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ON THE TOPOLOGY OF FULL NON-DEGENERATE

COMPLETE INTERSECTION VARIETY

MUTSUO OKA
§1. Introduction
Let A,(u), - - -, h(u) be Laurent polynomials of m-variables and let
Z* ={ueC*; h(u) = --- = hy(u) = 0}

be a non-degenerate complete intersection variety. Such an intersection
variety appears as an exceptional divisor of a resolution of non-degenerate
complete intersection varieties with an isolated singularity at the origin
(Ok4]). We say that Z* is full if dim(4(h,)) =m for any a =1, - - -, k.
Let I be a subset of {1, ---, m}. We say that Z* is I-full if (i) for each

a=1,---,k, hyu) is a polynomial in the variables {u,; i € I} (fixing other
variables) and (ii) for any o D I°¢, the polynomials {h/(u,); « =1, -- -, k}
are not constantly zero and the variety {u’ € C*/; h{(u;) =- - - = hl(u,) = 0}

is full in the above sense where A’ is the restriction of A, to the coor-
dinate subspace C’ = {ueC”; u, =0 if i¢J} and I° is the complement
of I in {1, --.,m}. Thus any full non-degenerate complete intersection
variety is @-full. Assume that Z* is I-full and let

Z={ueC' X C**; hy(u) = --. = hy(u) = 0}.

Here we identify C’ X C*° with the subspace of C™ by C' X C¥° =
{zeC"; 2,#0, ieI°}. In the case that I= /{1, .-, m}, the I-fullness
condition implies that each A, has a non-zero constant term and each
h,(u) is a convenient polynomial. Here the polynomial A, is called con-
venient if and only if A!" is not constantly zero for any 1<i<m. In
particular, 0 ¢ Z in this case. The purpose of this paper is to study the
topology of a full non-degenerate complete intersection variety. We will
prove
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Main THEOREM (1.1). Let Z be a I-full non-degenerate complete inter-
section variety and let ¢: Z — C' X C*° be the inclusion map. Then ¢ is
an (m — k)-equivalence i.e., the homomorphism ¢: n,(Z) — 7,(CI X C*°) is
an isomorphism for i < m — k.

In the case of m — k > 1, the above theorem says that the funda-
mental group =,(Z) is a free abelian group of rank m — |I| and the
higher homotopy groups n,(Z) vanish for 1 <j<m — k. For the proof
we use an induction on k. An essential step is to show that the mapping
hy: Zy., — C has no critical points at infinity where Z,_, = {ue C’ x C**;
h(a) = .. = h_(u) = 0} (Lemma (3.2), §3). To see this, we use a toric
compactification X of C’ X C*° and we consider the family of compact
varieties {h;*(#); teC} in X. This is a new viewpoint comparing with
those in [B1] and [Ok2]. By the Whitehead theorem ([S]), we have the
corollary:

CororrLARY (1.1.1). ¢,: H(Z;Z) — H(C' X C*¥*; Z) = Z(”;I) is an iso-
morphism for i < m — k and a surjection for i = m — k.

The Euler characteristic X(Z) can be computed by a result of Kho-
vanskii (Kh2]). Therefore the cohomology group of Z can be completely
computed by Corollary (1.1.1) and the result of Khovanskii as Z has a
homotopy type of CW-complex of dimension m — k. Taking I = ¢, or
{1, -- -, m}, we have the following corollaries:

COROLLARY (1.1.2). Let Z* be a full non-degenerate complete intersec-
tion variety and let ¢: Z* — C*™ be the inclusion map. Then ¢ is an
(m — k)-equivalence and Z* has a homotopy type of CW-complex of dimen-
sion m — k.

The above assertion has been essentially proved in [Ok2] for 2 = 1.

CoroLLARY (1.1.8) Assume that Z is a {1, ---, m}-full non-degenerate
complete intersection variety. Then Z is (m — k — 1)-connected and thus
Z is homotopic to a bouquet of spheres of dimension (m — k).

