*}\right)^{2} \simeq \mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 2$ and each element $a=2^{\alpha} u \in \mathbb{Q}_{2}^{*}$ can be written in the form $(-1)^{\epsilon(u)} 2^{\alpha} 5^{\omega(u)} \bar{u}$, where $\bar{u} \in\left(\mathbb{Q}_{2}^{*}\right)^{2}$.

There exist also isomorphisms of groups $\phi: \mathscr{U}^{p} / \mathscr{U}_{1}^{p} \simeq(\mathbb{Z} / p)^{*}$, and if $f \in \mathscr{U}^{p}$, we shall write $f(p)=\phi(\bar{f}) \in(\mathbb{Z} / p)^{*}$.

Thus, given $a, b \in \mathbb{Q}_{p}^{*}, a=p^{\alpha} u$ and $b=p^{\beta} v$, the value of the Hilbert symbol is:

$$
\begin{aligned}
& (a, b)_{p}=(-1)^{\alpha \beta \epsilon(p)}\left(\frac{u^{\beta}}{v^{\alpha}}(p)\right)^{(p-1) / 2} \quad \text { if } p \neq 2, \\
& (a, b)_{2}=(-1)^{\epsilon(u) \epsilon(v)+\alpha \omega(v)+\beta \omega(u) .}
\end{aligned}
$$

2.2. The group $\mathrm{Gl}(\boldsymbol{V}, A)$ and its canonical central extension Let V be a vector space over a field k (in general infinite-dimensional) and let A be a vector subspace of V. With the same notation as in [1] we set

$$
\operatorname{Gl}(V, A)=\{f \in \operatorname{Aut}(V) \text { such that } f A \sim A\},
$$

where $f \sim f A$ when $\operatorname{dim}_{k}(A+f A / A \cap f A)<\infty$, which is the definition of commensurable subspaces of Tate [7].

If $f \in \mathrm{Gl}(V, A)$, we set $(A \mid f A)=\Lambda(A / A \cap f A)^{*} \bigotimes_{k} \Lambda(f A / A \cap f A), \Lambda$ being the maximal exterior power. Canonically, Arbarello, de Concini and Kac [1] defined a group $\widetilde{\mathrm{Gl}}(V, A)=\{(f, s)$ with $f \in \mathrm{Gl}(V, A)$ and $s \in(A \mid f A), s \neq 0\}$, which induces a central extension:

$$
1 \rightarrow k^{*} \rightarrow \widetilde{\mathrm{Gl}}(V, A) \rightarrow \mathrm{Gl}(V, A) \rightarrow 1
$$

Let us set $A=k[[t]]$ and $V=k((t))$. Since $k((t))^{*} \subseteq \mathrm{Gl}(V, A)$, if we denote by $\{\cdot, \cdot\}_{A}$ the commutator of the above extension and we consider two elements, $f, g \in k((t))^{*}$ with $f=\lambda t^{\alpha}\left(1+\sum_{i \geq 1} a_{i} t^{i}\right)$, and $g=\mu t^{\beta}\left(1+\sum_{j \geq 1} b_{j} t^{j}\right)$, where $\lambda, \beta \in k^{*}$ and $\alpha, \beta \in \mathbb{Z}$, we have that

$$
\{f, g\}_{A}=\frac{\lambda^{\beta}}{\mu^{\alpha}} \in k^{*} .
$$

This computation of the commutator can also be found in [3].
2.3. Steinberg symbols For any field F, a bimultiplicative mapping $c: F^{*} \times F^{*} \rightarrow A$ to an abelian group, satisfying $c(x, 1-x)=1$ for $x \neq 1$, is called a 'Steinberg symbol' on the field F.

If F_{v} is a discrete valuation field, \mathscr{O}_{v} is the valuation ring, \mathfrak{m}_{v} is the unique maximal ideal and $k(v)=\mathscr{O}_{v} / \mathrm{m}_{v}$ is the residue class field, the tame symbol

$$
\begin{aligned}
d_{v}: F_{v}^{*} \times F_{v}^{*} & \rightarrow k(v)^{*} \\
(x, y) & \mapsto(-1)^{v(x) v(y)} \frac{x^{v(y)}}{y^{v(x)}}\left(\bmod \mathfrak{m}_{v}\right)
\end{aligned}
$$

is an easy example of a Steinberg symbol on F_{v}^{*}.
For a detailed study of Steinberg symbols, we refer the reader to [2].

