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Abstract

For a real quadratic field k = Q(y/pq), let #; be the exact power of 2 dividing the class number h; of k
and 77, the fundamental unit of k. The aim of this paper is to study # and the value of Nyq(m;). Various
methods have been successfully applied to obtain results related to this topic. The idea of our work is to
select a special circular unit & of k and investigate C(k) = (+&;). We examine the indices [E(k) : C(k)]
and [C(k) : Cs(k)], where E(k) is the group of units of k, and Cg (k) is that of circular units of k defined by
Sinnott. Then by using the Sinnott’s index formula [E(k) : Cs (k)] = hi, we obtain as much information
about #; and Ny (1) as possible.
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1. Introduction

Let k be a real quadratic field of the form k = Q(4/pg). Let h = hy be the class number
of k, and t = 1, the exact power of 2 dividing h, that is, 2/ | h but 2°*! 4 h. The aim of
this paper is to study ¢ and Ny, o (1), where 7 is the fundamental unit of k. Our results
are summarised in Table 1. In this table, (-/p) is the Legendre symbol. And when
p=1(mod4), (-/p)s is defined to be

(a) 1 ifa® P =1 (mod p)
4

p ~1 ifa® Y4 =~1 (mod p).

When p =1 (mod 8),

1 if p=1(mod 16)
-1 if p =9 (mod 16).

Both 1 and —1 occur in the blanks.
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TaBLE 1. Summary of results in this paper.

P q H t H Niyo(mi)
p =3 (mod 4) g # 1 (mod 4) t=0 1
(g/p)=-1 t=1 -1
g =1 (mod 4) (g/p)s - (p/g)a=-1 t=1 1
(g/p)=1 (g/p)a=(p/q)s =-1 1=2 -1
(g/p)a=(p/ga=1 122
(=1/p)s=-1 t=1 -1
p=1l(mod4) | ¢g=2 (=1/p)s - 2/p)a=-1 t=1 1
(=1/pa=1{ (=1/p)=Q2/p}a=-1 ] t=2 -1
(=1/p)s=(2/p)a =1 t>2
g =3 (mod 4) (q/p)=—1or2/p)=-1 r=1 1
(¢/p)=Q2/p)=1 t>2 1

Various results have been published in relation to to this topic. Kucera [7], for
instance, proved the case where p = ¢ = 1 (mod 4) by manipulating a certain circular
unit. Brown [1] took care of the case where p = 1 (mod 4) with (—1/p)s=1andg=2
by using the theory of quadratic forms, while Conner and Hurrelbrink [2] applied the
theory of group cohomology to handle some of the other cases.

In this paper, we use the circular unit mentioned in [6] to obtain Table 1. The
index formula discovered by Sinnott [8] plays the most important role in our work.
For real quadratic fields, Sinnott’s formula simply reads /; = [E(k) : Cs (k)] [4], where
E(k) is the unit group of k, and Cg(k) is the group of circular units of k defined by
Sinnott [8]. Let n be the conductor of k. Put F = Q({,), 6r =1 — {,, and g = Np/e(F)
for a subfield E of F, where £, = ¢?*/". Since Cg(k) is of rank one generated by
{(=1, Npj(1 = &9 | (a, n) = 1}, Cs (k) = (—1, 6x). The generator J; can be replaced by
0, a conjugate of 6; over Q.

In Section 2, we study the first row of Table 1. In this case, k is a subfield of
K =Q(+/-p, V—¢q). Note that K is a CM-field with K* =k, and the index formula
for K says that [E(K) : Cs(K)] = (1/2)Qg(K)hk+ [3], where Qp(K) is the unit index
of K. That is, Qg(K) = [E(K) : W(K)E(K*)], where W(K) is the group of roots of
unity in K. From these two formulas, we obtain the desired results.

