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ABSTRACT 
The modularity of components has enhanced the ability to create IoT systems by composing them from 
off the shelf. However, the breadth of technological choices and capabilities of component devices has 
made designing these systems harder to select, compose, implement and test, especially for dynamic 
systems. In this paper, we adopt formal tools from category theory (CT), a branch of mathematics whose 
central tenet is compositionality, to generate models for IoT systems. More specifically, we introduce a 
port-graph operad to represent the architectural designs of IoT systems. We use presheaf categories to 
construct generic IoT schemas to support modularity. Given this information, we briefly describe its 
relationship to control strategies of dynamical systems that model the interaction of components. Our 
approach balances genericity and specificity, providing interlinked schematic representations of system 
architecture and component representation. 
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1 INTRODUCTION
The hallmark of the Internet of Things (IoT) is variety. There is obvious variety among the compo-
nents themselves, both in their capabilities and their manufacture. There is also a huge variety among
IoT applications, where we might design a system for the home (energy management), for the hospital
(health monitoring), or for city hall (“smart city” technologies) (da Cruz et al., 2018). Current modeling
approaches for IoT fall short (Noura et al., 2019). Some focus only on one aspect of an IoT system, such
as sensor data analysis (Yin et al., 2018), but ignore other important aspects of the domain (actuation).
Additional problems identified in earlier work include the need for dynamic modeling of the system
environment (Weyer et al., 2015) and subsystem interaction in nested IoT systems-of-systems (Breiner
et al., 2018).

One problem is that today’s IoT systems are usually built on an ad-hoc, one-off basis. Consequently,
the solutions developed for one situation rarely generalize to other contexts. To provide a more uniform
view of the extreme diversity of IoT systems, we break the problem in two, characterizing two separate
axes of variety: global and local. The global/local perspectives encourage very different representations.
Local variety can be described by a map of the system’s architecture and environment, the types of
components involved, and how they interact. Every system has a different map. Global variety, on the
other hand, is best represented by a catalog detailing the available options and their relevant perfor-
mance characteristics. To describe systems in these terms, the system-specific architecture must provide
a rubric for mapping component characteristics to system performance.

The approach presented here applies tools from category theory to address these representational needs
(Breiner et al., 2016). Architectural descriptions are given as port-graphs, graphical structures where
nodes are defined by their interfaces and edges represent interactions. The catalog uses a different repre-
sentation (presheaves) to encode semantic information about components. Crucially, the composition
of an IoT system from its components can be encoded as a functor transforming port-graphs into
presheaves. It may help to view our proposed system from the perspective of its users; its goal is to
synthesize the information provided by the users into a coherent picture of the system at hand. First, is
the group defining and registering component models. These might be provided by the manufacturer or
developed by a third party during related modeling work. Critically, a component model only needs to
be written (well) once, and it can be shared among others who use the same hardware. For commodity
components, a “component model” can be reduced to a simple list of standard specs like the cooling
capacity of an air conditioner or the accuracy of a thermometer.

Next, the system architect defines the specifics of the situation at hand: What environmental variables
will the system observe or control? What are the relevant parameters of these variables (e.g., control
volume)? Generically, what types of components will be used to monitor and influence the system? As
we will show, this architecture defines a parametric dynamical model of the system.

Following this, the system designer (who need not be the architect) can instantiate the generic com-
ponents using choices from the component catalog. This parameterizes the dynamical model of the
architecture and generates a behavioral model of the system as designed. This can be used to antici-
pate system performance against a range of control strategies and exogenous environmental behavior.
Finally, in implementation, the system model can be extended with the device- and system-specific
information like addresses, IDs, and passwords. These could be used to generate the messaging infras-
tructure and technology stack configuration required by the components on the ground.