3. Characterization of the Hilbert symbol

Let us now consider $k=\mathbb{Q}_{p}, A_{p}=\mathbb{Q}_{p}[[t]]$ and $V_{p}=\mathbb{Q}_{p}((t))$.
Since each element $f \in \mathbb{Q}_{p}^{*}$ can be written uniquely in the form $a=p^{v_{\rho}(f)} u$ with $u \in \mathscr{U}^{p}$, we can consider the injective group morphism

$$
\begin{aligned}
& \varphi: \mathbb{Q}_{p}^{*} \hookrightarrow \mathbb{Q}_{p}((t))^{*}, \\
& p^{\alpha} u \mapsto u t^{\alpha},
\end{aligned}
$$

and we deduce that \mathbb{Q}_{p}^{*} is a commutative subgroup of $\mathrm{Gl}\left(V_{p}, A_{p}\right)$ by considering the homotheties $h_{\varphi(f)}$. Thus the commutator of the following central extension of groups

$$
\mathrm{l} \rightarrow \mathbb{Q}_{p}^{*} \rightarrow \widetilde{\mathrm{Gl}}\left(V_{p}, A_{p}\right) \rightarrow \mathrm{Gl}\left(V_{p}, A_{p}\right) \rightarrow 1
$$

determines a 2-cocycle $\{\cdot, \cdot\}_{p}: \mathbb{Q}_{p}^{*} \times \mathbb{Q}_{p}^{*} \rightarrow \mathscr{U}^{p}$ whose value is $\{f, g\}_{p}=u^{\beta} / v^{\alpha}$, where $f=p^{\alpha} u$ and $g=p^{\beta} v$.
3.1. Hilbert symbol over $\mathbb{Q}_{p}^{*}(p \neq 2) \quad$ From the morphism of groups $\psi_{p}: \mathscr{U}^{p} \rightarrow \mu_{2}$ defined as $\psi_{p}(u)=(u(p))^{(p-1) / 2}$ we have a 2-cocycle $\widetilde{\{\cdot \cdot\}_{p}}: \mathbb{Q}_{p}^{*} \times \mathbb{Q}_{p}^{*} \rightarrow \mu_{2}$, whose value is

$$
\widetilde{\{f, g\}_{p}}=\psi_{p}\left(\{f, g\}_{p}\right)=\left(\frac{u^{\beta}}{v^{\alpha}}(p)\right)^{(p-1) / 2} .
$$

In general , one has that $\widetilde{\{\cdot \cdot \cdot}\}_{p}$ is not a Steinberg symbol because

$$
\left\{p^{-1}, \widetilde{1-p^{-1}}\right\}_{p}=-1
$$

when $p \equiv 3(\bmod 4)$.
We shall now give a cohomological definition of the Hilbert symbol as a distinguished element in the cohomology class $\left[\{\widetilde{\cdot, \cdot}\}_{p}\right] \in H^{2}\left(\mathbb{Q}_{p}^{*}, \mu_{2}\right)$, where $H^{2}(A, B)$ is the group of classes of 2-cocycles $f: A \times A \rightarrow B(\bmod 2$-coboundaries) [5].

LEMMA 3.1. For each $a \in \mathbb{Z}$, there exists a unique 2 -coboundary $c_{a}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mu_{2}$ satisfying the conditions:

- $c_{a}(\alpha, \beta+\gamma)=c_{a}(\alpha, \beta) c_{a}(\alpha, \gamma)$;
- $c_{a}(\alpha, \alpha)=(-1)^{\alpha a}$
for $\alpha, \beta, \gamma \in \mathbb{Z}$.

Proof. Recall that a 2-cocycle $c_{a}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mu_{2}$ is a 2-coboundary when there exists $\operatorname{a} \operatorname{map} \phi: \mathbb{Z} \rightarrow \mu_{2}$ such that $c_{a}(\alpha, \beta)=\phi(\alpha+\beta) \phi(\alpha)^{-1} \phi(\beta)^{-1}$. Let $\phi(\alpha)=\lambda_{\alpha} \in \mu_{2}$. It follows from the conditions of the lemma that

$$
\lambda_{\alpha}=(-1)^{\alpha(\alpha-1) a / 2} \lambda_{1}^{\alpha} \quad \text { for each } \alpha \in \mathbb{Z}
$$

Hence $c_{a}(\alpha, \beta)=(-1)^{\alpha \beta a}$ is the unique 2-coboundary that satisfies the statement of the lemma.

