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Abstract

We prove strong convergence and asymptotic normality for the record and the weak
record rate of observations of the form Yn = Xn + Tn, n ≥ 1, where (Xn)n∈Z is
a stationary ergodic sequence of random variables and (Tn)n≥1 is a stochastic trend
process with stationary ergodic increments. The strong convergence result follows from
the Dubins–Freedman law of large numbers and Birkhoff’s ergodic theorem. For the
asymptotic normality we rely on the approach of Ballerini and Resnick (1987), coupled
with a moment bound for stationary sequences, which is used to deal with the random
trend process. Examples of applications are provided. In particular, we obtain strong
convergence and asymptotic normality for the number of ladder epochs in a random walk
with stationary ergodic increments.
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1. Introduction

Records capture attention as they arise in diverse domains such as economics or meteorology
and, of course, sport. The mathematical theory has been developed over decades and reached a
fair level of maturity, which can be appreciated in [1] and [21]; see also [14] for recent results
on record counts from independent and identically distributed (i.i.d.) observations.

The literature on statistical analysis of record data reveal that records occur more often than
predicted by the standard i.i.d. theory. This was pointed out in [9], where a model with linear
deterministic trend was considered. Later, a power model which partly retains the theoretical
simplicity of the i.i.d. case was introduced in [27].

The theory of records from observations with linear trend was initiated by Ballerini and
Resnick in [2]. They obtained strong convergence and asymptotic normality for the record
rate from observations of the form Yn = Xn + cn, where the Xn are integrable, i.i.d. with
continuous common distribution, and c is a positive constant. These results were later extended
to stationary Xn in [3] with applications to athletic data. For additional theoretical results on the
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1176 R. GOUET ET AL.

model with deterministic trend, linear or not, see [5] and [6]. Also, interesting distribution-free
inference methods were developed in [8].

The study of record events has attracted the interest of scientists beyond the probability-
statistics community in recent years. In particular, a fresh look at the problem of records from
observations with linear trend can be found in the physics literature, for example, [10], [19],
[20], and [25]. See also [23] and [26] for applications of the model with deterministic trend to
the analysis of climate change.

The main results of this paper are the strong convergence (to a positive constant) and a
central limit theorem for the record and the weak record rate in a model consisting of stationary
ergodic observations, subject to a stochastic trend process, whose increments are stationary
ergodic. These results generalize those of [3] for stationary observations with a deterministic
linear trend.

The proof of the strong convergence of the record rate relies on a result of [7] concerning
the almost sure (a.s.) convergence of the ratio of the sum of indicators to the sum of their
conditional expectations with respect to an increasing family of sigma algebras. We show that
the process of conditional expectations couples with a stationary process and we then apply
Birkhoff’s pointwise ergodic theorem to obtain the strong convergence of the record rate, unlike
in [3], where the proof is based on Kingman’s subadditive ergodic theorem. For the central
limit theorem we consider first a martingale approach, which leads to asymptotic normality
with a random centering process. Then we follow the strategy in [3] to obtain a central limit
theorem with deterministic centering, where, as can be expected, extra moment and mixing
conditions are needed due to the presence of a stochastic trend process.

We provide various examples of applications of our results. In particular, we analyze the case
of random walks with stationary increments. This problem has been studied in the literature
when the increments are independent [20] and [24]; our results are more general since they
include the case of correlated increments.

2. Definitions and preliminaries

Let the base process (Wn)n∈Z with Wn = (Xn, τn+1) be defined as a bivariate, (strictly)
stationary, and ergodic random sequence such that E[X+

0 ] < ∞ and 0 < c := E[τ0] < ∞,
where Z denotes the set of integers, x+ := x ∨ 0, and u ∨ v := max{u, v}. The base process is
taken as double-ended stationary for convenience, since any stationary single-ended sequence
can be extended to a double-ended one. Also, ergodicity is assumed for ease since, otherwise,
the asymptotic record rate has to be expressed as an expectation, conditional on the σ -algebra
of invariant events of (Wn)n∈Z. We use the notation Wn

m for (Wm, . . . , Wn) with −∞ ≤ m ≤
n ≤ ∞.

Let (Yn)n≥1 be the sequence defined by

Yn = Xn + Tn,

where Tn := ∑n
k=1 τk,n ≥ 1, denotes the random trend or drift process. The first observation Y1

is conventionally taken as a record and for n ≥ 2, Yn is said to be a (upper) record if Yn > Mn−1,
where Mn−1 := max{Y1, . . . , Yn−1} (also denoted by

∨n−1
i=1 Yi). The record indicators are then

given by I1 = 1 and In = 1{Yn>Mn−1}, n ≥ 2. Finally, the counting process of records is defined
by the sums of indicators Nn = ∑n

k=1Ik and the record rate by Nn/n, n ≥ 1.

Remark 1. Note that the random drift Tn can be described as positive and linear in expectation
because E[Tn] = nc > 0. Observe also that Yn can be decomposed as Yn = X′

n + nc
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with X′
n := Xn + Tn − nc. Such representation apparently implies that the random drift can

be reduced to a linear deterministic drift. However, this is not so because X′
n is not stationary

in general and so the type of sequence Yn studied in this paper generalizes those previously
considered in the literature. On the other hand, we point out that both sequences (Xn) and (τn)

are allowed to be dependent (correlated), also possibly mutually dependent, but must yet have
finite expectation.

