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FINITE ELEMENT METHODS FOR COMPRESSIBLE STOKES
EQUATIONS WITH INFLOW BOUNDARY CONDITION

JAE RYONG KWEON

A finite element method for solving the compressible viscous Stokes equation with
an inflow boundary condition is presented. The unique existence of the solution
of the discrete problem is established, and an error analysis is given. It is shown
that the error in pressure is dominated by the one in velocity and an error at the
inflow portion of the boundary.

1. INTRODUCTION

We study and give an error analysis of numerical methods for the stationary lin-
earised barotropic compressible viscous Navier-Stokes system with an inflow boundary
condition, using finite element methods. Such a linearised system is often called a
"compressible Stokes system" because it may also be obtained from the (incompress-
ible) Stokes equations and certain modifications. It is well-known that the system is
not elliptic in the ADN sense: the momentum equations are elliptic in velocity and the
continuity one is hyperbolic in pressure, so that it is neither elliptic nor hyperbolic. Re-
cently in [4, 5] we have studied the whole nonlinear steady-state barotropic compressible
viscous Navier-Stokes equations with an inflow boundary condition. The reason that
the inflow boundary condition is considered is: if one assigns specified nonzero values to
the velocity components on the boundary of the region, then the velocity field gives the
characteristic directions for the hyperbolic continuity equation, and so values of density
must be specified on those portions of the boundary where the specified velocity vector
points into the region. Naturally in the linearised problem a boundary condition for
pressure is imposed, and zero boundary condition for velocity and zero initial condition
for pressure are considered because it was convenient to use as dependant variables the
deviation from the boundary values.

This paper consider the following problem (called a compressible Stokes system)

- / x A u - ivVdiv u + ( U - V)u + Vp = f in ft,

div u + U • Vp = 0 in ft,

u = 0 on T,

p = 0 on Tin.

(1)
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218 J.R. Kweon [2]

Here Q is an open bounded domain in R2 with smooth boundary F, and u = [u,v]
is a velocity vector, p is the pressure, U = [U, V] is a given smooth vector function
of (x, y), and f is a given function. The numbers /z and v are viscous constants with
fj, > 0 and fj, > —v. Throughout this paper it is assumed that U ^ Co > 0 for a
constant Co. The incoming and outgoing portions of the boundary, Fin and Fo u t are
denned by

r i n = {(*,») e r : u - n < o } ,
Tout = { ( x , y ) G F : U n ^ 0 } ,

where n = (711,712) denotes the unit outward pointing normal vector to F.

In [5] we showed that the regularity of the solution of (1) depends on the geometry
of the boundary of the domain, not on the regularity of the data because the singularities
of the solution at the junction of inflow and outflow portions block further regularity
in the solution, and we proved some regularity results for the linear and nonlinear
problems. The regularity result for the linear case will be given in Section 2. In this
paper we use this result and develop a finite element method for the system (1) by giving
some modifications to the continuity equation. It is shown that the error in pressure is
bounded by the one in velocity and an error at the inflow portion of the boundary. An
error analysis for the finite element method is given.

To make our analysis simple, we assume throughout this paper that U = 1 and
V — 0. In fact, if F has nonzero curvature at the points where U - n is zero, Theorem 1
in Section 2 can be obtained under suitable assumptions. Hence any bounded domain
in R2, with a C2 boundary which has nonzero curvature at the points where U • n is
zero, will be appropriate as a domain of the problem (1). Here a standard example of
a domain is "a circle" in R2 with centre the origin and radius 1.

In [3], an error analysis was given, and the error bound does not have optimal
order in terms of approximation theory; the presence of the convective term in the
continuity equation degrades the error bound, and also the problems in [3] have quite
different character, namely, the flows just stay and play in a given domain, but the ones
in our problem move in and out. In [3], a unique existence of the discrete solution was
established by showing that the subspaces for velocity and pressure satisfy the "inf-sup"
condition associated with the (incompressible) Stokes system.

Some advantages for the method to be presented here are that we have a nice error
analysis for (1), and that in [2] and [3], the bubble function in the "MINI" element
subspaces is necessary in proving stability, while in our problem, it is not. So the
resulting finite element matrix order is much smaller than the one in [3]. A disadvantage
is that the stiffness matrix resulting from our weak formulation is not sparse in some
block of the matrix. Furthermore, it has been observed that an approximation of the
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incoming portion boundary plays a role in resolving the accuracy of the discrete solution.

In Section 2 we propose a finite element method for (1), the "streamline" finite

element method. The unique existence of the discrete solution for the finite element

formulation is shown and its error analysis is given. It would be interesting to determine

if the analysis given here for (1) can be extended to the system (1) with the nonconstant

vector field U = [U, V].