THEOREM 3.2. There exists a unique Steinberg symbol $(\cdot, \cdot)_{p}$ in the cohomology class $\left[\widetilde{[,, \cdot\}_{p}}\right] \in H^{2}\left(\mathbb{Q}_{p}^{*}, \mu_{2}\right)$ satisfying the condition

$$
(f, g)_{p}=\widetilde{\{f, g}_{p} \quad \text { if } v_{p}(f)=0
$$

This Steinberg symbol is the Hilbert symbol over \mathbb{Q}_{p}^{*}.
PROOF. Let $v(f, g)=c^{\prime}(f, g) \widetilde{\{f, g\}_{p}}$ be a Steinberg symbol in the cohomology class $\left[\{\cdot, \cdot\}_{p}\right] \in H^{2}\left(\mathbb{Q}_{p}^{*}, \mu_{2}\right)$ such that $c^{\prime}(f, g)=1$ for $v_{p}(f)=0$. Since c^{\prime} is a 2 -coboundary, one has that $c^{\prime}(f, g)=1$ when $v_{p}(g)=0$ and, therefore, there exists a commutative diagram

where $\tilde{\boldsymbol{c}}^{\prime}$ is a 2-coboundary satisfying $\tilde{c}^{\prime}(\alpha, \beta+\gamma)=\tilde{c}^{\prime}(\alpha, \beta) \tilde{c}^{\prime}(\alpha, \gamma)$.
Furthermore, since $\nu(f,-f)=1$ for all $f \in \mathbb{Q}_{p}^{*}$, one has that $\tilde{c}^{\prime}(\alpha, \alpha)=$ $(-1)^{\alpha(p-1) / 2}=(-1)^{\alpha \epsilon(p)}$. It then follows from Lemma 3.1 that $\tilde{c}^{\prime}(\alpha, \beta)=(-1)^{\alpha \beta \epsilon(p)}$ and $c^{\prime}(f, g)=(-1)^{v_{p}(f) v_{p}(g) \epsilon(p)}$.

Thus, the unique Steinberg symbol in $\left[\widetilde{\{\cdot, \cdot\}_{p}}\right] \in H^{2}\left(\mathbb{Q}_{p}^{*}, \mu_{2}\right)$ is

$$
v(f, g)=(-1)^{v_{p}(f) v_{p}(g) \epsilon(p)} \widehat{\{f, g\}_{p}}
$$

which is the Hilbert symbol.

REMARK 3.3. The above property, which characterizes the Hilbert symbol in \mathbb{Q}_{p}^{*} is equivalent to one of the conditions that Serre gave to define local symbols on algebraic curves ([5]) which are also Steinberg symbols.

Let us now consider in \mathbb{Q}_{p}^{*} the structure of the topological group induced by the p-adic valuation and let us consider μ_{2} as a topological group with the discrete topology.

CONJECTURE 3.4. $(\cdot, \cdot)_{p}$ is the unique continuous Steinberg symbol in the cohomology class $\left[\{\cdot, \cdot\}_{p}\right] \in H^{2}\left(\mathbb{Q}_{p}^{*}, \mu_{2}\right)$.
3.2. Hilbert symbol over $\mathbb{Q}_{2}^{*} \quad$ Let us consider the morphism of groups $\psi_{2}: \mathscr{U}^{2} \rightarrow \mu_{2}$ defined as $\psi_{2}(u)=(-1)^{\omega(u)}$. This map induces a 2-cocycle $\{\cdot, \cdot\}_{2}: \mathbb{Q}_{2}^{*} \times \mathbb{Q}_{2}^{*} \rightarrow \mu_{2}$ whose value is

$$
\widetilde{\{f, g\}_{2}}=\psi_{2}\left(\{f, g\}_{2}\right)=(-1)^{\beta \omega(u)+\alpha \omega(v)},
$$

where $f=2^{\alpha} u$ and $g=2^{\beta} v$.
Again, $\{\cdot, \cdot\}_{2}$ is not a Steinberg symbol because $\widetilde{\{6,-5\}_{2}}=-1$. We shall now determine the relation between the commutator $\{\cdot, \cdot\}_{2}$ and the Steinberg symbol $(\cdot, \cdot)_{2}$ in the group of 2-cocycles $Z^{2}\left(\mathbb{Q}_{2}^{*}, \mu_{2}\right)$.

THEOREM 3.5. There exists a unique 2-cocycle $c_{2} \in Z^{2}\left(\mathbb{Q}_{2}^{*}, \mu_{2}\right)$ such that $c_{2}\{\cdot, \cdot\}_{2}$ is a non-trivial Steinberg symbol. This symbol is the Hilbert symbol $(\cdot, \cdot)_{2}$. Moreover, c_{2} is not a 2-coboundary and hence $(\cdot, \cdot)_{2} \notin\left[\widetilde{\{\cdot, \cdot\}_{2}}\right] \in H^{2}\left(\mathbb{Q}_{2}^{*}, \mu_{2}\right)$.