Lemma 1. (i) It holds that Mn → ∞ and Nn → ∞ a.s.

(ii) The sequence Zn := Mn−1 − Tn, n ≥ 2, satisfies the recurrence relation

Vn+1 = (Vn ∨ Xn) − τn+1. (1)

Proof of Lemma 1(i). As Mn is increasing, it converges to a finite limit or diverges to ∞ a.s.
On the other hand, for all a ∈ R, we have

P[Mn > a] ≥ P[Xn > a − Tn] ≥ P

[
Xn > a − nc

2
, Tn ≥ nc

2

]
→ 1,

since P[Xn > a − nc/2] = P[X0 > a − nc/2] → 1 and P[Tn ≥ nc/2] → 1, by Birkhoff’s
theorem. Hence, Mn → ∞, which clearly implies Nn → ∞.

Proof of Lemma 1(ii). By direct substitution into (1).

We show next that (1) has a stationary solution, which couples with Zn. Stochastic recursions
appear in many areas of applied probability; see [11] for results related to the (max, +) algebra.

Proposition 1. Let Z∗
n = ∨

k≥1{Xn−k − ∑n
j=n−k+1 τj }, n ∈ Z. Then

(i) Z∗
n is a proper stationary solution of (1) and

(ii) Z∗
n = Zn a.s. for sufficiently large n.

Proof of Proposition 1(i). Note that Z∗
n is a measurable function of Wn−1−∞ , so Z∗

n is station-
ary. Also, substitution into (1) shows that Z∗

n solves the recurrence.
We verify that Z∗

n is proper, that is, P[Z∗
n ∈ R] = 1. Due to stationarity it suffices to show

that P[X−k >
∑0

j=−k+1 τj , i.o.] = 0 (i.o. stands for ‘infinitely often’). Birkhoff’s theorem

implies that P[∑0
j=−k+1 τj ≤ kc/2, i.o.] = 0; hence,

P

[
X−k >

0∑
j=−k+1

τj , i.o.

]
≤ P

[
X−k >

kc

2
, i.o.

]
.

Furthermore, by stationarity P[X−k > kc/2] = P[X0 > kc/2] for k ≥ 1, and
∑∞

k=1P[X0 >

kc/2] < ∞ because E[X+
0 ] < ∞. The conclusion then follows from the Borel–Cantelli

lemma.

Proof of Proposition 1(ii). We iterate (1) with starting value Z2 to obtain

Zn =
n−2∨
k=1

(
Xn−k −

n∑
j=n−k+1

τj

)
∨

(
Z2 −

n∑
j=3

τj

)
, n ≥ 2.

We claim that for large enough n, Zn = ∨n−2
k=1(Xn−k − ∑n

j=n−k+1 τj ) a.s. because Z2 −∑n
j=3τj → −∞ a.s., by Birkhoff’s theorem. To prove the claim let us assume on the contrary
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that P[Zn = Z2 − ∑n
j=3τj , i.o.] > 0, which, from the definition of Zn in Lemma 1(ii), is

equivalent to P[Mn−1 = M1, i.o.] > 0. As this contradicts Lemma 1(i), the claim is proven.
On the other hand, by iterating (1) with starting value Z∗

2 , we obtain

Z∗
n =

n−2∨
k=1

(
Xn−k −

n∑
j=n−k+1

τj

)
∨

(
Z∗

2 −
n∑

j=3

τj

)
, n ≥ 2.

So from the previous claim, we have Z∗
n = Zn ∨ (Z∗

2 − ∑n
j=3τj ) a.s. for large enough n.

Finally, we obtain Z∗
n = Zn for large enough n because

P

[
Z∗

2 −
n∑

j=3

τj > Zn, i.o.

]
= P[Mn−1 < Z∗

2 + T2, i.o.] = 0,

by Lemma 1(i).

Definition 1. Let (Fn)n∈Z be the increasing family of σ -algebras given by

Fn = σ {Xk, τk+1, k ≤ n} = σ {Wn−∞}, n ∈ Z.

Also, let Gn−1(x) = P[Xn > x | Fn−1] and Gw
n−1(x) = P[Xn ≥ x | Fn−1] for x ∈ R, n ∈ Z,

be the (regular, conditional on Fn−1) survival function and the weak survival function of Xn,
respectively.

Proposition 2. Let Gn−1(x) and Gw
n−1(x) from Definition 1 and let Z∗

n be as defined in
Proposition 1. Then Gn−1(Z

∗
n), Gw

n−1(Z
∗
n), n ∈ Z, are stationary and ergodic.

