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Abstract

For a real quadratic field k = Q(
√

pq), let tk be the exact power of 2 dividing the class number hk of k
and ηk the fundamental unit of k. The aim of this paper is to study tk and the value of Nk/Q(ηk). Various
methods have been successfully applied to obtain results related to this topic. The idea of our work is to
select a special circular unit Ek of k and investigate C(k) = 〈±Ek〉. We examine the indices [E(k) : C(k)]
and [C(k) : CS (k)], where E(k) is the group of units of k, and CS (k) is that of circular units of k defined by
Sinnott. Then by using the Sinnott’s index formula [E(k) : CS (k)] = hk, we obtain as much information
about tk and Nk/Q(ηk) as possible.
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1. Introduction

Let k be a real quadratic field of the form k = Q(
√

pq). Let h = hk be the class number
of k, and t = tk the exact power of 2 dividing h, that is, 2t | h but 2t+1 - h. The aim of
this paper is to study t and Nk/Q(ηk), where ηk is the fundamental unit of k. Our results
are summarised in Table 1. In this table, (·/p) is the Legendre symbol. And when
p ≡ 1 (mod 4), (·/p)4 is defined to be( a

p

)
4

=

1 if a(p−1)/4 ≡ 1 (mod p)

−1 if a(p−1)/4 ≡ −1 (mod p).

When p ≡ 1 (mod 8),(
−1
p

)
8

= (−1)(p−1)/8 =

1 if p ≡ 1 (mod 16)

−1 if p ≡ 9 (mod 16).

Both 1 and −1 occur in the blanks.
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T 1. Summary of results in this paper.

p, q t Nk/Q(ηk)

p ≡ 3 (mod 4) q . 1 (mod 4) t = 0 1

(q/p) = −1 t = 1 −1

q ≡ 1 (mod 4) (q/p)4 · (p/q)4 = −1 t = 1 1

(q/p) = 1 (q/p)4 = (p/q)4 = −1 t = 2 −1

(q/p)4 = (p/q)4 = 1 t ≥ 2

(−1/p)4 = −1 t = 1 −1

p ≡ 1 (mod 4) q = 2 (−1/p)8 · (2/p)4 = −1 t = 1 1

(−1/p)4 = 1 (−1/p)8 = (2/p)4 = −1 t = 2 −1

(−1/p)8 = (2/p)4 = 1 t ≥ 2

q ≡ 3 (mod 4) (q/p) = −1 or (2/p) = −1 t = 1 1

(q/p) = (2/p) = 1 t ≥ 2 1

Various results have been published in relation to to this topic. Kučera [7], for
instance, proved the case where p ≡ q ≡ 1 (mod 4) by manipulating a certain circular
unit. Brown [1] took care of the case where p ≡ 1 (mod 4) with (−1/p)4 = 1 and q = 2
by using the theory of quadratic forms, while Conner and Hurrelbrink [2] applied the
theory of group cohomology to handle some of the other cases.

In this paper, we use the circular unit mentioned in [6] to obtain Table 1. The
index formula discovered by Sinnott [8] plays the most important role in our work.
For real quadratic fields, Sinnott’s formula simply reads hk = [E(k) : CS (k)] [4], where
E(k) is the unit group of k, and CS (k) is the group of circular units of k defined by
Sinnott [8]. Let n be the conductor of k. Put F = Q(ζn), δF = 1 − ζn, and δE = NF/E(δF)
for a subfield E of F, where ζn = e2πi/n. Since CS (k) is of rank one generated by
{−1, NF/k(1 − ζa

n ) | (a, n) = 1},CS (k) = 〈−1, δk〉. The generator δk can be replaced by
δ′k, a conjugate of δk over Q.

In Section 2, we study the first row of Table 1. In this case, k is a subfield of
K = Q(

√
−p,
√
−q). Note that K is a CM-field with K+ = k, and the index formula

for K says that [E(K) : CS (K)] = (1/2)QE(K)hK+ [3], where QE(K) is the unit index
of K. That is, QE(K) = [E(K) : W(K)E(K+)], where W(K) is the group of roots of
unity in K. From these two formulas, we obtain the desired results.