In the remaining sections, we assume that p =1 (mod 4). Roughly, to compute
tr and Ny q(r), we shall choose a special unit & in k, and investigate the subgroup
C(k) of E(k) generated by +&; which contains Cs(k). We then analyse [E(k) : C(k)]
and [C(k) : Cg (k)] to get the information about A, = [E(k) : Cs (k)] and Ny,q(17x). When
q = 3 (mod 4), the conductor n of k is 4pgq, which involves three primes and thus causes
extra difficulties. So we have to be a little more careful. The final section takes care of
this case. And in Section 3, we discuss the other two cases.
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2. Q(+/pq) with p = 3 (mod 4) and ¢ % 1 (mod 4)

In this section, we study # and Nyq(17x) when k = Q(+/pg) with p =3 (mod 4) and
q # 1 (mod 4). There are three cases to consider: (i) ¢ = 3 (mod 4) and ¢ # 3, (ii) g = 3,
and (iii) ¢ = 2. In any case, k is a subfield of K = Q(+/—p, 4/—¢). The class number
formula for K says that [E(K) : Cs(K)] = (1/2)Qp(K)hg+ [3]. We first examine the
unit index Qg(K).

Lemma 2.1. Let K = Q(v/=p, \/—q) with p=3 (mod 4) and q # 1 (mod 4). Then we
have Qp(K) =2.

Proor. We only give a proof for ¢ = 2. The other cases can be treated similarly, or the
reader may refer to [5], where the unit index is determined when the conductor is odd.
Note that the conductor 7 of K = Q(v/=p, V=2) is 8p. So F = Q(£,) = Q(s,). In order
to prove Qp(K) = 2, it suffices to show that 6{( = —0k, where J is complex conjugation.

We compute NK/Q(M)(éK) and Nk q(y=5)(0k)-
Let a be an integer satisfying ap = 1 (mod 8). Then a = p (mod 8). So

1-43
Nk1o=20K) = Noy o) (NFiaw (Or)) = Nog, /Q(@)( = )

Note that Gal (Q(3)/Q(V—-2)) is generated by the isomorphism sending {3 to ¢ ;’ . Thus

v G|l iTp=3(mods)
K= 71 if p=7 (mod 8).

On the other hand,

1-2¢,
Nk/awy=p0k) = Now,)an=p NVriag,) 0F)) = NQ((,;)/Q(@(_I e )
p

where 27! is the inverse of 2 (mod p). If (2/p)=1, then the automorphism o
of Q(,) sending ¢, to {I%_l permutes the elements of Gal (Q({,)/Q(+/—p)). Thus
Nkjoy=p(0k) = 1. Suppose that (2/p) =—1. Then o1 ¢ Gal (Q(£,)/Q(v/—p)). Let

7 = Nae,aw=p(l — &) Then 7" = pand x'~2' = +1. If 7'~ = 1, then 7'+ =
m* =p. So meQ(y/p), which is impossible. Thus Ngqy=p (k) =npl=2' = -1,
Therefore

-1 if p=3 (mod 8)
N, —(0k) =
k1at=p (k) {1 if p=7 (mod 8).

Hence Ng q(y=p)(0k) # NK/Q(@)((SK) in any case.

If §% = 6k, then 6 € k = Q(y2p). So Nig(dx) = Nxjaw=p©0x) = Ny o= 0x):
which is a contradiction. Therefore 6}( = —0k, and this proves the lemma. m]
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By the lemma,
[E(K):Cs(K)]=hg+ =hy and [E(K): W(K)E(k)] =2.
Note that rankzE(K) = 1. Let nx be a generator of E(K) modulo W(K).

Theorem 2.2, Let k = Q(+/pg) with p=3 (mod 4) and q # 1 (mod 4). Then we have
Nk/Q(T]k) =1and?2 'f /’lk.

Proor. Since [E(K) : W(K)E(k)] =2, rﬁ( = any for some @ € W(K). Thus

Niyo() = Nijay=p 16 = Nijoympiga™) = 1.