Proof. First note that Z∗
n is Fn−1-measurable; hence, Gn−1(Z

∗
n) = P[Xn > Z∗

n | Wn−1−∞ ],
n ∈ Z. From the definition of conditional expectation, there exists a measurable function
f0 : R

∞ → R such that G0(Z
∗
1) = E[1{X1>Z∗

1 } | W 0−∞] = f0(W
0−∞) and

E[f0(W
0−∞)g(W 0−∞)] = E[1{X1>Z∗

1 }g(W 0−∞)]
for any bounded and measurable function g : R

∞ → R. We claim that f0(W
n−1−∞ ) is a version

of E[1{Xn>Z∗
n} | Wn−1−∞ ] and, therefore, that Gn−1(Z

∗
n) is stationary and ergodic. The claim

follows at once from the stationarity (and ergodicity) of Wn since, for n ∈ Z,

E[f0(W
n−1−∞ )g(Wn−1−∞ )] = E[f0(W

0−∞)g(W 0−∞)]
and

E[1{X1>Z∗
1 }g(W 0−∞)] = E[1{Xn>Z∗

n}g(Wn−1−∞ )].
The argument for Gw

n−1(Z
∗
n) is identical.

3. Main results

3.1. Strong convergence of the record and the weak record rate

The strong convergence of the record rate for stationary observations with random drift, is
contained in the following theorem.

Theorem 1. It holds that

Nn

n
→ p := E[G0(Z

∗
1)] = P

[
X1 >

∨
k≥1

{
X1−k −

1∑
j=2−k

τj

}]
a.s.
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Proof. Let Gn−1(x) and Zn be as described in Definition 1 and Lemma 1(ii). We invoke
Proposition 6 (see Appendix A) with Un = In and Gn = Fn, recalling that, from Lemma 1(i),
Nn → ∞ a.s. Hence,

∑
n≥1 Un = ∞ a.s. and (10) holds. Furthermore, the conditional

expectation of In is easily calculated as

E[In | Fn−1] = P[Yn > Mn−1 | Fn−1]
= P[Xn > Mn−1 − Tn | Fn−1]
= Gn−1(Zn), n ≥ 2, (2)

so, from (2) and (10), we obtain

Nn∑n
k=2 Gk−1(Zk)

→ 1 a.s. (3)

On the other hand, by Proposition 2, Gn−1(Z
∗
n) is stationary ergodic and so Birkhoff’s theorem

yields that
1

n

n∑
k=1

Gk−1(Z
∗
k ) → E[G0(Z

∗
1)] a.s. (4)

Furthermore, from Proposition 1(ii) we know that Zn and Z∗
n couple; hence, (4) also holds with

Zn replacing Z∗
n, that is,

1

n

n∑
k=1

Gk−1(Zk) → E[G0(Z
∗
1)] a.s.

and the conclusion follows from (3).

A weak record is an observation which is greater than or equal to the current maximum. We
define the indicators of weak records by Iw

1 = 1 and Iw
k = 1{Yk≥Mk−1}, k ≥ 2; the counting

process and the rate by Nw
n = ∑n

k=1 Iw
k and Nw

n /n, respectively. Of course, records and weak
records coincide unless the distribution of the observations has discontinuities; see [12] and
[13] for results in the i.i.d. case. Observe that Nw

n ≥ Nn → ∞, by Lemma 1(i). We now state
the analog of Theorem 1 for weak records.

Theorem 2. It holds that

Nw
n

n
→ pw := E[Gw

0 (Z∗
1)] = P

[
X1 ≥

∨
k≥1

{
X1−k −

1∑
j=2−k

τj

}]
a.s. (5)

Proof. As that of Theorem 1, mutatis mutandis.

We have the following result concerning the positivity of the limits in Theorems 1 and 2.
Observe that the integrability hypothesis of X0 is crucial.

Proposition 3. Let p, pw be as defined in Theorems 1 and 2. Then pw ≥ p > 0.

Proof. Clearly, since records are also weak records, we have pw ≥ p and so it suffices to
prove that p > 0. Observe that p = E[G0(Z

∗
1)] = 0 implies that G0(Z

∗
1) = 0 a.s. and so,

by stationarity, Gn−1(Z
∗
n) = 0 for all n ∈ Z a.s. Now, since Z∗

n and Zn couple, the series∑
n≥1Gn−1(Zn) converges. Therefore, by (9),

∑
n≥1In < ∞, thus contradicting Lemma 1.
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Remark 2. It is easy to find an example with p = 1 (see after Proposition 4). In this case all
observations are records except for a finite number. Indeed, we consider the indicators of not
being a record, that is, 1 − In. Then, by (10), the total number of no-records

∑
n≥1(1 − In)

is finite if and only if
∑

n≥1(1 − Gn−1(Zn)) is finite. The last sum converges because p = 1
implies that G0(Z

∗
1) = 1 a.s.

3.2. Asymptotic normality

The asymptotic normality of Nn was first investigated in [2] in the context of a base process
Wn, where the Xn are i.i.d. with continuous distribution F , and the drift process is deterministic,
that is, τn = c. The result was later extended in [3] to stationary, strongly mixing, and
square-integrable Xn, always under deterministic drift. Their method of proof relies on the
approximation of the indicators In by stationary ones.