In the remaining sections, we assume that p ≡ 1 (mod 4). Roughly, to compute
tk and Nk/Q(ηk), we shall choose a special unit Ek in k, and investigate the subgroup
C(k) of E(k) generated by ±Ek which contains CS (k). We then analyse [E(k) : C(k)]
and [C(k) : CS (k)] to get the information about hk = [E(k) : CS (k)] and Nk/Q(ηk). When
q ≡ 3 (mod 4), the conductor n of k is 4pq, which involves three primes and thus causes
extra difficulties. So we have to be a little more careful. The final section takes care of
this case. And in Section 3, we discuss the other two cases.
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2. QQQ(
√

pq) with p ≡ 3 (mod 4) and q . 1 (mod 4)

In this section, we study tk and Nk/Q(ηk) when k = Q(
√

pq) with p ≡ 3 (mod 4) and
q . 1 (mod 4). There are three cases to consider: (i) q ≡ 3 (mod 4) and q , 3, (ii) q = 3,
and (iii) q = 2. In any case, k is a subfield of K = Q(

√
−p,
√
−q). The class number

formula for K says that [E(K) : CS (K)] = (1/2)QE(K)hK+ [3]. We first examine the
unit index QE(K).

L 2.1. Let K = Q(
√
−p,
√
−q) with p ≡ 3 (mod 4) and q . 1 (mod 4). Then we

have QE(K) = 2.

P. We only give a proof for q = 2. The other cases can be treated similarly, or the
reader may refer to [5], where the unit index is determined when the conductor is odd.
Note that the conductor n of K = Q(

√
−p,
√
−2) is 8p. So F = Q(ζn) = Q(ζ8p). In order

to prove QE(K) = 2, it suffices to show that δJ
K = −δK , where J is complex conjugation.

We compute NK/Q(
√
−2)(δK) and NK/Q(

√
−p)(δK).

Let a be an integer satisfying ap ≡ 1 (mod 8). Then a ≡ p (mod 8). So

NK/Q(
√
−2)(δK) = NQ(ζ8)/Q(

√
−2)(NF/Q(ζ8)(δF)) = NQ(ζ8)/Q(

√
−2)

(
1 − ζ8

1 − ζ p
8

)
.

Note that Gal (Q(ζ8)/Q(
√
−2)) is generated by the isomorphism sending ζ8 to ζ3

8 . Thus

NK/Q(
√
−2)(δK) =

1 if p ≡ 3 (mod 8)

−1 if p ≡ 7 (mod 8).

On the other hand,

NK/Q(
√
−p)(δK) = NQ(ζp)/Q(

√
−p)(NF/Q(ζp)(δF)) = NQ(ζp)/Q(

√
−p)

(
1 − ζp

1 − ζ2−1

p

)
,

where 2−1 is the inverse of 2 (mod p). If (2/p) = 1, then the automorphism σ2−1

of Q(ζp) sending ζp to ζ2−1

p permutes the elements of Gal (Q(ζp)/Q(
√
−p)). Thus

NK/Q(
√
−p)(δK) = 1. Suppose that (2/p) = −1. Then σ2−1 < Gal (Q(ζp)/Q(

√
−p)). Let

π = NQ(ζp)/Q(
√
−p)(1 − ζp). Then π1+σ−1

2 = p and π1−σ−1
2 = ±1. If π1−σ−1

2 = 1, then π1+σ−1
2 =

π2 = p. So π ∈ Q(
√

p), which is impossible. Thus NK/Q(
√
−p)(δK) = π1−σ−1

2 = −1.
Therefore

NK/Q(
√
−p)(δK) =

−1 if p ≡ 3 (mod 8)

1 if p ≡ 7 (mod 8).

Hence NK/Q(
√
−p)(δK) , NK/Q(

√
−2)(δK) in any case.

If δJ
K = δK , then δK ∈ k = Q(

√
2p). So Nk/Q(δK) = NK/Q(

√
−p)(δK) = NK/Q(

√
−2)(δK),

which is a contradiction. Therefore δJ
K = −δK , and this proves the lemma. �
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By the lemma,

[E(K) : CS (K)] = hK+ = hk and [E(K) : W(K)E(k)] = 2.

Note that rankZE(K) = 1. Let ηK be a generator of E(K) modulo W(K).

T 2.2. Let k = Q(
√

pq) with p ≡ 3 (mod 4) and q . 1 (mod 4). Then we have
Nk/Q(ηk) = 1 and 2 - hk.