To prove 2 1 hy, we treat three cases separately.
(1) g =3 (mod 4) and g # 3. Since (¢/p)(p/q) = —1, we may take (¢/p) = —1. Then

1-¢,
Nxjaw=5)(0x) = Now,ov=p Nriae,) (OF) = NQ(@)/Q(ﬁ)(l—gql) =zl
T op

Since (¢/p) = -1, o4 ¢ Gal (Q(£,)/Q(v/=p)), where o1 is the automorphism of
Q(¢,) sending £, to {2_1. Then as in the proof of Lemma 2.1, Nk qy=5)(0x) = —1.
Suppose that 2 | = [E(K) : Cs(K)]. Put hy =2m. Then U%(m = J_réi( for some odd
integer j. By taking norms of both sides from K to Q(+/—p), we get a contradiction.

(i1) g = 3. In this case, K = Q(\/—_3, v-p) and E(K) = (—{3, k). Suppose that 2 | /y.
Then 2" = i{ééf( for some odd integer j.

If (p/3) =1, then (3/p) = —1. After a computation similar to that of case (i), we see
that

1-7p ) S

Nkjow=p(0k) = NQ(.:,;)/Q(H)(F
P

By taking norms of both sides of n&" = i{éﬁf{ from K to Q(y=p), we have 1=
Nijay=p(££i6%) = 1, which is absurd. So 2 { /.

On the other hand, suppose that (p/3) = —1. In this case, we take norms of both
sides of the equation ni’” = i{ééﬁ( from K to Q(vV-3). Then

2m

Ny 1K) = Nijoy) (#430%)-
Since Ny /Q(@)(m{) is a unit in Q(V-3), the left-hand side is of the form £§. And since

-3
N 1ov=3(0k) = Naw, i) (0F) = o —03,
53

the right-hand side equals {%’(—Q)f = —g“’f for some . Thus 5 = —{f , which cannot
happen. Hence 2 1 /.

(iii)) ¢ =2. We saw in the proof of Lemma 2.1 that NK/Q(@)((SK) =—1if p=
7 (mod 8) and Ngqy=5(0k) =—-1 if p=3 (mod 8). Suppose that 2|h;. Then

" = +67 for some odd integer j. But this is impossible since Ny o= =

Nijon=p g = 1. O
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ReEmaRk 2.3. Since Ny () =1, —1 is not a norm of a unit in E(k). That is, —1 ¢
NyjgE(k). We can say a little more. Indeed, by Remark 4.3 at the end of this paper,
ﬁO(G, E) — ﬁO(G, k*) is injective, where G = Gal (k/Q). Thus —1 cannot be a norm
element from k> either.

3. Q(+/pq) with p =1 (mod 4) and ¢ % 3 (mod 4)

Let K = Q(+/p, +/q). It is clear that 2| since K/k is an unramified extension.
We investigate the divisibility of /; by a higher power of 2 by playing around with
a suitable unit of k. Fix a generator o of Gal (Q({,)/Q) and 7 of Gal (Q({,)/Q)
when g # 2, and extend them to Q(¢,) naturally, that is, {7 =¢; and {; = ¢),. Let J;

be the complex conjugation of Q({,) or its extension to Q({,), so that {,{‘ = _{;1 and

L{‘ ={,;. We similarly define J,, that is, {,{2 ={, and {f :g'. Thus J =J;J, is
the complex conjugation of Q(Z,). When g =2, the conductor of k is 8p. In this
case, T is a generator of Gal (Q({16)*/Q) or its natural extension to Q({e,) so that
(Zp = {4p, and J; is the complex conjugation of Q({y6) or its extension to Q({ie,). For
each integer 7, put v, (i) = ((1 — {gi)/(l =) I(,I_UI)/Z. Then v, (i) € Q(£,)*. We denote
Naow,)1a(yp(vp(@) by v, (i). Note that v,(1) is a unit in Q(+/p) which differs from £1.
In fact, ﬁp(l)2 generates the Sinnott group of circular units of Q(+/p) modulo {+1}.