We consider first a different approach based on the conditional centering of Nn. It is clear that
Nn − ∑n

k=1E[Ik | Fk−1], n ≥ 1, is a martingale with bounded increments. So the martingale
central limit theorem can be applied; see, for example, [17, Corollary 3.1]. To that end observe
that the Lindeberg-type condition is satisfied and, letting ξk = Ik − E[Ik | Fk−1], we have
E[ξ2

k | Fk−1] = Gk−1(Zk)(1 − Gk−1(Zk)). Hence, by Proposition 1(ii), Proposition 2, and
Birkhoff’s theorem, we have

1

n

n∑
k=1

E[ξ2
k | Fk−1] → E[G0(Z

∗
1)(1 − G0(Z

∗
1))] a.s.

We have thus proven the following proposition.

Proposition 4. If σ 2
M := E[G0(Z

∗
1)(1 − G0(Z

∗
1))] > 0 then the following convergence holds:

1√
n

(
Nn −

n∑
k=1

Gk−1(Zk)

)
d−→ N(0, σ 2

M),

where ‘
d−→’ denotes convergence in distribution.

Examples with σM = 0 are easy to construct. Take (Xn)n∈Z i.i.d. uniform in [0, 1] and
τn = 3, then Yn ∈ [3n, 3n + 1] and Gn−1(Zn) = 1 for n ≥ 1. So all observations are records
and there is no asymptotic normality for Nn.

Proposition 5. If σM = 0, the martingale Nn − ∑n
k=1Gk−1(Zk) converges a.s.

Proof. The argument is similar to that used in the proof of Proposition 3: σM = 0 implies
Gk−1(Z

∗
k )(1 − Gk−1(Z

∗
k )) = 0, k ∈ Z, and because of the coupling of Zk and Z∗

k , the series∑
k≥1 E[ξ2

k | Fk−1] = ∑
k≥1Gk−1(Zk)(1 − Gk−1(Zk)) converges and so does the martingale.

Remark 3. In the above proof observe that the random variables Gk−1(Z
∗
k ) take values in {0, 1}

and the same is true for Gk−1(Zk) for large enough k. Since
∑∞

k=1(Ik − Gk−1(Zk)) < ∞, we
have Ik = Gk−1(Zk) for large enough k. Suppose that, for example, Xn i.i.d. with distribution F

and τn = c, then G0(Z
∗
1) = P[X1 > Z∗

1 | F0] ≥ P[X1 > X0 − c | X0] = 1−F(X0 − c) > 0.
So P[G0(Z

∗
1) = 0] = 0, which implies that Gk−1(Z

∗
k ) = 1 for all k and Gk−1(Zk) = 1 for

large enough k. In other words, in this model σM = 0 entails p = 1 and all observations are
records save a finite number. This is not true in the general case of stationary observations.
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The result of Proposition 4 does not depend on any mixing condition on the base process, but
it is not satisfactory because the centering sequence is random and there seems to be no simple
way of replacing it by a deterministic one. We present below a second central limit theorem for
Nn with deterministic centering, requiring the strong mixing of the base process Wn plus some
moment conditions on Xn and τn. The proof follows closely that of [3, Theorem 2], but needs
extra conditions for handling the tail probabilities in the presence of a random trend. In fact
we rely on a bound for moments of stationary mixing sequences from [28]; see Lemma 2. We
recall the definition of the α-mixing coefficients. Let F 0−∞ = σ {W 0−∞}, F ∞

n = σ {W∞
n }, and

α(n) := sup
A∈F 0−∞,B∈F ∞

n

|P[AB] − P[A]P[B]|.

Let also F 0,τ
−∞ = σ {. . . , τ−1, τ0}, F ∞,τ

n = σ {τn, τn+1, . . .}, and

ατ (n) := sup
A∈F 0,τ

−∞,B∈F ∞,τ
n

|P[AB] − P[A]P[B]|. (6)

Theorem 3. Suppose that
∑

n≥1α(n) < ∞, E[X2
0] < ∞, E[|τ0|r+a] < ∞, and that for some

r > 4, a > 0,
∑

n≥1 nr/2+1[ατ (n)]a/(r+a) < ∞. Then the following convergence holds:

Nn − np√
n

d−→ N(0, σ 2) if σ > 0, (7)

where p = E[I ∗
0 ] = P[X0 > Z∗

0 ] and σ 2 = p(1−p)+2
∑

n≥1γ (n) with γ (n) = cov (I ∗
0 , I ∗

n )

and I ∗
n = 1{Xn>Z∗

n} for n ∈ Z.

Proof. We follow the strategy of [3], which consists of proving a central limit theorem for
a sequence of strongly mixing indicators and then transferring the result to Nn. Let Zk

n =∨k
i=1{Xn−i −∑n

j=n−i+1τj } for k≥1, n ∈ Z, and recall that Z∗
n =∨

i≥1{Xn−i −∑n
j=n−i+1τj }.

Let also I k
n = 1{Xn>Zk

n} for n ∈ Z, and Nk
n = ∑n

i=1 I k
i , N∗

n = ∑n
i=1 I ∗

i for n ≥ 1.