Proof. Let $c_{2} \in Z^{2}\left(\mathbb{Q}_{2}^{*}, \mu_{2}\right)$ such that $v=c_{2}\left\{\widetilde{f \cdot\}_{2}}\right.$ is a Steinberg symbol. Since $\widetilde{f \cdot, \cdot\}_{2}}$ is a bimultiplicative map, c_{2} must be bimultiplicative and one has that

$$
c_{2}(f, 1-f)=\{\widehat{f, 1-f}\}_{2} \text { for } f \neq 1
$$

Moreover, since $\{\widetilde{f,-f}\}_{2}=1$, the condition $c_{2}(f,-f)=1$ must be satisfied and it follows from the equality

$$
\widetilde{\{f, g\}_{2}}=\widetilde{\{g, f\}_{2}}
$$

that c_{2} must be a symmetric 2-cocycle.
Furthermore, since $c_{2}\left(f^{2}, g\right)=c_{2}\left(f, g^{2}\right)=1$, we have that c_{2} is characterized by its values in $-1,2$ and 5 , which are the generators of the group $\mathbb{Q}_{2}^{*} /\left(\mathbb{Q}_{2}^{*}\right)^{2}$.

Bearing in mind the previous considerations, we have that

$$
c_{2}(2,-1)=\widehat{\{2,-1\}_{2}}=1, \quad c_{2}(2,2)=c_{2}(2,-2) c_{2}(2,-1)=1
$$

From the equalities

$$
c_{2}(5,-4)=\{\widetilde{5,-4}\}_{2}=1 \quad \text { and } \quad c_{2}\left(5,2^{2}\right)=1
$$

we deduce that $c_{2}(5,-1)=1$. It is now clear that $c_{2}(5,5)=1$.
To conclude, let us first assume that $c_{2}(-1,-1)=1$. Then, since $\epsilon(3)=1$ and $\omega(3)=1$ we have that $3=-5 u^{2}$. Moreover, $c_{2}(6,-5)=\{6,-5\}_{2}=-1$, and thus

$$
\begin{aligned}
c_{2}(2,5) & =c_{2}(2,-5)=-c_{2}(12,-5)=-c_{2}(3,-5) \\
& =-c_{2}(-5,-5)=-c_{2}(-1,-1)=-1 .
\end{aligned}
$$

Hence if we write $f=(-1)^{\epsilon(u)} 2^{\alpha} 5^{\omega(u)} \bar{u}^{2}$ and $g=(-1)^{\epsilon(\nu)} 2^{\beta} 5^{\omega(\nu)} \bar{v}^{2}$, we have in this case that

$$
c_{2}(f, g)=c_{2}\left(2^{\alpha}, 5^{\omega(v)}\right) c_{2}\left(5^{\omega(u)}, 2^{\beta}\right)=(-1)^{\alpha \omega(v)+\beta \omega(u)}=\widetilde{\{f, g\}_{2}}
$$

and $v=c_{2} \widetilde{\{\cdot, \cdot\}_{2}}=1$ is the trivial Steinberg symbol.
Finally, when $c_{2}(-1,-1)=-1$ we deduce, using a similar argument, that $c_{2}(2,5)=1$. Hence, $c_{2}(f, g)=(-1)^{\epsilon(u) \epsilon(v)}$, and

$$
v(f, g)=(-1)^{\epsilon(u) \epsilon(v)} \widetilde{\{f, g\}_{2}}=(f, g)_{2} .
$$

Furthermore, since $c_{2}(-1,-1) \neq 1$ we have that c_{2} is not a 2 -coboundary and we conclude the proof.

Acknowledgements

The author wishes to thank Professors José Mourao, Joao Nunes and Carlos Florentino at the Instituto Superior Técnico of Lisbon (Portugal) for their hospitality during a three-month period in 2001 when much of the work of this paper was done.

References

[1] E. Arbarello, C. de Concini and V. G. Kac, 'The infinite wedge representation and the reciprocity law for algebraic curves', in: Theta functions - Bowdoin 1987 (Brunswick, ME. 1987), Proc. Sympos. Pure Math. 49, Part I (Amer. Math. Soc., Providence, RI, 1989) pp. 171-190.
[2] J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Stud. 72 (Princeton University Press, Princeton, 1971).
[3] F. Pablos Romo, 'On the tame symbol of an algebraic curve', Comm. Algebra 30 (2002), 4349-4368.
[4] ___, 'Algebraic construction of the tame symbol and the Parshin symbol on a surface', J. Algebra 274 (2004), 335-346.
[5] J. P. Serre, Groupes algébriques et corps de classes (Hermann, Paris, 1959).
[6] ——, A course in arithmetic (Springer, New York, 1973).
[7] J. Tate, 'Residues of differentials on curves', Ann. Sci. École Norm. Sup. 4 (1968), 149-159.

Departamento de Matemáticas
Universidad de Salamanca
Plaza de la Merced 1-4
37008 Salamanca
Spain
e-mail: fpablos@usal.es

[^0]: This work is partially supported by the DGESYC research contract no. BFM2003-00078 and Castilla y León Regional Government contract SA071/04.
 (C) 2005 Australian Mathematical Society 1446 -7887/05 $\$$ A $2.00+0.00$