Note that A,(u), ---, A(u) are convenient polynomials with non-zero
constant terms if Z is a {1, - - -, m}-full non-degenerate complete intersec-
tion variety. The topology of affine hypersurfaces (the case of £ =1)
have been studied by many people. See for instance [M], [V], [K], [B1].
[Ok1], [Ok2] and [B2].
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Let Z* be a full non-degenerate complete intersection variety and
let Y be a smooth compactification in a suitable toric variety X. (See §2).
There are many beautiful works on the (algebraic) geometry of X and Y.
See [De], [Da], [E], [Da-Kh], [Kh1], [Kh2], [K-K-M-S], [Odl] and [Od2].
Their works are done mainly from the viewpoint of algebraic geometry.
Our essential tool is a Morse theory in a toric variety. As an applica-
tion, we will prove that the fundamental group of Y is an abelian group
which is generated by at most k elements (Theorem (4.2)). This is a
generalization of a result in [Ok3] and [Ok4] for the case k& = 1.

§ 2. Toric compactification

This paper is a continuation of the previous paper [Ok4]. Unless
otherwise stated, we use the same notations. Let Z* = {ue C*"; hA,(u)
= ... = hy(u) =0} be as in §1. Let P be a covector. It defines a linear
function on the respective Newton diagrams 4(h,). Z* is called a non-
degenerate complete intersection variety if for any covector P, the variety
Z¥(P) = {ueC*"; hp(u) = - -+ = hp(u) = 0} is a reduced smooth complete
intersection variety (Khl], [Ok4]). Note that Z* is itself a smooth com-
plete intersection variety as we can easily see it by taking P = 0. We
recall the construction of a smooth toric compactification of Z* as in [Kh1]
or [Ok4]. Let N be the space of covectors. Let P, @ e N. We define an
equivalence relation by P ~ @ if and only if 4(P; h,) = 4(Q; h;) for { =
1, ---, k. Here 4(P; h,) is the face of 4(h,) where the covector P takes
its minimal value which we denote by d(P; h;). This gives a polyhedral
cone subdivision of N which we call the dual Newton diagram of Z* and
we denote it by I'*(h,, - -, hy). Let X¥* be a unimodular simplicial sub-
division of I'*(h,, ---, h,) and let X be the corresponding toric variety.
Then the closure Z* of Z* in X is a smooth variety. Let us denote this
compactification by Y = Z*. The irreducible divisors contained in X —
C*™ is in a bijective correspondence with the vertices P e Vertex (2*).
The corresponding divisor is denoted by E(P). We denote the divisor
E(P)NY of Y by E(P). The irreducible components of ¥ — Z* are divi-
sors of Y and they correspond bijectively to the vertices P e Vertex (X*)
which satisfy the (A,)-condition:

(Ay) dim (3] 4A(P; h) = |J| for any non-empty J C {1, ---, k}.
a€J

This condition is a necessary and sufficient condition for E(P) + @ ([Ok4]).
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Assume that Z is I-full. We may assume and we assume that I = {1, .- -, s}
for bervity’s sake. Then the s-dimensional simplicial cone, say r;, with

3

vertices Ry, - - -, R, is compatible with I™*(h,, - - -, h,) where R, = 40, - - -1,

-+, 0). This results from the assumption that A!° is non-trivial. (In fact,
let P=>3 ., rnR,eN with r,...,r, >0 and P=0. Then d(P;h,) =0
and 4(P; h,) = 4(h¥).) Thus we may assume that r, is a simplicial cone
of 2*. For this, we apply the subdivision method in § 3 of [Ok3]. X is
covered by the union of the coordinate space C™ where ¢ moves in the
m-dimensional simplicial cones of 2*. Let ¢ =(P, - -, P,) be an m-
dimensional simplicial cone. As we did in [Ok3], we use the notation
6= (P, -+, P,) in two ways. First P, ..., P, are primitive integral
vectors expressed as column vectors P, = (py;, -+, Ppi), L =1, -+, m. As
a cone in N, ¢ ={> ", t,P,eR"; t, ---,t, >0} As a matrix, ¢ denote
the matrix (p,;). The isomorphism z,: C¥™ — C*™ is defined by z,(y,) =
(TTay®, -+, 171 y%). Remember that in the coordinate space C7,
YN C» is defined by #;'(Z*) = {y, € C?; h(y,) = -+ = hy,(y.) = 0} where
h.(y,) is defined by the equality A, (z,(¥,) = h.(¥,): [[]=1 y2F4 2. Here
we use the same notation as in [Ok3], [Ok4]. The closure of {y,, = 0} in
X is the divisor E(P) by definition and the closure of YN C* N {y,, = 0}
is a smooth divisor (if not empty) of Y and this is nothing but the divisor
E(P,) in the above correspondence. By the assumption on 3*, we can
find a simplex &€ =(Q,, ---, @,) € 2* such that @, =R, for i =1, .-, s.
That is, z; is a face of & Then as a matrix, ¢ can be written as