As in [3, p. 807], we note that I k
n , n ∈ Z, is stationary with mixing coefficients αk(n) such

that αk(n) ≤ 1 for n ≤ k, and αk(n) ≤ α(n − k) for n > k. Since, by hypothesis, the mixing
coefficients are summable, [18, Theorem 18.5.4] can be applied to yield the following result.
Let pk = E[I k

0 ] and σ 2
k = γk(0) + 2

∑
n≥1γk(n) with γk(n) = cov (I k

0 , I k
n ). Then σ 2

k < ∞
and, if σk > 0 the following convergence holds:

Nk
n − npk√

n

d−→ N(0, σ 2
k ). (8)

The next step is to apply [4, Theorem 4.2] to obtain the asymptotic normality of N∗
n by letting

k → ∞ in (8). To that end, we first show (in Lemmas 3 and 4) that pk → p and σk → σ as
k → ∞. Finally, in Lemma 5, we verify that

lim
k→∞ lim sup

n→∞
P[|(Nk

n − npk) − (N∗
n − np)| > ε

√
n] → 0 for all ε > 0.

The conclusion (7) follows because the coupling of Zn and Z∗
n implies that (Nn − N∗

n )/
√

n → 0
a.s.

Remark 4. If the increments τn of the trend process are bounded then the condition on ατ (n)

in Theorem 3 can be relaxed to
∑

n≥1(n + 1)r/2+1ατ (n) < ∞; see [28, Theorem 2].
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Remark 5. Theorem 3 and the corresponding lemmas can be easily adapted to weak records,
yielding

Nw
n − npw

√
n

d−→ N(0, σ 2
w),

where σ 2
w = pw(1 − pw) + 2

∑
n≥1 cov(Iw∗

0 , Iw∗
n ) with Iw∗

n = 1{Xn≥Z∗
n} for n ∈ Z.

4. Examples

Example 1. Let (Xn)n∈Z be i.i.d. with common distribution function F (not necessarily con-
tinuous).

(a) Let τn = c > 0, n ∈ Z. Then, from Theorems 1 and 2,

Nn

n
→ p =

∫ ∏
k≥1

F̃ (x + kc)F (dx),
Nw

n

n
→ pw =

∫ ∏
k≥1

F(x + kc)F (dx),

where F̃ (x) = P[X1 < x]. Also, Theorem 3 can be applied to obtain the asymptotic
normality of Nn and Nw

n .
For the Gumbel distribution F(x) = exp(−e−x), the explicit result p = 1 − e−c is
easily obtained; see [2]. This particular case is interesting in its own right because the
sequence Yn can be seen as an Fα-scheme, that is, the Yn are independent with respective
distribution functions Fn(x) = F(x)αn , where αn = enc. Therefore, the record indicators
In are independent and so strong convergence and asymptotic normality follow; see
[21] for information on the Fα-scheme. Also, the variance in Theorem 3, whose exact
evaluation is in general out of reach, is given by σ 2 = p(1 − p).

(b) Let (τn)n∈Z be i.i.d., independent of (Xn)n∈Z. Then, from Theorem 1,

Nn

n
→ p =

∫
E

[∏
k≥1

F̃ (x + Tk)

]
F(dx).

For F(x) = exp(−e−x), we have

p = E

[∫ 1

0
u

∑∞
k=1 exp(−Tk) du

]
= E

[(
1 +

∞∑
k=1

e−Tk

)−1]
.

Example 2. (Ladder variables.) Let (ηn)n≥1 be a stationary ergodic sequence with E[η1] > 0
and let Sn = ∑n

j=1 ηj ,n ≥ 1, S0 = 0. We are interested in the asymptotic record rate, denoted
by λ, of the random walk (with positive drift) Sn. In this context, record times and record values
are referred to as (ascending) ladder epochs and heights, respectively. To that end, we define a
base process (Wn)n∈Z with Xn = 0 for all n, and (τn)n∈Z the stationary ergodic double-ended
extension of (ηn)n≥1 with τn = ηn for n ≥ 1. Given that the number of ladder epochs of Sn is
equal to Nn, from Theorem 1, we obtain

λ = P

[∧
k≥1

{ 0∑
j=1−k

τj

}
> 0

]
,

where
∧

denotes the min operator. Observe that λ depends on the auxiliary random variables
τn, n ≤ 0, instead of depending only on the original increments ηn. However, due to stationarity,
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we have

λ = lim
n→∞ P[ηn > 0, ηn + ηn−1 > 0, . . . , ηn + · · · + η1 > 0].

Observe also that λ = limn→∞ P[Vn > 0], where Vn := min{ηn, ηn+ηn−1, . . . , ηn+· · ·+η1}
satisfies Vn+1 = (Vn + ηn+1) ∧ ηn+1, n ≥ 1, with V1 = η1. This representation can be useful
when (ηn)n≥1 is a Markov chain since then (Vn, ηn)n≥1 is also a Markov chain and λ can be
obtained in terms of its stationary distribution.

On the other hand, if the increments are reversible, in the sense of (η1, . . . , ηn) and
(ηn, . . . , η1) being equally distributed for all n ≥ 1, then λ is simply P[∧k≥1Sk > 0], the
probability that the random walk stays strictly positive. Reversibility occurs, for instance,
when ηn is a time-reversible Markov chain.