The remaining sections of the paper are organized as follows. In Section 2, a short note on related work
and its relation to the paper. Section 3 describes the tools from CT which we use to design system
architectures and give descriptions of IoT components. In Section 4, we present the core IoT schema
applicable to all components and two specialized schemas for sensors and actuators. . Discussions and
conclusions are presented in Section 5.
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2 RELATED WORK
An early work on IoT systems modeling is the Lighthouse Project IoT-A (Haller et al., 2013). This
project provides a reference architecture model for the IoT, along with the definitions of a set of key
building blocks. In order to formalize the model, they propose a domain model using UML diagrams.
The domain model defines the main concepts in IoT and their relationships, and serves the role as a
common lexicon and taxonomy supporting the design of concrete IoT system architectures. However,
the IoT-A model is extremely complex for designing system architectures for responsive environments
(Carrez et al., 2013).

Category theory, our main toolbox in this paper, has a long history in engineering model management
and model-driven engineering (MDE). A proper introduction to CT and its history is beyond the scope
of this paper, and we will generally omit formal definitions in favor of intuition and examples.

For more on CT in general, see (Bradley, 2018; Fong and Spivak, 2019). The discussion of port graphs
and dynamical systems relies primarily on (Willems, 2007; Vagner et al., 2015). Presheaves are standard
tools in CT, but our usage is most closely linked to the theory of categorical databases (Spivak, 2012),
and knowledge representation (Spivak and Kent, 2012).

3 METHODS
In this paper, we aim to illustrate how to build models for IoT systems in a modular, off-the-shelf fash-
ion used to construct the target system. To define these models, we use methods from CT, a branch of
mathematics concerned with the formal representation of compositional structures, in which complex
systems can be built up by combining smaller, simpler formal structures (Breiner et al., 2018).

Borrowing CT structures, Section 3.1 introduces port graphs, which we use as combinatorial representa-
tions for the architecture of IoT systems, and shows how these can be used to compose global dynamical
models based on local descriptions. In Section 3.2 we introduce structured data models called presheaves
to connect component dynamics with more typical product attributes like power usage and efficiency.

3.1 Port graphs

Port graphs are combinatorial structures that will serve as maps for our IoT systems. An example is
shown in Figure 1; nodes represent system components, while edges represent interactions. Both nodes
and edges must be labeled, indicating the types of components and interactions involved; we also use
solid and dashed lines to distinguish between physical and digital interactions. The presence of both
types of edges can characterize sensors and actuators. Computation and dynamical evolution involve
only one or the other.

fan weather

Ctrl
Volume

therm Ctrl

AC meter

air flow1

air flow2

sensing

cooling

power

temp1

temp2

price

cmnd

cmnd

Figure 1. A port-graph model of an IoT cooling system. Solid and dashed lines represent physical and

digital interactions, respectively.
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Unlike ordinary graphs, the construction of a port graph is highly constrained. Each node type is
assigned a set of (typed) ports that it must fill; a port graph is only valid if the incoming edges to
each node match its ports exactly. Moreover, if a node has several ports of the same type, the matching
between ports and edges matters. For example, the control component Ctrl would behave very differ-
ently if we accidentally swapped the inside temperature temp1 with the outside temperature temp2. Put
another way, every node in a port graph comes with a specified interface that the graph must implement.

The compositional structure of a port graph can be used to construct joint state descriptions of the sys-
tem. We start by assigning a state space Xi to each (type of) node in the system. These may include both
discrete states like the current mode of the AC unit (XAC = {off,low,high}) and continuous variables
like the temperature and humidity of the control volume. Similarly, we assign a state space Yj to each
interaction describing relevant features like the volume displacement of airflow or the (negative) heat
transfer of a cooling process.

Given these local descriptions, the port graph provides instructions for assembling a global state space.
When two components are linked by an interaction, this amounts to a declaration their port values must
be equal. The power drawn by the AC is the same as the power sent from the meter; the temperature
measured by the thermometer agrees with the message received by the control algorithm (which, due to
error, need not agree with the true temperature of the control volume!).