where I, is the unit s X s matrix. As & is a unimodular matrix, B is
also a unimodular matrix of size m —s. Thus =z, gives a holomorphic
diffeomorphism of C§ X CF™® = {p,; Vesu1 - = Yem 7 0} with C* X C¥®-9
and therefore Z can be identified with Y N (C: X C¥™-%). Thus Y can be
considered as a smooth compactification of Z. Note that Z = Z* | Ji_, E(R,)
~ Ueqxry,-zs E(Q) under this identification.

ProposiTION (2.1). Let Z be a I-full non-degenerate complete intersec-
tion variety. Then Z is non-singular.

Proof. This results immediately from the smoothness of Y and the
inclusion property: Z C Y.
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§3. Proof of the Main Theorem

In this section, we prove Main Theorem (1.1) stated in §1 by the
induction on k. The case & = 0 is obvious. Thus we assume that £ >1
and I =11, ---,s} (0 <s<m), for brevity’s sake. Let a be a positive
integer and let @,: C* X C*™-9 — C* X C*™-9 be the map which is defined
by ®,(0) = (u,, - - -, u,, ul,, ---,u%). O, gives an a™ 9-fold covering map.
We first prove the following lifting principle ([Ok2]).

LEmmA (3.1). Lei Z@ = @;Z) and let ¢,: Z@ — C* X C*™=9 be the
inclusion map. Then ¢: Z — C* X C*™-9 js a (m — k)-equivalence if (and
only if) ¢, is a (m — k)-equivalence.

Proof. We assume first that m — k > 2. We consider the following
commutative diagrams of the fundamental groups where the horizontal
sequences are exact.

0— m(zw) 2

Lak 2] .

0 —> ,(C* X Cxm-sy 2%, 1 (CF % C*xm-0) 5 G—>0

7(2) —>G—0

Here G is a finite group which is isomorphic to (Z/aZ)"-*. By the as-
sumption, ¢,, is an isomorphism. Therefore by Five Lemma, ¢, is an
isomorphism. As #,(Z“) = z,(Z) for i > 1, we have that z,(Z) =0 for
i=2 ---,m—k—1. This proves the assertion in the case of m — & > 2.
Assume that m — k= 1. We have to show that Z is connected. But
this is obvious from the assumption that Z@ is connected. This completes
the proof.

Note that Z is also a I-full non-degenerate complete intersection
variety if Z is a I-full non-degenerate complete intersection variety. Thus
to prove Main theorem, we may replace Z by a suitable Z® if necessary
and we may assume that 4(h.°) contains an interior integral point @ =
©,-,0,q1, -, q) if s£Em (1+{1, - --,m}). In this case, multiply-
ing the monomial u-¢ to h,, we may assume (and we assume) that

(B) The origin 0 is an interior point of AChL) if I+ {1, .-, m}.

We consider the variety Z,_, = {ueC* X C*™-9; h(u) = - .- = h,_,(u)
= 0}. We may also assume that Z,_, is an I-full nondegenerate complete
intersection variety, by moving the coefficients of h,, - - ., h,_, slightly if

necessary. This does not change the diffeomorphism class of Z. In fact,
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they are isotopic in C* X C*™-%. (The proof of this assertion is parallel
to that of Lemma (3.2) below.) We consider the holomorphic function
h = h|Ze: Z,.,— C. Let C(h) be the critical points of A and let 3(h)
be the set of the critical values of A. The following is a generalization
of Lemma (5.9) of [Ok2].