In the case of i.i.d. increments ηn, the limit above is well known since Nn can be seen as the
counting function of a renewal process and, therefore, Nn/n → 1/E[L1], where L1 is the first
ladder epoch. See [16, Chapters 2 and 3] for more details on ladder variables. To the best of
the authors’ knowledge, the result in the general stationary case appears to be new.

We also consider weak records in the random walk Sn, n ≥ 0, corresponding to weak ladder
variables. From Theorem 2, the asymptotic rate of weak ladder epochs is given by

λw = P

[∧
k≥1

{ 0∑
j=1−k

τj

}
≥ 0

]
.

In this case λw = limn→∞ P[V ′
n ≥ 0], where V ′

n := Vn ∧ 0, n ≥ 1, satisfies V ′
n+1 = (V ′

n +
ηn+1) ∧ 0, n ≥ 0, with V ′

0 = 0; that is, V ′
n is a random walk taking values in (−∞, 0] with

increments (ηn)n≥1 and reflecting barrier at 0.

Example 3. (Range of a Bernoulli random walk.) Let (ηn)n≥1 be a stationary ergodic sequence
with ηn ∈ {−1, 1}, P[η1 = 1] = ρ > 1

2 , and let Sn = ∑n
j=1 ηj ,n ≥ 1, S0 = 0. We

consider Rn, the range of the walk up to time n, defined as the number of distinct values in
(S1, S2, . . . , Sn). As in Example 2, we define a base process (Wn)n∈Z with Xn = 0, n ∈ Z,
and (τn)n∈Z the stationary ergodic double-ended extension of (ηn)n≥1 with τn = ηn for n ≥ 1.
Note that, due to the nature of ηn, Rn and Nn are asymptotically equivalent in the sense that
Rn − Nn converges a.s. as n → ∞. Hence, from Theorem 1, Rn/n → λ, where λ is defined
in Example 2. This result is a particular instance of the Kesten–Spitzer–Whitman theorem; see
[22, p. 38].

Also, from Theorem 3, (Rn − λn)/
√

n
d−→ N(0, σ 2). For illustration we explicitly calculate

below λ and σ in the case of i.i.d. increments ηn.
From the gambler’s ruin problem, we have λ = 2ρ − 1. Now cov (I ∗

0 , I ∗
n ) = E[I ∗

0 I ∗
n ] − λ2

and because of the independence of the τn, we obtain

E[I ∗
0 I ∗

n ] = P

[ 0∑
j=−k+1

τj > 0,

n∑
j=n−k+1

τj > 0 for all k ≥ 1

]

= P

[k−1∑
j=0

τj > 0,

n+k−1∑
j=n

τj > 0 for all k ≥ 1

]
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= P

[k−1∑
j=0

τj > 0, 1 ≤ k ≤ n

]
P

[n+k−1∑
j=n

τj > 0 for all k ≥ 1

]

= P

[k−1∑
j=0

τj > 0, 1 ≤ k ≤ n

]
λ.

So cov(I ∗
0 , I ∗

n ) = λP[Tk > 0, 1 ≤ k ≤ n] − λ2. Note also that

P[Tk > 0, 1 ≤ k ≤ n] − λ = P[n + 1 ≤ H0 < ∞],
where H0 = min{k ≥ 1 : Tk ≤ 0} (hitting time of {. . . , −1, 0}). Therefore,

∑
n≥1

cov(I ∗
0 , I ∗

n ) = λ
∑
n≥1

P[n + 1 ≤ H0 < ∞] = λE[(H0 − 1)1{H0<∞}].

We have P[H0 = 1] = 1 − ρ and, from the hitting time theorem (see [15, p. 79]),

P[H0 = n] = ρ

n − 1
P[Tn−1 = −1], n ≥ 2.

Hence,

E[(H0 − 1)1{H0<∞}] = ρ
∑
n≥1

P[Tn−1 = −1] = ρ
∑
m≥0

(
2m + 1

m

)
ρm(1 − ρ)m+1 = 1 − ρ

2ρ − 1

and, thus, σ 2 = 4ρ(1 − ρ).

Remark 6. Records in random walks, as considered in Examples 2 and 3, have received much
attention in the physics literature in recent years. The unbiased case (zero drift) was analyzed
in [19] using a theorem of Sparre Andersen; for this model, assuming the independence of the
increments, E[Nn] ∼ 2

√
n/π , regardless of the (symmetric and continuous) distribution of the

increments.
The biased case, assuming i.i.d. increments, with density symmetric around c > 0 was

studied in [20]. In that paper, no restriction on the moments of the increments was imposed. In
particular, it is shown that E[Nn] grows as a power of n when the distribution of the increments
has no expectation. Also, when the increments have no variance, the distribution of Nn

approaches a non-Gaussian limit. Our results do not cover those situations since we need
finite expectation of the increments to obtain the linear record rate (Theorem 1) and another
moment condition implying the existence of variance, required for the Gaussian limit law of Nn

(Theorem 3). A differential feature of our results is that we do not impose the independence of
the increments, neither the continuity, or symmetry of their distribution. In that sense, our results
in Theorems 1 and 3 reveal a kind of universality principle for random walks with correlated
increments and positive drift: under some moment restrictions, the number of records grows
linearly and fluctuations are Gaussian when n is large.