Lemma 3.1. The unit v, (i) satisfies:
(1) Nowpa@p@) = (=1);

S JEDm o ifi=om
2) v,()= {(_1 ",(1) ifi=2m+ 1.

Proor. Put 1=[Q({,)" : Q(+/p)l =(p—1)/4. Then for any integers a, b, and c,
vp(2) = =1, v,(2t + ¢) = —v,(c), and o“v,(b) =v,(a + b)/v,(a). We prove (1) by
induction on i, which is clear when i = 0. Assuming the result for 7, then

Nowmiavpli + 1) = Noyrigvp(i + 1)
2t—1

3 l—[ vp(i+1+a)
B a=0 v,,(a)

TS i+ 1+
(2::—01 vp(a@)
R pikds)

=0 vp(B)
= —NowpaVp(d)-

v, (i +210)

We omit the proof of (2) since it is similar to that of (1). O
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31. p=q=1 (mod 4). Let o, be the Frobenius automorphism of Q({,) for g,
and [, an integer such that o1 = ols. Then Nrjge,) (1 = {,,){;”2) = vp(lq)‘l. By
interchanging the roles of p and ¢, we have Np g, (1 = £:)Z,/?) = v,(1,)"". Note that
2|1, if and only if p4 V2 =1 (mod g), that is, (p/g) = 1. Since p=¢g=1 (mod 4),
(p/q) = (q/p). Thus 2|1, if and only if 2| /,. Similarly 4|/, if and only if p4~V/* =
1 (mod g), thatis, (p/q)4 = 1.

Let L= Q(£,) Q)" and e = (1 = &,)(1 = £ M7 1t is easy to see that e,
is fixed by J; and J, so that e;, € L. Note that Np,.(0F) = ei and

—1/2 -1/2
eL = Nrjgeaey (1= )8 = =Nrjge,rae) (1 = 6.
Put

ex = Npjk(er), ex = Ngji(ex) and & =€}

Since &7 = &\ = 7+ = &, & is fixed by Gal (K/k). Thus & €k. In fact,
& = e] = e;. We express & as

8k — eo‘+‘r _ l+o 1+7 6_2

K —€x ‘€ -eg.
Here
ek = Nxjaa(ex)
= NijawgNik(er)
= Nijoy@ Nk (=Nrjae,)ae,) (1 — L))
= Nowpt 1o Valp) ™)
= V()™
Similarly,
e =Vl
Hence

E=v, (L), el

It is possible that ex € k. Let us examine when this happens. Note that ex € k if and

only if €7" = ex. This is equivalent to e} = e Hence

ex € kif and only if /, = [, = 0 (mod 2), and (=1)"/? = (=1)"s/2,
We also have

if211,

1
N, &) = l+o+t+0T — (1+o0)(1+71) =N 7.(1 -1y _
o(Er) = ek ey aaa(Velp)™) 1 iragl,

Tueorem 3.2. Let k = Q(y/pq) with p = q =1 (mod 4). Then:
(1) if(g/p)=p/q)=-1, then 2| hy, 4t hy, and Nyjo(m) = —1;
) if (p/@a-(g/p)a=—1, then 2|y, 4 ¥ i, and Niyo(nr) = 1;

https://doi.org/10.1017/S0004972711003352 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972711003352

[7] On the class number and the fundamental unit of the real quadratic field k = Q(+/pq) 365

() if(p/@)a =(q/p)a = =1, then 4| hy, 8 hy, and Nijg(mi) = =1,
4 if(p/p)a=(q/p)s =1, then 4| hy.