LemMmA (3.2). (1) C(h) and 2(h) are finite sets.

(1) h: Z,_, — h"'(X(h)) - C — X(h) is a locally trivial fibration. The
fiber is diffeomorphic to Z.

(ii1) h: Z,_, — C has no critical point at the infinity.

Proof. First we fix a compactification X of C* X C*™-9 ag in §2.
Let X, = ~A~'(t) and let X, be the closure of X, in X and let 5X, =X, - X.
Note that Z = X,. We first prove that 9X, = X, and thus it has no
singularity at infinity.

ASSERTION (3.2.1). Let P be a covector. Assume that {4(P;h,;); i =
1, - - -, k} satisfies (A,) condition and that 0c 4(P; h,). Then P e Cone (R,,
ce Rs)

Proof of Assertion (3.2.1). Suppose that Pec Vertex(2*) be a vertex
such that {4(P; h,); i =1, - - -, k} satisfies (4,) condition and assume that
Oe A(P; hy). Assume first that I+ {1, --., m}. Then the assumption (B)
implies that 4(h*") C 4(P; h;). On the other hand, by the I-fullness con-
dition we have that dim (4(hL)) = m — s. The inclusion 4(hL) C 4A(P; h,)
is possible only if the I°-component of P is zero. Therefore we can write
PasP="%p, - -,p,0 ---,0). Now we assert p, >0foranyi=1,---,s.
In fact, assume that p,, < 0 for some i,el. Let J={iel; p,<O0}UI°
and we consider A]. By the I-fullness condition, we must have that
d{(P; h,) < 0 and in particular 4(P; h,) N 4(hL) = @ which is a contradic-
tion. Thus we have proved that p, >0 (i=1, ---,s). In other word,
we have Petc; = Cone(R,, ---, R,). This completes the proof.

Suppose that P e Vertex(2*) be a vertex such that {4(P;h,);i =1,
-+, k} satisfies (4,) condition. Assume that 0c 4(P; h,). By the assump-
tion on the subdivision 2*, r; is a simplicial cone in X*. This implies
that P= R, for some 1 <i<s. Thus if P# R, ---,R, and {4(P; h,);
i=1,-..,k} satisfies (4,) condition, we must have 0¢A(P; h,). Let hy..
be the function defined by A, (u) = A (u) — ¢t with ¢t being considered as
a constant. Then the assumption (B) implies that 4(h,,,) = 4(h,) for any
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tif I£{1, -, mh. II={1,---,m}, A(h.,) = Ah,) for any t + h(0) and
Ahy niy) < A(h,). Recall that h,(u) is a convenient polynomial with a
non-zero constant in this case. Thus 0 ¢ 34(h,) and 0 ¢ (A, w)- However
even though their outside boundaries are same i.e., if a face 5 C 4(h,)
does not contain the origin, 5 is also a face of 4(h,,. Therefore the
divisors E(P)NX, are independent of the variable t if P+ R,, ---, R, in
any cases. Therefore we have that X, = 0X, and 38X, is smooth by the
non-degeneracy assumption on Z. This proves the assertion (iii). It is
obvious that the base points of the family {X,} are contained in 3X,. Thus
the assertion (i) is now follows from the Bertini’s theorem ([Grf-Hr]).
The assertion (i1) can be proved easily using the controlled vector field
argument as follows. Let W= {(x,6)eZ,, x C;xe X,} and let =: W—C
be the projection. W is a smooth codimension one submanifold of Z,_,
X C. By the above argument, dW = {(x,?)e W; xeoX,} is simply the
product 80X, X C. Thus by the Ehreman’s fibering theorem ([W]), z: (W, o W)
Nz Y(C — 2(h)) > C — 2(h) is a locally trivial fibration. In particular,
r: (W—=aW)Nzr{(C — 2(h)) » C — J(h) is also a locally trivial fibration.
Define a mapping ¥': Z,., - W — oW by ¥(x) = (x, A(x)). This is obviously
a diffeomorphism and we have the commutativity zo¥% = h. Therefore
we can pull back by ¥ the fibering structure of z: (W — aW)Nz~Y(C — J(h))
—~C —2(h) to h: Z,., — h"{(Z(h)) - C — 2(h). This completes the proof
of the assertion (ii).