Appendix A

To make this paper self-contained we present in this appendix a key result used in our proofs.
We also collect technical lemmas related to the proof of Theorem 3.
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Proposition 6. (Dubins–Freedman strong law.) Let (Un)n≥1 be a sequence of nonnegative and
bounded random variables, adapted to the increasing family of σ -algebras (Gn)n≥0. Then

{∑
n≥1

Un = ∞
}

=
{∑

n≥1

E[Un | Gn−1] = ∞
}

a.s. (9)

and ∑n
k=1 Uk∑n

k=1 E[Uk | Gk−1] → 1 on

{∑
n≥1

E[Un | Gn−1] = ∞
}

a.s. (10)

Proof. See [7] or [17].

Lemma 2. Let (τn)n∈Z be the stationary process of Section 2 with E[τ0] = c = 0. Suppose
that E[|τ0|r+a] < ∞ and

∑
n≥1 nr/2+1[ατ (n)]a/(r+a) < ∞ for some r > 2, a > 0, where

ατ (n) is defined in (6). Then

P

[
1

nc

n∑
j=1

τj ≤ 1

2

]
≤ Kn−r/2.

Proof. Let Sn = ∑n
j=1(τj − c) and c > 0. Then, from Markov’s inequality and

[28, Theorem 1],

P

[ n∑
j=1

τj ≤ nc

2

]
= P

[
Sn ≤ −nc

2

]
≤ P

[
|Sn|r >

(
nc

2

)r]
≤ E[|Sn|r ]

(nc/2)r
≤ Kn−r/2,

where K > 0 is a constant. The argument for c < 0 is identical.

Lemma 3. Under the hypotheses and with the notation of Theorem 3.

(i) There exists a random variable Kn such that Z∗
n = Z

Kn
n for all n ∈ Z, and

(ii) pk → p and γk(n) → γ (n) as k → ∞.

Proof of Lemma 3(i). By stationarity we take n = 0. Clearly Zk
0 ↑ Z∗

0 a.s. and the result
follows if we show that only finitely many terms X−i − ∑0

j=−i+1τj , i ≥ 1, are greater than
the first a.s. That is, if P[X−i − ∑0

j=−i+1τj > X−1 − τ0, i ≥ 1, i.o.] = 0. Using
the same argument as in the proof of Proposition 1, this probability is bounded above by
P[X−i−1 − X−1 > ic/2, i ≥ 1, i.o.]. Observe that

P

[
X−i−1 − X−1 >

ic

2

]
≤ P

[
|X−i−1| + |X−1| >

ic

2

]
≤ 2P

[
|X0| >

ic

4

]
,

so
∑

i≥1P[|X0| > ic/4] < ∞ because E[|X0|] < ∞ and the conclusion follows.

Proof of Lemma 3(ii). From the proof of Lemma 3(i), we have I ∗
0 = I

K0
0 a.s. and so I k

0 → I ∗
0

as k → ∞, which yields pk → p and γk(n) → γ (n) by the dominated convergence theorem.

Lemma 4. Under the hypotheses and with the notation of Theorem 3.

(i) There exists a summable sequence γ̄ (n) such that |γk(n)| ≤ γ̄ (n), and

(ii) σ 2
k → σ 2 as k → ∞.
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Proof of Lemma 4(i). As in [3, p. 808], if k ≤ an := �n/2�, we have |γk(n)| ≤ α(an). When
k > an we bound |γk(n)|, but ci is replaced by the corresponding random trend. Observe that
if l ≤ k then I l

n ≥ I k
n and I k

n = I k
n I l

n. So I k
0 I k

n = I k
0 I

an
n − I k

0 I
an
n (1 − I k

n ) and, hence,

|γk(n)| = |E[I k
0 I k

n ] − p2
k | ≤ |E[I k

0 I an
n ] − p2

k | + E[I k
0 I an

n (1 − I k
n )]. (11)

Let A′
nk and B ′

nk be the first and second summands in the right-hand side of (11), respectively.
Then

B ′
nk ≤ P

[
Zan

n < Xn ≤
k∨

i=an+1

{
Xn−i −

n∑
j=n−i+1

τj

}
, X0 > Zk

0

]

≤ P

[ k⋃
i=an+1

{
Xn−i − Xn ≥

n∑
j=n−i+1

τj

}]

≤
∑
i>an

P

[
Xn−i − Xn ≥

n∑
j=n−i+1

τj

]

≤
∑
i>an

P

[
|Xn−i | + |Xn| ≥

n∑
j=n−i+1

τj

]

≤
∑
i>an

P

[
|X0| ≥ 1

2

i∑
j=1

τj

]
+

∑
i>an

P

[
|X0| ≥ 1

2

0∑
j=−i+1

τj

]
. (12)

Observe that both probabilities above can be bounded by P[|X0| ≥ ci/4]+P[∑i
j=1τj ≤ ci/2]

and that
∑

i>an
P[|X0| ≥ ci/4] is well defined and summable (with respect to n) because X0

is square-integrable. Also, by Lemma 2, P[∑i
j=1τj ≤ ci/2] ≤ Ki−r/2 for some constant K .