P. Since [E(K) : W(K)E(k)] = 2, η2
K = αηk for some α ∈W(K). Thus

Nk/Q(ηk) = NK/Q(
√
−p)(ηk) = NK/Q(

√
−p)(η

2
Kα
−1) = 1.

To prove 2 - hk, we treat three cases separately.
(i) q ≡ 3 (mod 4) and q , 3. Since (q/p)(p/q) = −1, we may take (q/p) = −1. Then

NK/Q(
√
−p)(δK) = NQ(ζp)/Q(

√
−p)(NF/Q(ζp)(δF)) = NQ(ζp)/Q(

√
−p)

( 1 − ζp

1 − ζq−1

p

)
= ±1.

Since (q/p) = −1, σq−1 < Gal (Q(ζp)/Q(
√
−p)), where σq−1 is the automorphism of

Q(ζp) sending ζp to ζ
q−1

p . Then as in the proof of Lemma 2.1, NK/Q(
√
−p)(δK) = −1.

Suppose that 2 | hk = [E(K) : CS (K)]. Put hk = 2m. Then η2m
K = ±δ

j
K for some odd

integer j. By taking norms of both sides from K to Q(
√
−p), we get a contradiction.

(ii) q = 3. In this case, K = Q(
√
−3,
√
−p) and E(K) = 〈−ζ3, ηK〉. Suppose that 2 | hk.

Then η2m
K = ±ζ i

3δ
j
K for some odd integer j.

If (p/3) = 1, then (3/p) = −1. After a computation similar to that of case (i), we see
that

NK/Q(
√
−p)(δK) = NQ(ζp)/Q(

√
−p)

( 1 − ζp

1 − ζ3−1

p

)
= −1.

By taking norms of both sides of η2m
K = ±ζ i

3δ
j
K from K to Q(

√
−p), we have 1 =

NK/Q(
√
−p)(±ζ i

3δ
j
K) = −1, which is absurd. So 2 - hk.

On the other hand, suppose that (p/3) = −1. In this case, we take norms of both
sides of the equation η2m

K = ±ζ i
3δ

j
K from K to Q(

√
−3). Then

NK/Q(
√
−3)(η

2m
K ) = NK/Q(

√
−3)(±ζ

i
3δ

j
K).

Since NK/Q(
√
−3)(ηK) is a unit inQ(

√
−3), the left-hand side is of the form ζα3 . And since

NK/Q(
√
−3)(δK) = NQ(ζ3p)/Q(ζ3)(δF) =

1 − ζ3

1 − ζ p−1

3

= −ζ3,

the right-hand side equals ζ2i
3 (−ζ3) j = −ζ

β
3 for some β. Thus ζα3 = −ζ

β
3 , which cannot

happen. Hence 2 - hk.
(iii) q = 2. We saw in the proof of Lemma 2.1 that NK/Q(

√
−2)(δK) = −1 if p ≡

7 (mod 8) and NK/Q(
√
−p)(δK) = −1 if p ≡ 3 (mod 8). Suppose that 2 | hk. Then

η2m
K = ±δ

j
K for some odd integer j. But this is impossible since NK/Q(

√
−2)(η

2m
K ) =

NK/Q(
√
−p)(η2m

K ) = 1. �
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R 2.3. Since Nk/Q(ηk) = 1, −1 is not a norm of a unit in E(k). That is, −1 <
Nk/QE(k). We can say a little more. Indeed, by Remark 4.3 at the end of this paper,
Ĥ0(G, Ek) −→ Ĥ0(G, k×) is injective, where G = Gal (k/Q). Thus −1 cannot be a norm
element from k× either.