Prook. Let C(k) =(-1,&). Since Np (6F) =e7, Cs(k)=(-1,¢}). Thus Cs(k) =
(~1,(e))*y =(-1,&}). Hence [C(k) : Cs(k)] = 2. In case (1), [, (hence [, as well) is
odd. So Nyq(&Ex) = —1, which implies that 2 t [E(k) : C(k)] and Ny g(n7x) = —1. Since

b = [E(k) : Cs (k)] = [E(k) : C(D][C(k) : Cs (k)]

we get the results as asserted. Next, we suppose that (p/q)s - (p/q)s = —1. We may
assume that (p/q)4 = -1 and (¢/p)4 = 1. Then [, =4m; and [, = 4m;, + 2, for some
my and m,. In this case &, = —e,‘(2 and ex ¢ k. Hence 2 1 [E(k) : C(k)], for otherwise
" = £& = ;> would imply that ;! = £77" € k. Since Nyg(E) = 1, we also have
Niyo(r) = 1. Therefore 2 | Ay, 4 4 by and Nyjq(ni) = 1. In case (3), [, and [, are of the
forms [, = 4m; + 2 and [, = 4mp + 2. Thus e}’ = el = =1, & = ¢, and ex € k. Put
C’ =(-1, eg). Then

[C": Cs (0] =[C": CRIIC(K) : Cs (k)] = 4.

Moreover, Ni/g(ex) = e};'” = —1. Therefore 2 t [E(k) : C'] and Ny,qo(x) = —1, and we
obtain the desired results. Finally, condition (4) says that both /; and /, are multiples
of 4. So ex € k and thus 4 = [C’ : Cs (k)] | hx. This concludes the proof. O

ReMaRrk 3.3. In case (4) of this theorem, both 1 and —1 can be the value of
Nijo(k). When k = Q(VS5 - 101) or k = Q(V29 - 181), for instance, Nyg(17x) = 1, while
Nijo(e) = —1 when k = Q(V5 - 461). If Nyjo(mk) = —1, then 8 | Ay since 2 | [E(k) : C'].
Indeed, the class number of Q(V5 -461) is 16. And even if Nyq(nmx) = 1, b can be a
multiple of 8. For example, Q(V5 - 101) has the class number 4, while Q(V29 - 181)
has the class number 8.

3.2. p=1(mod4),and ¢ =2. PutL=Q(V2)Q({,)" and K = Q(V2, y/p) as before.
Let

e = (1= &)1 = G256,

Since J, = -1 (mod 16), e¢; € F. Furthermore, since J; and J, fix ey then ¢; € L.
As in the previous case, put ex = Ny /g (er), ex = Ngji(ex), and E; = ", Then since
NriL(6F) = e7, Cs(k) = (-1, }) = (-1, €;7). Now we analyse each term of the product

_ ,o+7 _ l+0 I+ -2
Er=ex " =eg ceg ey

First,

(8 p' -1
ST

1+0

_ 1 -
ex’” = Ny jowmer) = Nowgawe (1 = &sp)ig,) = T
T o8
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where p~! is the inverse of p (mod 16). Hence

1 if p=1 (mod 16)
e ={-1 if p=9 (mod 16)
+(V2-1) if p=5(mod8).

The second term e}'" is the same as before. Namely,

2
| ifpzl(modS)and(—) 1
pP/a

1+7

= -1 _ )
e =vph) " =19_4 if p=1(mod 8) and(—) -1
p/4
+v,(1)7' if p=5 (mod 8).
For the last term, eg € k if and only if either p=1 (mod 16) and (2/p)s =1, or
p=9 (mod 16) and (2/p), =—1. Hence eg €k if and only if p=1 (mod 8) and
(=1/p)s - (2/p)s = 1. Also note that

1 ifp=1(mod8)
_ I+oy _
Ny (&) = N@(ﬁ)/Q(eK+ )= { 1 if p=5 (mod 8).

Treorem 3.4. Let k = Q(+/2p) with p = 1 (mod 4). Then:

(1) if(=1/p)y=—1, then 2 | hy, 4 { by, and Nijo(pi) = —1;

(2) i (=1/p)s-(2/p)a=—1, then2|h, 44 hy, and Nyjo(mi) = 1;
(3) lf(_l/p)S = (2/P)4 = _1, then 4 | ]’lk, S*hk, and Nk/Q(nk) = —1;
4) if(=1/p)s=Q2/p)a=1, then 4| hy.