In this paper, the following Sobolev spaces and norms shall be used: H2'q(Q) is the

Sobolev space of real valued Lq functions such tha t their derivatives belong to Lq(£l).

We write ||u||0 and | |u| |2 ig for the norms in Lq{0) and H2'q(Q), and (u, v), \\u\\0

for the scalar product and norm in L 2 (f i ) . H^(tt) = {u € i f 1 ( f i ) : « | r = 0} and

ffo
2'«(n) = H^q(n)DH^ and M ^ = max{|u(a;)| : x € SI], L°°(n) = {u : M ^ < oo}.

We shall frequently use the following Sobolev imbedding result (see [1]): H1>q(il) C L°°

as well as the norm inequalities that correspond to this imbedding.

In our proofs, C denotes a generic constant, depending on certain quantities. We

shall make this dependence explicit, for example, writing C($7) if C depends only on

Q, (for example, in the Sobolev inequalities) or C(fi, U , Co) if C depends on Q, U , and

Co, and so on.

2. F I N I T E E L E M E N T M E T H O D

We start this section by citing the following result from [5, Theorem 2.1].

THEOREM 1 . Let 2 < q < 3. Suppose that U ̂  Co > 0 for some constant Co •

Assume that fj. is large enough. Then there is a unique solution [u,p] € HQ'9 X H1<q of

(1). Also the solution [u,p] satisGes

where C = c(n, ||U||2 q , Co, (n +v)/n, u ) and g = 0.

We let V — HQ(H) X HQ(Q) and M — L2(ft), and consider a real-valued function

6 defined by 6(y) = — \ / l — y2 (—1 ^ y ̂  1). We define a linear map T : V —> R by

(2) Tu(x,y)= [ V-u(s,y)ds.
Js(y)

An easy computation shows that ||Tu||0 ^ ||Vu||0. With the observations described in

the previous section, the domain $7 to be considered will be a unit circle with centre at

the origin, which can be described in this way: Cl = {(x,y) £ R2 : x2 + y2 < 1}, T —

{(x,y) eR2:x2 + y2 = l}, and Ti n = {(S(y),y) : 8(y) = -^/(l-y2), -1 ^ y ̂  1}.
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Hence using (2) with U = 1 and V — 0, the system (1) becomes

- / J A U - uV div u + (U • V)u + Vp = f in ft,

(3) p + Tu = 0 in ft,

u = 0 on T.

Notice that (2) implies p(S(y),y) = 0 . In order to formulate the problem (3) in a
discrete version, several bilinear forms are considered. We define the bilinear form a by

a(u, v ) = / j / i V u - Vv + i/div u div v + [(U • V ) u ] v | d x , u,veV.

We also define the bilinear forms b, c and d by

HV>.P) = ~ pdiv vdx , v G V, p € M,
Jn

C(P> v) — I PV dx, p, T; € M,

d(u,r])= Turjdx, u G V, 77 € M.
./n

Using these, a weak formulation of (3) is given by: find [u,p] in V x M such that

a(u, v) + 6(v,p) = (f, v), V G V
(4)

c(p, rj) + d(u, 77) = 0 , Vr? G M.

This will be called the streamline weak formulation.

It is assumed that there is a triangulation T/, = {K}, which is a standard finite
element subdivision of 17 into nonoverlapping triangles K of diameter hx • Here,
h = maxx ha. Let P{K) be the space of linear functions on K. Let V/j and M/, be
defined by

V/j = {uh G V : uh is continuous on J7, 1 1 ^ G (P(K))2,VK G T/,},
(5)

Mh = \ph G M : ph is continuous on 17, p/J^ G P(K),VK G T^}.

Let 17/j be a given polygonal approximation of 17. Let (<$h(y),2/), —1 ̂  y ̂  1, describe
the incoming portion of the boundary r \ of 17^. Notice that 5h {y) is a piecewise linear
approximation of 5(y) = —\/l — y2 for — 1 ̂  y ̂  1. For u^ G V^, define

rx

Thuh(x,y)= V-uh(s,y)ds.

Hence ThU/j G Mh. We define a difference between Fin and r \ i n , the incoming portion
of I V

^rln(y) = My) ~ S(y)\ (1 - y2f'\ -1 < y < 1.