A joint state for the composed system is a pair of states for the components that project to the same port
value. Formally, this corresponds to a categorical operation called the pullback. The pullback inherits
the port values of its components, allowing us to (carefully1) iterate this procedure, resulting in a global
state space for the aggregate system.

The same approach can be used to construct dynamical models for the system (Vagner et al., 2015).
The key step is to replace states with behaviors, thought of as time-varying states x(t). Now Xj is a set
of functions that encodes not only the states of a component but also how future states depend on the
past. These specifications may include both differential equations for continuous evolution and state-
transition systems (of various types) for discrete phenomena. More generally, these can be combined to
provide models for hybrid systems (Lerman and Schmidt, 2019).

Nonetheless, we demand that component behaviors determine port behaviors, defining a functional
(function between functions) p : Xi → Yj .2 Since these functions are the only ingredients needed in the
construction above, we can form a global dynamical system using the same strategy of iterated pullback.

3.2 Presheaves

The previous section was on modeling the architecture of an IoT system using port graphs and using
that representation to derive state-based and dynamical models of its behavior. However, the deriva-
tion assumes that the individual components already come equipped with dynamical models of local
behavior. In this section, we show how to extract these descriptions from more familiar component
specifications.

Each component type can be characterized by a set of relevant attributes, which define joint con-
straints on the simultaneous behaviors at a component’s boundaries. For example, an accuracy ε

for the thermometer shown in Figure 1 indicates that |T(t)− T(t)| < ε, where T and T represent
the true temperature and the measured temperature, respectively. Actuators are a bit more compli-
cated because we have to maintain a model of their modes and commands, encoded as a function
Modei × Cmndi → Modei for each component i.

1 If composition involves two (or more) interactions k and ` at once, then the pullback should be constructed over
the product space Yk × Y`.
2 Usually p is limited by a “no-lookahead” condition. For component behaviors xi(t) and port behaviors yi = p(xi)

∀t.
( [
∀t′ < t. x1(t′) = x2(t′)

]
⇒ y1(t) = y2(t)

)
.
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To construct a categorical model of this data, we rephrase these descriptions in terms of functional
(many-one) relationships (written f : X → Y). For example, the numeric attributes of the thermometer
(e.g., accuracy) correspond to arrows therm→ R+. In addition to the geometric structure of a graph,
categories also include an algebraic operation of composition. For example, accuracy applies to any
measurement, not just temperature, so it is more appropriate to represent ε as a composite

therm //

asSensor
//

ε=asSensor.accuracy

++
Sensor

accuracy
// R+.

The special� arrow above, called a monic, is the categorical generalization of a subset or “isA” relation.
As above, inheritance across subclass/superclass boundaries becomes a special case of composition.

Formally, a presheaf model involves two pieces: a category S, called the schema, and a categorical
mapping (called a functor, see next section) P : S → Sets. While the schema S defines the generic
elements of an IoT systems, a presheaf P : S → Sets specifies a specific system by mapping these
abstract elements to concrete sets and functions. For example, the system shown in Figure 1 would have
P(Comp) = {AC,fan,meter,therm,weather}.

We can also represent relationships between different IoT systems using two-dimensional mappings
called natural transformations which are morphisms between functors:

S
P

++

Q
33

�� ��
�� α Sets .

For a fixed schema S, natural transformations provide the arrows in a category of presheaves, denoted
Ŝ. It is traditional to use a double-arrow notation (α : P⇒ Q) to emphasize the two-dimensional nature
of these maps.

Presheaf models for systems can be composed using operations called colimits, which generalize set-
theoretic unions to many other types of mathematical structures. A colimit uses a specification of the
overlaps between systems in order to generate a model of the whole. Figure 2 shows the composition of
two components C and C′ along an abstract channel between two systems.
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Figure 2. Colimit composition of component presheaves C,C′ ∈ CompCat along a generic Channel.
Bullets and dashed arrows are additional outputs of the construction.