3. QQQ(
√

pq) with p ≡ 1 (mod 4) and q . 3 (mod 4)

Let K = Q(
√

p,
√

q). It is clear that 2 | hk since K/k is an unramified extension.
We investigate the divisibility of hk by a higher power of 2 by playing around with
a suitable unit of k. Fix a generator σ of Gal (Q(ζp)/Q) and τ of Gal (Q(ζq)/Q)
when q , 2, and extend them to Q(ζn) naturally, that is, ζσq = ζq and ζτp = ζp. Let J1

be the complex conjugation of Q(ζp) or its extension to Q(ζn), so that ζ J1
p = ζ−1

p and
ζ J1

q = ζq. We similarly define J2, that is, ζ J2
p = ζp and ζ J2

q = ζ−1
q . Thus J = J1J2 is

the complex conjugation of Q(ζn). When q = 2, the conductor of k is 8p. In this
case, τ is a generator of Gal (Q(ζ16)+/Q) or its natural extension to Q(ζ16p) so that
ζτ4p = ζ4p, and J2 is the complex conjugation of Q(ζ16) or its extension to Q(ζ16p). For

each integer i, put vp(i) = ((1 − ζσ
i

p )/(1 − ζp))ζ(1−σi)/2
p . Then vp(i) ∈ Q(ζp)+. We denote

NQ(ζp)+/Q(
√

p)(vp(i)) by vp(i). Note that vp(1) is a unit in Q(
√

p) which differs from ±1.
In fact, vp(1)2 generates the Sinnott group of circular units of Q(

√
p) modulo {±1}.

L 3.1. The unit vp(i) satisfies:
(1) NQ(

√
p)/Q(vp(i)) = (−1)i;

(2) vp(i) =

(−1)m if i = 2m

(−1)mvp(1) if i = 2m + 1.

P. Put t = [Q(ζp)+ : Q(
√

p)] = (p − 1)/4. Then for any integers a, b, and c,
vp(2t) = −1, vp(2t + c) = −vp(c), and σavp(b) = vp(a + b)/vp(a). We prove (1) by
induction on i, which is clear when i = 0. Assuming the result for i, then

NQ(
√

p)/Qvp(i + 1) = NQ(ζp)+/Qvp(i + 1)

=

2t−1∏
α=0

vp(i + 1 + α)

vp(α)

=

∏2t−2
α=0 vp(i + 1 + α)∏2t−1

α=0 vp(α)
vp(i + 2t)

= −

2t−1∏
β=0

vp(i + β)

vp(β)

= −NQ(
√

p)/Qvp(i).

We omit the proof of (2) since it is similar to that of (1). �
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3.1. p ≡ q ≡ 1 (mod 4). Let σq be the Frobenius automorphism of Q(ζp) for q,
and lq an integer such that σq−1 = σlq . Then NF/Q(ζp)((1 − ζn)ζ−1/2

n ) = vp(lq)−1. By
interchanging the roles of p and q, we have NF/Q(ζq)((1 − ζn)ζ−1/2

n ) = vq(lp)−1. Note that
2 | lp if and only if p(q−1)/2 ≡ 1 (mod q), that is, (p/q) = 1. Since p ≡ q ≡ 1 (mod 4),
(p/q) = (q/p). Thus 2 | lp if and only if 2 | lq. Similarly 4 | lp if and only if p(q−1)/4 ≡

1 (mod q), that is, (p/q)4 = 1.
Let L = Q(ζp)+Q(ζq)+, and eL = (1 − ζn)(1 − ζ J2

n )ζ−(1+J2)/2
n . It is easy to see that eL

is fixed by J1 and J2, so that eL ∈ L. Note that NF/L(δF) = e2
L and

eL = NF/Q(ζp)Q(ζq)+(1 − ζn)ζ−1/2
n = −NF/Q(ζp)+Q(ζq)(1 − ζn)ζ−1/2

n .

Put
eK = NL/K(eL), ek = NK/k(eK) and Ek = eσ+τ

K .

Since Eστk = e(σ+τ)στ
K = eσ+τ

K = Ek, Ek is fixed by Gal (K/k). Thus Ek ∈ k. In fact,
Ek = eσk = eτk. We express Ek as

Ek = eσ+τ
K = e1+σ

K · e1+τ
K · e−2

K .

Here

e1+σ
K = NK/Q(

√
q)(eK)

= NK/Q(
√

q)NL/K(eL)

= NK/Q(
√

q)NL/K(−NF/Q(ζp)+Q(ζq)((1 − ζn)ζ−1/2
n ))

= NQ(ζq)+/Q(
√

q)(vq(lp)−1)

= vq(lp)−1.

Similarly,
e1+τ

K = vp(lq)−1.

Hence
Ek = vq(lp)−1 · vp(lq)−1

· e−2
K .