If / is a function of only 1/, we denote its L2 norm by | | / | |L2[_1 ^ = {/_! |/(2/)|2
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LEMMA 2 . 1 . Let q > 2. Then ||(T - r f c)u| |0 ^ ^ | | V u t l i , ,

P R O O F : Using the Sobolev inequality i/x-«(fi) c L°°,

\(T-Th)u\2= // V-u(s,y)ds
Js{v)

Hence the result follows easily. U

Let {{xi,yi) : x2 + y2 = 1, 0 ̂  i ^ n + 1} be the set of the nodal points of the

incoming portion F/jjn for a given polygonal approximation il^. of fi, where XQ — 0,

2/o = - 1 , and xn+x = 0, yn+i = 1.

LEMMA 2 . 2 . Let x = max{|a;i|, |a;n |}. Then | | ^ r i n | | i 2 [ _ 1 x] < 2\/2x2+1/2 + Ch,

where C is independent of h.

PROOF: We have that

' ErJy)2dy= Erin(y)2 dy + Erin(y)2 dy + £ / ET.in{y)2 dy.
— 1 J yn J JJfi ,• o y i 1

The second term of the right hand side of the above equation is bounded by

/•Vn+l 2 r 1

/ Erin(y) dy ̂  4 \S(y)\ dy
Jyn Jyn

^ 4\S(yn)\
3 (I - yn)

where we used 1 — yn ^ 1 — y^ — x2^ in the last inequality. Similiarly, the first term of
the right hand side of the above equation is bounded by 4 |rri | 5 . In order to compute
the third term of the above equation, we have, using Lagrange's interpolation formula,
!<%) - Sh{y)\ = (1/2) [Vi - y)(y - yt_1)(l - ^ 2 ) " 3 / 2 , Vi_x ^ iy < yu (i = 2 , 3 , . . . , n).

So

i = 2

where C is independent of h. This finishes our proof.
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The discrete bilinear form of "d" is defined on V^ x M/, in the following way:
dh(uh.,v) = (^/lU/ii7?)! 1 € Mh- Then the finite element method corresponding to (4)
is given by: find [uh,Ph] G V/, x Mh such that

a(uh,v) + b(v,ph) = (f,v), VvGVf t ,
(6)

( ) + ^ ( ) = 0, V») € Mft.

Since the definition of T/j includes an integration, the finite element matrix coming
from (6) is not sparse. It also is easily proven that from (6)fc, Ph{x, y) + ThUh{x, y) = 0
on fl.

LEMMA 2 . 3 . If fi is sufficiently large, then there is a unique solution [uh,Ph] €
Vh x Mh, of (6). Also, there is a constant C, not depending on h, such that if [uh,Ph]
satisfies (6), then

(7) l|ufclli + IWIo<CHfllo-

PROOF: Let r\ = ph G Mh, in (6)b. So we have c(ph,Ph)+dh(u-h,Ph.) = 0 and easily
get IKIIQ ^ l|Vu/,||0. Next, let v = u^ e Vft in (6)a. Then a(uh,uh) + b(uh,Ph) =
(f,uA> and we get easily m ||Vufc||g ^ C||Vufc||0 ||uA||0 + ||pfc||0 ||VuA||0 + ||f||0 ||uh||o,
where C = C d U l ^ ) , fio — min{/i,/i + u}. Finally, choosing a Poincare constant C
such that ||u/i||0 ^ C||Vu/,| |0, u/j € V/,, and assuming that /x is large enough, we have
||Vuh||0 < C||f||0, C = c l l U I ^ . C . / i o ) - Thus, we obtain (7). A similiar argument
shows the existence and uniqueness of the solution of (6). D

Let u € Vh be an approximation to u , and let

(8) p(x,y) =-Thu(x,y).

REMARK. One need a requirement on the triangulation "no triangle has a horizontal
side" in establishing that p G Mh • However as will be seen this requirement is not nec-
essary to obtain an error estimate for our finite element method. With this requirement,
one easily see that the function p belongs to Mh •

We now give an error analysis of the "streamline" finite element method. Let [u,p]
be the true solution of (4) and let [u/,,ph] be the finite element solution of (6).

THEOREM 2 . 4 . Let q > 2. If (i is sufficiently large, then there is a constant K
depending on n,v, and U such that

(9) ||u - UhW, + \\p - pfc| |0 ^

where the inhmum is taken over all u G Vh •

PROOF: Suppose first that the triangulation is such that no triangle has a hori-
zontal side. Let u G V^, and let p = -T^u . By the assumption on the triangulation,
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p G Mh. Using (4) and (6), we have a (u - \ih, v) + b(v,p - ph) = 0, Vv e V^ and

c(p - Ph,v) + d(u, Tj) - dh(\ih, rj) = 0, Vr/ E Mh. Hence one has

a(uh-u,v) + b(v,ph-p) = a(u-u,v) + 6(v,p-p), Vv € V ,̂

c(Ph -P,V) + dh(uh -\i,r)) = c(p -p,rj)+ d(u, -q) - dh(u, TJ), V77 G Mh.