Lemma (3.3). Let ¢,: Z, — Z,_, be the inclusion map. Then ¢, is an
(m — k)-equivalence.

Proof. Let C(h) = {p,, - - -, p,} be the critical points of 2 and let 2(h)
={n, -+, 7.} be the critical values of A (v >v) and let 5, = 0. Note
that 0 is a regular value of 24 as Z = A~%0). Take sufficiently small ¢ >0
and § > 0 (¢ > 6) and let B, be the closed ball of radius ¢ with center p,
and let D, be the closed disk of radius § with center 7, We assume that
the closed balls B,, - - -, B, (respectively the disks D,, - - -, D,.) are mutually
disjoint. Assume that z; = h(p,). Let E, = h-'(D,)N B, and E¥ = E, —
h-(y,). Let h: E¥ — D, — {0} is the local Milnor fibration. Let 7| be a
fixed point of aD, and let F, = h~(y}) N E, (the local Milnor fiber). It
is well known that F, is homotopic to a bouquet of (m — k)-dimensional
spheres ([M]). We also know that the pair (E,, F,) is homotopic to the
pair (CF,, F,) where CF, is the cone of F,. Let [; be a simple path from

https://doi.org/10.1017/50027763000003421 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003421

144 MUTSUO OKA

7 to j and let L, =[;UD; and let L = J/.,L;, We may assume that
L is contractible to 7. We can see that (i) A7'(L) is a strong deformation
retract of Z,., by the fibering structure. (ii) For each A %(L;) is homo-
topic to the space Z|Junipw=sy CF.. The cone CF, are glued along F,.
This can be proved using the product structure of 2: A7'(D;) — (U wnea=ny
E, —» D,. If p, is a simple critical point, CF, is homotopically a cell of
dimension m — k — 1. In general, to add CF, along F, does not change
the homotopy groups of dimension less than m — k. (iii) Thus A~ (L) is
homotopic to the space A~(y,) ., CF, by (i) and (ii). See Figure (3.3.1).
See also §5, [Ok2] for a similar argument.

-
+ E, deform + E,
C e

h=Y(D;) h_l(nO)U{a;h(pa)=m}E‘1
Figure (3.3.1)

Thus we can conclude that Z = A~ () = Z,_, is an (m — k)-equivalence.

Now we are ready to prove our Main Theorem (1.1) in §1. Z, =
C* x C*™- ig an (m — k + 1)-equivalence by the induction’s assumption.
Thus the composition ¢: Z— Z,_, — C* X C*¥*™-" ig an (m — k)-equivalence
by Lemma (38.3). This completes the proof.

Remark (3.4). In this paper, we have only studied the full non-
degenerate complete intersection variety. Let Z* be a non-degenerate
complete intersection variety which is not necessarily full. We say that
Z* satisfies (A;)-condition if

(A;) dim (3] 4(h;) > min(|J| + i, m) for any non-empty J C {1, - - -, k}.
JjE€J
A full non-degenerate complete intersection variety satisfies (A4,,_,)-condi-

tion. We finish this section by the following question: Is ¢: Z* — C*™
a min (m — k, i)-equivalence? (True also for i = 0. See [Ok4]).
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§4. Fundamental group of the compactification Y

Let Z* be a full non-degenerate complete intersection variety as
before and let Y = Z* be the closure of Z* in X. We are going to show
that the fundamental group of Y is an abelian group which is generated
by at most k elements. This gives a generalization of Theorem (7.3) of
[Ok3]. The main difficulty is that the configuration of the irreducible
divisors {E(P)} which are in the complement of Z* in Y is not so clear.
We say that a simplex ¢ = (P, - -+, P,) € 2* is good if there exist 1 < i,
< oo <lippy <m so that (m — k) divisors {E(P,,), ---, E(P;,_,)} have a
non-empty intersection in this coordinate chart C”. For the next lemma,
it is not necessary to assume the fullness of Z*.