Proor. This can be proved in a similar way to Theorem 3.2. |

ReMARK 3.5. As in case (4) of Theorem 3.2, both 1 and —1 occur as the value of
Nijo(ne) when (=1/p)s = (2/p)s = 1. For example, Ny/q(x) = 1 when kis Q(V2 - 257)
or Q(V2-1217). The class numbers are 4 and 8, respectively. And when k =
Q(V2 - 113), Nyjo(mx) = —1 and Ay = 8, a multiple of 8 as it should be.

4. Q(+/pq) with p =1 (mod 4) and ¢ = 3 (mod 4)
In this case, the conductor of k = Q(4/pq) is n =4pq. Let J; and J, be such that
Z] = {;1, 81‘ = {34, and g“[? ={p, g; = §8‘ql. As in the previous section, o is a fixed
generator of Gal (Q({,)/Q), or its natural extension to Q({s,,) such that g“gq = {34
And 7 is a fixed generator of Gal (Q({;)/Q) or its extension to Q({3,,) such that

{gp = {gp. Then 7(y/=q) = —v/=q and 7(+/q) = —/g, and thus Gal (Q(1/g)/Q) = {1, 7}.
Let L = Q(day)* Q(¢p)*, and e = (1 = &,)(1 = )¢, ). Since J> = —1 (mod 8¢) and
since ey, is fixed by J; and J,, e € L. Let

K =Q(/p, V), ex = Nijk(er), ex = Ngji(ek)
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and &, = €™ as before. Note that

Ned =g =ei. (1=L4)5)" ™ =y,

and ((1 - £, = —e;. We analyse each term in the product
8I< - O'+T — e}(—%—o’ . e}(—%—‘r . 6}2.
First,

ex” = Npjowgler)
= Nyjawa (~((1 = 4080
= Nowy /a6 (NEraen (1= &) - (Nagspiaeim )

=44 -1
= NQ(aq)*/Q(«f)( L,
1-40

4q
1- Lag
NQ(Zaq)/Q(& W)(l g,, ) NQ(ZSq)/Q<(8 \/—_q>(§8q )’
4q

where p~! is the inverse of p (mod 8¢). Put {3q = {g{; . Then we have

x(p~'=1)(g-1)/2 _ {1 lfp =1 (mod 8)

pl-1
NQ(ZSq)/Q({X,ﬁ)(é‘Sq ) § -1 lfp =5 (mod 8)

Now we look at u = No,,)/aw..y=9((1 = dag)/(1 = {f‘; ). We have &g =3¢ If

(p/q)=1, then the automorphism sending £, to 4’5?1 permutes the elements of

Gal (Q({44)/Q(L4, v/—q)), which implies that u = 1. Suppose that (p/q) = —1. We can
write u as

OG-8 ) _ Nowwreava” - &)

GG =" N & = 4"

Let us denote the numerator by A and the denominator by B. In the equation
(X7 = 1)/(X = 1) = [T1<ieq-1(X = £}), we substitute £;* for X to obtain —£;' = AB.
Therefore u = A/B cannot be 1 or —1, for otherwise B = +A would imply that A= +{y,
which is impossible since A € Q(4, 4/—¢). Therefore

u= NQ({«,)/Q(&,\/—_!J)(

1 if p=1 (mod 8) and

-1 if p=5 (mod 8) and
1+0'
€k

u if p=1 (mod 8) and

I
—_

—u if p =5 (mod 8) and

,_

—_—~~
RITRITRITRIT

\—/\—/\—/\—/
—_—

where u = —({3gA)? is a unit in Q(+/g) different from +1.
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Next, we compute eL*7. Note that I+ ¢ Q(¢,) since J, = —1 (mod 8¢g). So
p K 2n P q

6}(” = Nx/ayp (€x)
= Nyjawp((d = &) ™"
= Now,* 1avp (N, (1 = &) - Gy
(1 =227 (1 = g,)el -
)4 P

= Nag)* /e - — - —
PP = @I = e R - I - e

B Vol + 1)
Vp(b)vp(ly)
)y TRl lmed?
1 otherwise.