Picking T] = ph - p € Mh in (10)6 and taking dh(uh - n,ph —p) to the right hand
side,

\\ph - PIIO < UP - PIIO + l l T u - T"fillo + lirhufc - rfcu| |0

(ii) ^ Ci(l |v(uh - Q)||o + | |v(u - u)| |0 + ||p - p||0)

+ c1||(r-rfc)u||0.

The constant C\ depends on ||T/j|| • Since the polygonal domain is contained in fi, one

see that ||T/,|| < | |T | | . Since |]T|| depends only on Q, one concludes that the constant

C\ in (11) depends only on fl. Next pick v = u^ — u 6 V/, in (10) a . So

a ( u - fi)Uh - u ) + b(uh -u,p-p)^{n+ \u\) | | V ( u - u ) | | 0 |

(12) +C||V(u-u)||0K-u||0

+ ||p-p||0||V(ufc-u)||0)

where C — C d V U ^ ) . Choose a Poincare constant C such that C||u/,—u||0 ^
| |V(u/ , -u) | | 0 . Thus, using (12),

(13) a(u - u, ufc - u)+6(ufc - u,p - p) ^ C(||V(u - u)||0 + ||p - p||0) ||V(ufc - u)||0 ,

where C = C((j,,v,C, \\V\\-y ^ j . Furthermore we have

(14)

a(uh - u, uh - u) + b{uh -u,ph-p)> no ||V(uh - U)||Q - - |div U ^ ||uh - U||Q

- | | P * - p | l o l | V ( u f c - u ) | | o ,

where (io — min{/x, fi + v\. Next, using (11), we have

(15) a(uh - u ,u h - u) + b{uh -u,ph-p)^ (Mo - d) ||V(ufc - u)||^

1 - u)| |0 (||V(u - fi)||0 + ||p - p\\0 + \\(T- rfc)u||0),

where Mo = no~ (1/2)C |div U ^ and C1! is the constant in (11). Combining (11),
(13) and (15), we get

(16) (Mo - d ) ||v(ufc - ii)||0 ^ c( | |v(u - Q)||o + ||p - P1|0 + | |(r - rfc)u||0),
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where C = Cffi,/x, v, C, \\U\\x ^ j • The constant Mo — C\ is positive for a sufficiently

large fi. Finally using (11) and (16), we obtain

(17) ||V(uk - u)| |0 + \\Ph - p| |0 < C 2 ( ||V(u - u)| |0 + ||p - p||0 + \\{T- Th)u| | 0 ) ,

where C2 = c(d, fi, v, C, HUl^ ^ , Mo) . Thus, using the triangle inequality, we have

(is) ||V(u - ufc)||0 + | | p - P h \ \ 0 < C 2 ( | | v (u - u)| |0 + ||P - p | | 0 + | | ( r - r f c )u | | 0 ) .

Since ||p - p| |0 ^ c ( | | V ( u - u)| |0 + | | ( r - r fc)u| |0) , we have

(19) ||u - iifcd! + ||p - p f c | | 0 ^ C2( | |V(u - u)| |0 + \\(T - r h )u | | 0 ) -

Therefore we conclude that

(20) ||u - ufc||x + ||p - ph||0 < C2{inf [||V(u - u)||0] + ||(T - rA)u| |0},

where C2 = C(Cl,fj,,u,C,\\XJ\\1(Xi,Mo), and the infimum is taken over all u £ V^.
Thus, using Lemma 2.1, we can finish our proof in the case that no triangle in the
triangulation has a horizontal side. Since the constant K in (9) has been shown to be
independent of the triangulation, the result holds for any triangulation by a limiting
argument. 0

We next use the following approximation property to give a corollary to the theo-
rem.

(21) vmffc ||u - vlli ^ CAi* ||u||fc+1, V u e V n ( i f t + 1 ( O ) ) 2 ,

where C is a constant independent of h.

COROLLARY 2 . 5 . Let q > 2. Assume that the conditions in Theorem 2.4 hold.
Then there exists a constant K, depending on fi, v and U such that the finite element
solution [\ih,Ph] of (6) satisfies

(22) Hu-Ufcl^ + llp-pfcllo^/ifAllull^.

PROOF: Theorem2.4gives ||u - VL^+WP -Ph\\0 ^ K(h+ \\Erin\\L2{_hl]) ||u||2,,.

Hence the inequality (22) follows easily by Lemma 2.2. D

We note that with a large condition on (1, the inequality ||u — U/,1^ + \\p — Ph\\0 ^
Kh for a positive constant K can be obtained easily.
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