4 IOT SCHEMA
In this section, we define an IoT schema, S, which structures our presheaf models for IoT systems. We
present the schema in three stages: first a core schema (Section 4.1) relevant for all components, denoted
S0, followed by more specialized models for sensors and actuators (Section 4.2). We will suppress
computational/numeric attributes like accuracy : Sensor→ R+ from our schemas in order to avoid
clutter.
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4.1 Core schema

We begin with the core schema S0 ⊆ S given in Figure 3, which defines the common structure shared by
all IoT components. The central rectangle in Figure 3 associates each component with a state-transition
system defined in terms of modes and commands. This is a common design pattern that occurs often
in CT, whenever one collection of sets (the commands) can be used to act on a second collection (the
modes). The corner notation ‘y’ indicates that Transition is a defined concept (constructed using an
operation called pullback) that consists of compatible mode-command pairs. The result of each transi-
tion is encoded in a second map post : Transition→ Mode, restricted by the obvious constraint
that transformations do not hop between devices (pre.compM = post.compM).

Figure 3. The core schema S0 ⊆ S defines properties shared by all IoT components.

In addition to the state-transition structure for our components, S0 also encodes a history of control on
the left-hand side of the diagram and the networking structure of the system on the right. Both pieces
involve a common design pattern called a span. Although CT models are expressed in terms of func-
tional (many-one) relationships, we can still represent a many-many relationship using a pair of arrows
• ← • → •.

The networking elements of the schema are particularly important for linking our presheaf and port-
graph representations: a presheaf’s channels (resp. addresses) directly correspond to the digital (dashed)
interactions (resp. ports) shown in the system map given by the port graph. However, these are only
some of the interactions. In the next two sections, we will introduce physical quantities called environ-
mental variables to keep track of physical interactions and model the way that these relate to sensing
and actuation.

4.2 Sensing and actuation

Next we extend the Comp object, introduced in the core schema, to include more specific information
about sensing and actuation. In CT, subclasses are modeled by special arrows called monics, indicated
by tailed arrows:

Sensor //
asCompS

// Comp Actuator.oo
asCompA

oo

Both types are characterized by direct interaction with the physical world, a fact which we model
through the concept of an environmental variable (EnvVar). Each variable x is characterized by a
space of possible state values EnvVar(x), which might be scalar- or vector-valued. For example, the
link between the AC unit and the control volume can be parameterized by (negative) heat transfer and
change in humidity, corresponding to a two-dimensional state space. As we have seen repeatedly, the
indexed set of value spaces can be wrapped into a single function varE : EnvState→ EnvVar.

The bulk of the sensor schema, which is shown in Figure 4, defines special subsets of actions and com-
mands that are explicitly linked to the environment. First is the subclass itself: Sensor� Comp. Next,
each sensor has a set of measurement capabilities, called observations, special commands that observe
the physical world.

Each observation is characterized by the environmental variable that it observes (varO : Obsv→
EnvVar), and a variable x is observable (ObsVar) if x = o.varO for some observation o. Obser-
vations are particularly important for our model because they determine the physical ports associated
with each sensor in the port-graph representation of the system.
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Figure 4. Schema elements associated with the Sensor and Actuator subclasses.

Next, we use observations to define queries: a Query is an Action that invokes an observation; for-
mally, this is expressed as a pullback over Cmnd. Like all actions, queries have time stamps. In addition,
we represent the measured state of each query as a function Query→ EnvState (constrained by the
appropriate EnvVar).

Actuation also requires some special features. Like sensors, actuators are explicitly linked to environ-
mental variables, in this case via a span of influences (Infl). Formally, influences are analogous to
observations: they determine the physical ports associated with each actuator. Because both classes of
components are linked to the same set of environmental values, we can compose them to build the feed-
back loops needed for control.