It is possible that eK ∈ k. Let us examine when this happens. Note that eK ∈ k if and
only if eστK = eK . This is equivalent to e1+σ

K = e1+τ
K . Hence

eK ∈ k if and only if lp ≡ lq ≡ 0 (mod 2), and (−1)lp/2 = (−1)lq/2.

We also have

Nk/Q(Ek) = e1+σ+τ+στ
K = e(1+σ)(1+τ)

K = NQ(
√

q)/Q( vq(lp)−1) =

1 if 2 | lp

−1 if 2 - lp.

T 3.2. Let k = Q(
√

pq) with p ≡ q ≡ 1 (mod 4). Then:
(1) if (q/p) = (p/q) = −1, then 2 | hk, 4 - hk, and Nk/Q(ηk) = −1;
(2) if (p/q)4 · (q/p)4 = −1, then 2 | hk, 4 - hk, and Nk/Q(ηk) = 1;
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(3) if (p/q)4 = (q/p)4 = −1, then 4 | hk, 8 - hk, and Nk/Q(ηk) = −1;
(4) if (p/q)4 = (q/p)4 = 1, then 4 | hk.

P. Let C(k) = 〈−1, Ek〉. Since NF/L(δF) = e2
L, CS (k) = 〈−1, e2

k〉. Thus CS (k) =

〈−1, (eσk )2〉 = 〈−1, E2
k〉. Hence [C(k) : CS (k)] = 2. In case (1), lp (hence lq as well) is

odd. So Nk/Q(Ek) = −1, which implies that 2 - [E(k) : C(k)] and Nk/Q(ηk) = −1. Since

hk = [E(k) : CS (k)] = [E(k) : C(k)][C(k) : CS (k)],

we get the results as asserted. Next, we suppose that (p/q)4 · (p/q)4 = −1. We may
assume that (p/q)4 = −1 and (q/p)4 = 1. Then lq = 4m1 and lp = 4m2 + 2, for some
m1 and m2. In this case Ek = −e−2

K and eK < k. Hence 2 - [E(k) : C(k)], for otherwise
η2m

k = ±Ek = e−2
K would imply that e−1

K = ±ηm
k ∈ k. Since Nk/Q(Ek) = 1, we also have

Nk/Q(ηk) = 1. Therefore 2 | hk, 4 - hk and Nk/Q(ηk) = 1. In case (3), lp and lq are of the
forms lp = 4m1 + 2 and lq = 4m2 + 2. Thus e1+σ

K = e1+τ
K = −1, Ek = e−2

K , and eK ∈ k. Put
C′ = 〈−1, eK〉. Then

[C′ : CS (k)] = [C′ : C(k)][C(k) : CS (k)] = 4.

Moreover, Nk/Q(eK) = e1+σ
K = −1. Therefore 2 - [E(k) : C′] and Nk/Q(ηk) = −1, and we

obtain the desired results. Finally, condition (4) says that both l1 and l2 are multiples
of 4. So eK ∈ k and thus 4 = [C′ : CS (k)] | hk. This concludes the proof. �

R 3.3. In case (4) of this theorem, both 1 and −1 can be the value of
Nk/Q(ηk). When k = Q(

√
5 · 101) or k = Q(

√
29 · 181), for instance, Nk/Q(ηk) = 1, while

Nk/Q(ηk) = −1 when k = Q(
√

5 · 461). If Nk/Q(ηk) = −1, then 8 | hk since 2 | [E(k) : C′].
Indeed, the class number of Q(

√
5 · 461) is 16. And even if Nk/Q(ηk) = 1, hk can be a

multiple of 8. For example, Q(
√

5 · 101) has the class number 4, while Q(
√

29 · 181)
has the class number 8.

3.2. p ≡ 1 (mod 4), and q = 2. Put L = Q(
√

2)Q(ζp)+ and K = Q(
√

2,
√

p) as before.
Let

eL = (1 − ζ8p)(1 − ζ J2
8p)ζ−(1+J2)

16p .

Since J2 ≡ −1 (mod 16), eL ∈ F. Furthermore, since J1 and J2 fix eL then eL ∈ L.
As in the previous case, put eK = NL/K(eL), ek = NK/k(eK), and Ek = eσ+τ

K . Then since
NF/L(δF) = e2

L, CS (k) = 〈−1, e2
k〉 = 〈−1, e2σ

k 〉. Now we analyse each term of the product

Ek = eσ+τ
K = e1+σ

K · e1+τ
K · e−2

K .