LEMMA (4.1). There exists a good simplex of X*.

Proof. Note that Z* is compact if and only if m — k£ =0. Let S=
{P; E(P) + @, Pe Vertex (2*)}. Note that Z* = Y — (Jpcs E(P). We prove
the assertion by the induction on m — k. The assertion is obvious if
m — k =0. Assume that m — k> 1. As Z* is compact, there is a vertex
P e Vertex (X*) such that E(P) is non-empty i.e., Pe%¥. Now we consider
the variety E(P) as a non-degenerate complete intersection variety in
the toric variety E(P). Replacing X by the divisor E(P) and Y by E(P),
we apply the induction’s assumption. We can find vertices P,, - - -+, P, _,_,
of Vertex (2*) such that the divisors {E(P)NEP);i=1,---,m —k — 1}
have a non-empty intersection. That is N\ *'E(P,)NE(P) + @». Thus
the divisors E(P), E(P), - - -, E(P,,_,.,) has a non-empty intersection. Thus
we can find a m-simplex ¢ which contains the vertices P, P,, -+, Pp_;_;.
This complete the proof.

Now we fix a good coordinate ¢ = (P,, - - -, P,) such that P,e ¥ for
i=1,.--,m — k. The calculation of the fundamental group can be done
by the exact same way as §7 of [Ok3]. As the canonical homomorphism
of the fundamental groups =,(Z*) — =,(Y) is a surjection, we can see easily
by Van Kampen theorem that z,(Y) is isomorphic to the quotient group
of z(Z*) by the subgroup H generated by {o(P); Pe ¥}. Here p(P) is
the corresponding element of #,(Z*) to a small loop I(P) which goes
around the divisor E(P), Pe.%. See Figure (4.1.1).

By the commutativity of the fundamental group z,(Z*), this element
does not depend on the choice of the small loop I(P). Let P e Vertex (2*).
We can write P as P = > ", a,P, for some integers a,, ---,@a,. Then it
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E@Q)

c
€@ |, py

G EP)

Figure (4.1.1)

is easy to see that the above element p(P) of Z*™ is equal to (a,, - - -, a,)
if we identify r,(Z) with Z™ through the isomorphism z,(Z*) = 7,(C*™) = Z™.
See [Ok3] for a similar calculation. By the assumption on P,, we have

1

that o(P) =, ---,1,---,0) for i =1, ---,m — k. We define A,(P)=
(@pis1s * - > @y) as §7 of [Ok2]. Then we have

THEOREM (4.2). Assume that m — k > 1. Then the fundamental group
of Y is an abelian group which is isomorphic to the quotient group of Z*
by the subgroup generated by {A,(P); Pe ¥}.

The fundamental group =,(Y) is finite if the subgroup H has rank m.
It seems that this is always true but the proof involves some combina-
torial problem and we will treat this somewhere else. This class of
algebraic varieties may give many interesting examples of algebraic surfaces
as was the case for the hypersurfaces in a toric variety ([Ok5]). Note
also that the fundamental group does not depend on the choice of a
smooth compactification Y.

ExamMpLE (4.3). Let m =4 and k£ = 2. Let
4
ha(u) = Z aaiui_”uii»lui-ﬂu%is + 17 a = 1, 2
i=1

where u,,, =u;, i =1, ---,4. Let Y be as before. Here the coeflicient
{an; @ =1,2,i=1,...,4} are generically chosen. Then the Newton
diagram 4(h,) is a 4-dimensional simplex with vertices A, = 0, A, =
(-17,1,1,19), ---, A, =(1,1,19, —17). Then dual Newton diagram
I'*(hy, h;) is a simplicial cone with vertices P = “(1,1,1,1), P, = (3,4, 5, 6),

.-, P, =1%4,5,6,3). Note that det(P, P,,,) =1 and det(P,, P,,,) = 2.
Thus on the two-dimensional cone (P,, P,,;) we have to add vertices
Q =[P, + P2 (i=12). An easy (but not so pleasant) calculation
shows that »,(Y) = Z, X Z,.
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