On the other hand, there is no direct link to EnvState. Whereas a sensor reads and reports a value,
an actuator typically cannot set a state value unilaterally. Instead, we equip each actuator with its own
set of local states (ActState). An actuator’s state determines its mode, but also includes continuous
parameters describing the way that it is embedded in the environment. Air conditioners and fans are too
static to provide natural examples; instead, think of the location, altitude, and orientation of a drone, the
joint angles of a robotic arm, or the state of charge in a battery. Finally, we assume a transition system
for actuator states in parallel to the one for modes, formalized in terms of a CT design pattern known as
equivariance, (Bernstein and Lunts, 2006).

5 DISCUSSION AND CONCLUSION
In contrast to existing approaches, we address the problem of component descriptions with composi-
tionality as a primary criterion. The distinction between composition and compositionality may seem
subtle at first, but there is a clear difference: Composition is perceived as the question of how to put the
pieces together, whereas compositionality defines the semantics of their composed behaviors.

In this paper, we formulate a way to create and adapt descriptions of components to address the prob-
lem complexity and interoperability through composition using typed categorical structures as in port
graphs, schemas, and presheaves. By nesting different granularity of IoT components, CT allows the
components to be easily composed and substituted without having to worry about the entire structure.
For instance, you can have multiple control units where several of these control smaller groups of com-
ponents and another one that supervises and controls the whole system. This concept of “systems of
systems” is achieved through CT’s exceptional compatibility with compositional systems like those of
IoT.

Apart from these, CT’s close connections with formal logic and a wide variety of mathematical tools
under its belt reflect the breadth of application, now made broader by advances in applied category
theory. More specifically, in order to link different representations across multiple domains (ie. sensor
specification sheets) as a common representation based on formal logic, CT provides the necessary tools
to achieve that. We can also use CT to model and evaluate different behaviors of dynamical systems such
as the IoT and hyperdynamical systems.
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Another advantage of CT relies on the fact that relationships in CT-based models are considered as “first-
class citizens”. With the level of flexibility of CT’s toolbox, we benefit in terms of both information
representation and model integration (Wisnesky et al., 2017). Port-graphs allow us to manipulate and
understand the interactions among internal representations of components. There is also the ability to
encode relationships between systems through natural transformations on presheaves. Natural transfor-
mations establish a relationship between the original data and the transformed data. Recall that functors
are used to define these data transformations as well as comparing information models. Moreover, col-
imits allow for the formal integration of information models based on their overlapping components.
Composition of IoT system models, for example, EnvVar is used as the overlapping entity to connect
the sensor and actuator schemas. These exemplars are intended to illustrate the potential of composi-
tionality in CT.

There is a lack of tools to implement the categorical structures and its algebraic power. Early tools in
this area are appearing especially for information model and data integration as illustrated in Section
5 of (Breiner et al., 2019). The need for tools is a critical bottleneck for widespread adoption or even
illustration through a functioning prototype. The advent of functional programming languages that are
categorically inspired also provides another toll in CT’s quiver. The potential for CT in the design com-
plex system is quite substantial and will be realized as the tools develop.

In this paper, we develop an early version of design methodology using a branch of mathematics, cat-
egory theory, to address the compositionality of models for IoT systems. To this end, we adopt formal
tools from CT to introduce port graphs, which represent the architectural designs of IoT systems. we
introduce a presheaf category to build generic IoT schemas that encompass the descriptions of IoT
components. To tie the system together, we present a control strategy for generalizing the interactions
among IoT components. We believe by addressing compositionality as a requirement for system design,
we have created the seeds for developing standards for IoT system that is generic but is capable of con-
necting to the specifics which may include extent standards and tools.

Disclaimer
¯

: This paper includes contributions from the U. S. National Institute of Standards and Technology, and
is not subject to copyright in the United States.

Commercial products are identified in this article to adequately specify the material. This does not imply recom-
mendation or endorsement by the National Institute of Standards and Technology, nor does it imply the materials
identified are necessarily the best available for the purpose.
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