First,

e1+σ
K = NL/Q(

√
2)(eL) = NQ(ζ16p)/Q(ζ16)((1 − ζ8p)ζ−1

16p) =
1 − ζ8

1 − ζ p−1

8

ζ
p−1−1
16 ,
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where p−1 is the inverse of p (mod 16). Hence

e1+σ
K =


1 if p ≡ 1 (mod 16)

−1 if p ≡ 9 (mod 16)

±(
√

2 − 1) if p ≡ 5 (mod 8).

The second term e1+τ
K is the same as before. Namely,

e1+τ
K = vp(l2)−1

=


1 if p ≡ 1 (mod 8) and

( 2
p

)
4

= 1

−1 if p ≡ 1 (mod 8) and
( 2

p

)
4

= −1

±vp(1)−1 if p ≡ 5 (mod 8).

For the last term, eK ∈ k if and only if either p ≡ 1 (mod 16) and (2/p)4 = 1, or
p ≡ 9 (mod 16) and (2/p)4 = −1. Hence eK ∈ k if and only if p ≡ 1 (mod 8) and
(−1/p)8 · (2/p)4 = 1. Also note that

Nk/Q(Ek) = NQ(
√

2)/Q(e1+σ
K ) =

1 if p ≡ 1 (mod 8)

−1 if p ≡ 5 (mod 8).

T 3.4. Let k = Q(
√

2p) with p ≡ 1 (mod 4). Then:

(1) if (−1/p)4 = −1, then 2 | hk, 4 - hk, and Nk/Q(ηk) = −1;
(2) if (−1/p)8 · (2/p)4 = −1, then 2 | hk, 4 - hk, and Nk/Q(ηk) = 1;
(3) if (−1/p)8 = (2/p)4 = −1, then 4 | hk, 8 - hk, and Nk/Q(ηk) = −1;
(4) if (−1/p)8 = (2/p)4 = 1, then 4 | hk.

P. This can be proved in a similar way to Theorem 3.2. �

R 3.5. As in case (4) of Theorem 3.2, both 1 and −1 occur as the value of
Nk/Q(ηk) when (−1/p)8 = (2/p)4 = 1. For example, Nk/Q(ηk) = 1 when k isQ(

√
2 · 257)

or Q(
√

2 · 1217). The class numbers are 4 and 8, respectively. And when k =

Q(
√

2 · 113), Nk/Q(ηk) = −1 and hk = 8, a multiple of 8 as it should be.

4. QQQ(
√

pq) with p ≡ 1 (mod 4) and q ≡ 3 (mod 4)

In this case, the conductor of k = Q(
√

pq) is n = 4pq. Let J1 and J2 be such that
ζ J1

p = ζ−1
p , ζ J1

8q = ζ8q, and ζ J2
p = ζp, ζ J2

8q = ζ−1
8q . As in the previous section, σ is a fixed

generator of Gal (Q(ζp)/Q), or its natural extension to Q(ζ8pq) such that ζσ8q = ζ8q.
And τ is a fixed generator of Gal (Q(ζq)/Q) or its extension to Q(ζ8pq) such that
ζτ8p = ζ8p. Then τ(

√
−q) = −

√
−q and τ(

√
q) = −

√
q, and thus Gal (Q(

√
q)/Q) = {1, τ}.

Let L = Q(ζ4q)+Q(ζp)+, and eL = (1 − ζn)(1 − ζ J2
n )ζ−(1+J2)

2n . Since J2 ≡ −1 (mod 8q) and
since eL is fixed by J1 and J2, eL ∈ L. Let

K = Q(
√

p,
√

q), eK = NL/K(eL), ek = NK/k(eK)
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and Ek = eσ+τ
K as before. Note that

NF/L(1 − ζn) = e2
L, ((1 − ζn)ζ−1

2n )1+J2 = eL,

and ((1 − ζn)ζ−1
2n )1+J1 = −eL. We analyse each term in the product

Ek = eσ+τ
K = e1+σ

K · e1+τ
K · e−2

K .