Hence

=ég "€gx "€gx =

8k 1+o0 1+7 -2 _ K (

AT if(5)= () =1,

Note that eg € k if and only if e}:" = e}{”. And this happens if and only if (¢/p) =
2/p)=1.

Tueorem 4.1. Let k = Q(y/pg) with p = 1 (mod 4) and g = 3 (mod 4). Then Nyjq(ni) =
1, and:

(D) Q2/p)=-1or(q/p)=—-1, then 2| hy, 44 hy;
() if2/p)=1(q/p) =1, then 4| hy.

Proor. Since g =3 (mod 4), x*> — pgy* = —1 has no integral solution, which implies
that Nyq(m) =1. We prove the theorem when (2/p)=1 and (¢/p)=-1. The
other cases are similar to this case or to Theorem 3.2. Put C(k) = (x&;). Then
[C(k) : Cs(k)] = 2. We have E; = —({3A - e;)* in this case. We claim that (3A - e ¢ k.
In fact {3A - e,}l ¢ K. Suppose, to the contrary, that {gA - e}l € K. Then {3A € K.
So £3A is fixed by Gal (K({3)/K). Let p e Gal (K({3)/K) be such that p({3) :53
over K. Then p({s) = {4 and p(v/—q) = —q. So p(A) =A. But p({3A) = §§A * (3A.
Hence (3A - ¢3! ¢ K. Therefore 2 t [E(k) : C(k)], for otherwise, 7" = +&; would give
n = +£03A - e or £4{3A - e, both of which are impossible. o
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ReMark 4.2. In case (2) of this theorem, 4 can be a multiple of 8. For example, /; = 4

when k = Q(V17 - 19), while /; = 8 when k = Q(V17 - 47).

Remark 4.3. Let Cr(2) be the Sylow 2-subgroup of the ideal class group Cj of
k =Q(~y/pq). Then Ci(2) is a cyclic group.

Proor. Let G = Gal (k/Q) and H' be the ith Tate cohomology group. Then we have an
exact sequence

0 — H (G, E(k)) — If |Pg — C7 — ker (H(G, E(k)) » H'(G, k)) — 0,

where I; is the ideal group of k, and Pg is the principal ideal group of Q, which of
course equals Ig. Thus IkG /Pq = (Z/2Z)", where r is the number of ramified primes
of Q in k. If Ny q(m) = —1, then H(G, E(k)) = 0 and H" (G, E(k)) ~ Z/2Z. Thus the
above sequence gives

0 — Z/2Z — (Z/2Z)* — CY — 0.

Hence C¢ ~7,/2Z.

Suppose that N/o(x) = 1. Then ﬁO(G, E(k)) ~Z/27 and ﬁ‘l(G, E(k)) ~ (Z/27)*.
So

0 — (Z/22)* — (Z/2Z)" —> C¥ — ker (H(G, E(k)) — H(G, kK*)) —> 0.
If » =2, then C,f is either trivial or isomorphic to Z/27Z. If r = 3, then
0 — Z/2Z — C¢ — ker (H(G, E(k)) = H’(G, k*)) — 0.

Note that if » =3, then we are in the situation p=1 (mod 4) and g =3 (mod 4).
In this case, the generator —1 of ﬁO(G, E(k)) cannot be a norm from k to Q since
x2 — pgy* = —z* does not have an integral solution. Thus H*(G, E(k)) — H°(G, k¥) is
an injection. Hence C¢ ~Z/2Z.

Note that CY = {c € Cy|c* =1} since Nyg(c) =1 for every c € Cy. Hence CY
consists of elements of order two in C(2). Therefore Cy(2) must be a cyclic group
since C{ is either trivial or Z/2Z. o
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