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1. Introduction

In [2] we defined an irreducible J3(/)-cartesian membrane, and used
this to obtain a characterization of an »-sphere by generalizing the definition
of simple closed curve given by Theorem 1.2 below. There B(J) is a class
A(n) of («—l)-spheres, but here it is a class of mutually homeomorphic
continua. In Theorem 1.1 we give a definition of hereditarily unicoherent
continua and generalize this in Section 3 by means of B(/)-cartesian
membranes. To do this we paraphrase by a translation some of Wilder's
work in [7]. In his Unified Topology [8: p. 674] he gives a principle: "The
connectedness of a domain is a special case of the bounding properties of its
i-cycles". We substitute the element JoiB(J) for the i-cycle and for "bound"
we substitute that " / membrane-bases an irreducible B(J) -cartesian mem-
brane. The very nature of an *-cycle seems to limit the complexity of the
point set studied, although the restriction to "nice" manifolds is due partly
to the difficulty of the subject matter treated. There are similar difficulties
here, but also advantages, in the very general set-theoretic approach by
means of B{J)-membranes.

2. Characterization of topological spaces
by the number of irreducible continua between points

The Theorems here give set-theoretic characterizations of hereditarily
unicoherent continua, simple closed curves, hereditarily indecomposable
continua, arcs and dendrites. We mean by a continuum a closed and con-
nected set as in [6]; we denote the null set by 0. In this Section a continuum
M has hereditarily a property P if every subcontinuum of M has property P.

THEOREM 1. Let X be a compact Hausdorff continuum and let a, b e X
such that a ^jkb. Then:

* This work was done under National Science Foundation grant G 19672.

416

https://doi.org/10.1017/S1446788700028445 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028445


[2] Irreducible coatinua and unicoherent continua by means of membranes 417

(1.1) X is hereditarily unicoherent if and only if, for each pair a and b,
there exists exactly one subcontinuum of X irreducible from a to b;

(1.2) X is a simple closed curve if and only if, for each pair a and b,
there exist exactly two distinct subcontinua It and I2 irreducible from a to b
and X = /1-f/2, and if I' is another subcontinuum of X irreducible from
a to b, then either I' = Ix or I' = I2, and

(1.3) X is hereditarily indecomposable if and only if, for each pair a and b
and any proper subcontinuum I of X irreducible from a to b, if c G I - J ,
and M is a subcontinuum of X irreducible from c to b, then I CM.

We proved (1.2) as Theorem 1 of [2]. The proof of (1.1) follows easily
from the definitions, and parallels that of its generalization as Theorem 4
of Section 3: for its partial use in semigroups, see Hunter in [4: p. 363].
The proof of (1.3) follows easily from definitions and the use of Theorem 43,
in [6: p. 15; see also p. 58].

We define the set-valued set-function T = T(A, Y), for A C Y and
Y C X, as follows. Let Q be an open subset of Y and W be a subcontinuum
of Y. Then:

y $ T(A, Y) if and only if there exist Q and W such that
yeQCWCY-A.
For examples and fundamental properties see [1], where T(A,X) =

T{A) for X the imbedding space.

LEMMA 1. Let X be a compact Hausdorff continuum irreducible from
a to b, let x eX—a—b, a^b, and let x(a) and x(b) be subcontinua of X
irreducible from x to a and x to b respectively: then a necessary and sufficient
condition that X be a simple continuous arc is that both T{x, x(a)) = x and
x = T(x, x(b)) for every x e X.

PROOF. The necessity follows easily from the definitions. The sufficiency
will follow from Corollary 16.1 of [l :p. 274], if we prove T(x, X) =x
which we now do. Take y ex(a)—x. Since T(x, x(a)) =x, there exist in
x(a) an open set Q and a continuum W such that y e Q C W C x(a)—x.
Consider the case y $x(b): then take Q' = Q • (X—x(b)). Since x(a) and
x(b) are continua with aex(a) and bex(b), x(a)-\-x(b) = X. Thus
X—x(b) Cx(a) and so Q' is an open subset of X—x(b), which itself is open
in ^L. Therefore Q' is open in X and so y eQ' C WCx(a)— xCX—x;
thus y $ T(x, X).

Consider now the case yex(b); then y ex[a) • x(b).
By Theorem 12 of [l:p. 272] T(x, x(a)) = c\(I(a, x(a))), and so by

hypothesis I(a,x(a)) — x. There exists a subcontinuum C of x(a) which
contains y and a but not x by definition [1: p. 272] of Kuratowski's
I (a, x(a)). Similarly there exists a subcontinuum C of x(b) which contains
y and b but not x. But then C-\-C is a proper subcontinuum of X containing
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a and b which contradicts the irreducibility of X. Thus y $ x(b), and so
T(x, X) = x for all x e X and hence X is an arc.