First,

e1+σ
K = NL/Q(

√
q)(eL)

= NL/Q(
√

q)(−((1 − ζn)ζ−1
2n )1+J1 )

= NQ(ζ4q)+/Q(
√

q)((NF/Q(ζ4q)(1 − ζn)) · (NQ(ζ8pq)/Q(ζ8q)ζ
−1
2n ))

= NQ(ζ4q)+/Q(
√

q)

(
1 − ζ4q

1 − ζ p−1

4q

ζ
p−1−1
8q

)

= NQ(ζ4q)/Q(ζ4,
√
−q)

(
1 − ζ4q

1 − ζ p−1

4q

)
· NQ(ζ8q)/Q(ζ8,

√
−q)(ζ

p−1−1
8q ),

where p−1 is the inverse of p (mod 8q). Put ζ8q = ζ x
8ζ

y
q. Then we have

NQ(ζ8q)/Q(ζ8,
√
−q)(ζ

p−1−1
8q ) = ζ

x(p−1−1)(q−1)/2
8 =

1 if p ≡ 1 (mod 8)

−1 if p ≡ 5 (mod 8).

Now we look at u = NQ(ζ4q)/Q(ζ4,
√
−q)((1 − ζ4q)/(1 − ζ p−1

4q )). We have ζ4q = ζ x
4ζ

2y
q . If

(p/q) = 1, then the automorphism sending ζq to ζ
p−1

q permutes the elements of
Gal (Q(ζ4q)/Q(ζ4,

√
−q)), which implies that u = 1. Suppose that (p/q) = −1. We can

write u as

u = NQ(ζ4q)/Q(ζ4,
√
−q)

(
ζ x

4 (ζ−x
4 − ζ

2y
q )

ζ x
4 (ζ−x

4 − ζ
2yp−1

q )

)
=

NQ(ζ4q)/Q(ζ4,
√
−q)(ζ−x

4 − ζ
2y
q )

NQ(ζ4q)/Q(ζ4,
√
−q)(ζ−x

4 − ζ
2yp−1

q )
.

Let us denote the numerator by A and the denominator by B. In the equation
(Xq − 1)/(X − 1) =

∏
1≤i≤q−1(X − ζ i

q), we substitute ζ−x
4 for X to obtain −ζ−1

4 = AB.
Therefore u = A/B cannot be 1 or −1, for otherwise B = ±A would imply that A2 = ±ζ4,
which is impossible since A ∈ Q(ζ4,

√
−q). Therefore

e1+σ
K =



1 if p ≡ 1 (mod 8) and
( p

q

)
= 1

−1 if p ≡ 5 (mod 8) and
( p

q

)
= 1

u if p ≡ 1 (mod 8) and
( p

q

)
= −1

−u if p ≡ 5 (mod 8) and
( p

q

)
= −1,

where u = −(ζ8A)2 is a unit in Q(
√

q) different from ±1.
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Next, we compute e1+τ
K . Note that ζ1+J2

2n ∈ Q(ζp) since J2 ≡ −1 (mod 8q). So

e1+τ
K = NK/Q(

√
p)(eK)

= NL/Q(
√

p)((1 − ζn)ζ−1
2n )1+J2

= NQ(ζp)+/Q(
√

p)((NF/Q(ζp)(1 − ζn)) · (ζ−(1+J2)(q−1)
2n ))

= NQ(ζp)+/Q(
√

p)

 ((1 − ζ(2q)−1

p )/(1 − ζp))ζ(1−(2q)−1)/2
p

(((1 − ζ2−1

p )/(1 − ζp))ζ(1−2−1)/2
p )(((1 − ζq−1

p )/(1 − ζp))ζ(1−q−1)/2
p )


=

vp(l2 + lq)

vp(l2)vp(lq)

=

−
1

vp(1)2
if l2 ≡ lq ≡ 1 (mod 2)

1 otherwise.

Hence

Ek = e1+σ
K · e1+τ

K · e−2
K =



e−2
K if

( 2
p

)
=

( q
p

)
= 1

−(ζ8A · e−1
K )2 if

( 2
p

)
= 1 and

( q
p

)
= −1

−e−2
K if

( 2
p

)
= −1 and

( q
p

)
= 1

−(ζ8A · vp(1)−1 · e−1
K )2 if

( 2
p

)
=

( q
p

)
= −1.