So, B ′
nk is summable because, from the inequalities above,

B ′
nk ≤ B ′

n := 2
∑
i>an

(
P

[
|X0| ≥ ci

4

]
+ Ki−r/2

)
.

On the other hand,

A′
nk ≤ |E[I k

0 I an
n ] − panpk| + pk(pan − pk)

≤ α(an) + pan − pk

≤ α(an) + P

[
Zan

n < Xn ≤
k∨

i=an+1

{
Xn−i −

n∑
j=n−i+1

τj

}]
(13)

and we see that the probability in (13) is bounded as in (12); hence, A′
nk ≤ A′

n := α(an) + B ′
n.

Proof of Lemma 4(ii). By Lemma 3(ii), γk(n) → γ (n) and, by Lemma 4(i), γk(n) is
dominated by γ̄ (n) := A′

n + B ′
n, which is summable and, consequently, the result follows

from the dominated convergence theorem applied to
∑

n≥1 γk(n).

Lemma 5. Under the hypotheses and with the notation of Theorem 3,

lim sup
n→∞

P[|(Nk
n − npk) − (N∗

n − np)| > ε
√

n] → 0 for all ε > 0 as k → ∞. (14)
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Proof. We estimate the variance

var

(
Nk

n − N∗
n√

n

)
= 1

n
var

( n∑
l=1

(J k
l − qk)

)
= var(J k

0 ) + 2

n

n−1∑
l=1

(n − l) cov(J k
0 , J k

l ), (15)

where J k
l = I k

l − I ∗
l = 1{Zk

l <Xl≤Z∗
l } = 1{Zk

l <Xl≤∨∞
i=k+1{Xl−i−∑l

j=l−i+1 τj }} and qk = pk − p =
P[Zk

0 < X0 ≤ ∨
i>k{X−i − ∑0

j=−i+1 τj }]. For the variance term, we have, by Lemma 3(ii),

var(J k
0 ) = qk(1 − qk) ≤ qk → 0. (16)

For the covariances assume that n > 2k, then as k → ∞,

2

n

2k∑
l=1

(n − l) cov(J k
0 , J k

l ) ≤ 2

n

2k∑
l=1

(n − l) var(J k
0 )

≤ 4kqk

≤ 4kP

[⋃
i>k

{
X−i − X0 ≥

0∑
j=−i+1

τj

}]

≤ 4k
∑
i>k

(
P

[
|X−i | ≥ 1

2

0∑
j=−i+1

τj

]
+ P

[
|X0| ≥ 1

2

0∑
j=−i+1

τj

])

≤ 8k
∑
i>k

(
P

[
|X0| ≥ ci

4

]
+ P

[ i∑
j=1

τj ≤ ci

2

])

→ 0. (17)

We bound cov(J k
0 , J k

l ) for l > 2k. Let Lk
l = 1{Xl>

∨�l/2�
i=k+1{Xl−i−∑l

j=l−i+1 τj }} then

cov(J k
0 , J k

l ) = cov(J k
0 , J k

l (1 − Lk
l )) + cov(J k

0 , J k
l Lk

l ) (18)

and

| cov(J k
0 , J k

l Lk
l )| ≤ E[J k

l Lk
l ]

≤ P

[
Zk

l < Xl ≤
∨

i>�l/2�

{
Xl−i −

l∑
j=l−i+1

τj

}]

≤ P

[
Xl ≤

∨
i>�l/2�

{
Xl−i −

l∑
j=l−i+1

τj

}]

≤
∑

i>�l/2�
P

[
Xl−i − Xl ≥

l∑
j=l−i+1

τj

]

≤ 2
∑

i>�l/2�

(
P

[
|X0| ≥ ci

4

]
+ P

[ i∑
j=1

τj ≤ ci

2

])
.
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Hence,

∣∣∣∣2

n

n−1∑
l=2k+1

(n − l) cov(J k
0 , J k

l Lk
l )

∣∣∣∣ ≤ 4
∑
l>2k

∑
i>�l/2�

(
P

[
|X0| ≥ ci

4

]
+ P

[ i∑
j=1

τj ≤ ci

2

])

→ 0 as k → ∞. (19)

For the first term in the right-hand side of (18) it suffices to see that its absolute value is bounded
above by α(�l/2�). Indeed, J k

l (1 − Lk
l ) is the indicator of

{
Zk

l < Xl ≤ Z∗
l , Xl ≤

�l/2�∨
i=k+1

{
Xl−i −

l∑
j=l−i+1

τj

}}

=
{
Zk

l < Xl ≤
�l/2�∨

i=k+1

{
Xl−i −

l∑
j=l−i+1

τj

}}
∈ F ∞

l−�l/2�.

Therefore,

∣∣∣∣2

n

n−1∑
l=2k+1

(n − l) cov(J k
0 , J k

l (1 − Lk
l ))

∣∣∣∣ ≤ 2
∑
l>2k

α

(⌊
l

2

⌋)
→ 0 as k → ∞. (20)

The conclusion follows from (16), (17), (19), (20), and Tchebychev’s inequality applied to (14).
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