Note that eK ∈ k if and only if e1+σ
K = e1+τ

K . And this happens if and only if (q/p) =

(2/p) = 1.

T 4.1. Let k = Q(
√

pq) with p ≡ 1 (mod 4) and q ≡ 3 (mod 4). Then Nk/Q(ηk) =

1, and:

(1) if (2/p) = −1 or (q/p) = −1, then 2 | hk, 4 - hk;
(2) if (2/p) = (q/p) = 1, then 4 | hk.

P. Since q ≡ 3 (mod 4), x2 − pqy2 = −1 has no integral solution, which implies
that Nk/Q(ηk) = 1. We prove the theorem when (2/p) = 1 and (q/p) = −1. The
other cases are similar to this case or to Theorem 3.2. Put C(k) = 〈±Ek〉. Then
[C(k) : CS (k)] = 2. We have Ek = −(ζ8A · e−1

K )2 in this case. We claim that ζ8A · e−1
K < k.

In fact ζ8A · e−1
K < K. Suppose, to the contrary, that ζ8A · e−1

K ∈ K. Then ζ8A ∈ K.
So ζ8A is fixed by Gal (K(ζ8)/K). Let ρ ∈ Gal (K(ζ8)/K) be such that ρ(ζ8) = ζ5

8
over K. Then ρ(ζ4) = ζ4 and ρ(

√
−q) =

√
−q. So ρ(A) = A. But ρ(ζ8A) = ζ5

8 A , ζ8A.
Hence ζ8A · e−1

K < K. Therefore 2 - [E(k) : C(k)], for otherwise, η2m
k = ±Ek would give

ηm
k = ±ζ8A · e−1

K or ±ζ4ζ8A · e−1
K , both of which are impossible. �
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R 4.2. In case (2) of this theorem, hk can be a multiple of 8. For example, hk = 4
when k = Q(

√
17 · 19), while hk = 8 when k = Q(

√
17 · 47).

R 4.3. Let Ck(2) be the Sylow 2-subgroup of the ideal class group Ck of
k = Q(

√
pq). Then Ck(2) is a cyclic group.

P. Let G = Gal (k/Q) and Ĥi be the ith Tate cohomology group. Then we have an
exact sequence

0 −→ Ĥ−1(G, E(k)) −→ IG
k /PQ −→CG

k −→ ker (Ĥ0(G, E(k))→ Ĥ0(G, k×)) −→ 0,

where Ik is the ideal group of k, and PQ is the principal ideal group of Q, which of
course equals IQ. Thus IG

k /PQ ' (Z/2Z)r, where r is the number of ramified primes
of Q in k. If Nk/Q(ηk) = −1, then Ĥ0(G, E(k)) = 0 and Ĥ−1(G, E(k)) ' Z/2Z. Thus the
above sequence gives

0 −→ Z/2Z −→ (Z/2Z)2 −→CG
k −→ 0.

Hence CG
k ' Z/2Z.

Suppose that Nk/Q(ηk) = 1. Then Ĥ0(G, E(k)) ' Z/2Z and Ĥ−1(G, E(k)) ' (Z/2Z)2.
So

0 −→ (Z/2Z)2 −→ (Z/2Z)r −→CG
k −→ ker (Ĥ0(G, E(k))→ Ĥ0(G, k×)) −→ 0.

If r = 2, then CG
k is either trivial or isomorphic to Z/2Z. If r = 3, then

0 −→ Z/2Z −→CG
k −→ ker (Ĥ0(G, E(k))→ Ĥ0(G, k×)) −→ 0.

Note that if r = 3, then we are in the situation p ≡ 1 (mod 4) and q ≡ 3 (mod 4).
In this case, the generator −1 of Ĥ0(G, E(k)) cannot be a norm from k to Q since
x2 − pqy2 = −z2 does not have an integral solution. Thus Ĥ0(G, E(k))→ Ĥ0(G, k×) is
an injection. Hence CG

k ' Z/2Z.
Note that CG

k = {c ∈Ck | c2 = 1} since Nk/Q(c) = 1 for every c ∈Ck. Hence CG
k

consists of elements of order two in Ck(2). Therefore Ck(2) must be a cyclic group
since CG

k is either trivial or Z/2Z. �
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