THEOREM 2. If X is a compact Hausdorff continuum such that for
n 2g 2 aM*£ /or eac/t a,beX there are n but not more than n distinct subcontinua
X( (i = 1, 2, • • •, n) of X irreducible from a to b and X is the essential union
of the X{, then each Xt is an arc.

PROOF. We recall in the definition [10: p. 88] of essential union that
X = Xx-\-Xa-\- • • • +Xn and each Xt contains an essential point which is
not in the union of the remaining Xt. Note that an essential point in an X(

has an essential neighborhood in Xit since \JXf {j^i) is closed. Now let
a, b e X and {X^ (i = 1, 2, • • •, n) be the n irreducible continua of the
hypothesis. For some * 5S «, let xeXt—a—b. Let x(a) denote the sub-
continuum of Xt irreducible from x toa. We now show T(x, x(a)) = x, and
the Theorem then follows by Lemma 1.

By Theorem 13 of [1: p. 272] either T{x,x{a)) has vacuous interior in
x(a) or it is an indecomposable continuum. In the first case, if T(x, x(a)) =£ x
then it contains a point y and a continuum W irreducible from x to y.
By hypothesis this continuum must have an essential point and hence
an essential point interior to it; but W has no interior point in x{a) and hence
none in X. In the second case we need only choose two points y and z in the
same composant of T(x, x(a)). Then there is a subcontinuum W in T(x, x(a))
irreducible from y to z. By theorem 137 of [6: p. 58], W has no interior in
T(x,x{a)) much less in X. We conclude that T(x, x{a)) =x. By Lemma 1,
Xt is an arc.

We denote the interior of I by int(/), the closure of I by cl(/) and its
boundary by Fr(J).

LEMMA 2. Let X be a compact Hausdorff continuum and let E be the
set of endpoints of X. If (a) for each pair a, beX, a^£b, there exists one and
only one subcontinuum I of X irreducible from a to b and int (/) ^ </>, then
(b) X is hereditary both as a unicoherent and as a locally connected continuum
and the c\(E) contains no arc.

PROOF. By (1.1) of Theorem 1, X is hereditarily unicoherent. Now
suppose X is not locally connected hereditarily, and so there exists a sub-
continuum y that is not locally connected at y e Y. By Wilder's Theorem 2.1
in [7: p. 102] there exist open sets U and V of Y such that yeUC cl(U) C V,
and there exist infinitely many components Mt of cl(F)—U and a continuum
K C lim sup {MJ such that K-Mt = 0, for all i, and K • Fr(f7) ± 0 ^
K • Fr(F). Now K must be nondegenerate so select a, b eK, a =£ b. There
exists a subcontinuum / of K irreducible from a and b. By the hypothesis,
the interior of / with respect to X is non-null, hence the interior of / with

https://doi.org/10.1017/S1446788700028445 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028445


[4] Irreducible continua and unicoherent continua by means of membranes 419

respect to Y is non-null. But since I CK and K C lim sup {M(}, the interior
of / with respect to Y is null. From this contradiction, Y must be locally
connected.

Suppose now the set E of endpoints1 of X is such that cl(£) D M, an
arc from p to q. Let p', q' e M—p—q, p' ^= q', and let M' be the subarc of M
from p' to q'. Now M' • E — 0 but M' C cl(£); hence every point of M' is a
limit point of E. Then M' has a null-interior, which contradicts the
hypothesis. Hence cl(£) can contain no arc.

EXAMPLE 1. This example concerns Lemma 2 and Theorem 3. Let
a = (0, 0), b = (1, 0), / be the straight line interval from a to b in the
cartesian plane; let Iit be straight line interval upward from (ijj, 0)
(/ = 1, 2, • • •; i = 1, 2, • • •, /) of length Ijj. Let X be the union of the Iit

and / . Then X is a dendrite with set E of endpoints such that cl(£) DJ,
the unique arc from a to 6 in X. However, int(J) = 0. Let now It be the
straight line interval from (1/2*. 0) to (l/2>, 1/2*) and X be the union of the
/ , with / ; now cl(£) contains no arc.

THEOREM 3. Let X be a compact Hausdorff continuum, E be the set of
endpoints of X and (a) and (b) be as in Lemma 2. Then (a) is a necessary and
sufficient condition that (b) be true.

PROOF. That (a) implies (b) was shown in Lemma 2.
Consider now the case where X is hereditary both as a unicoherent and

as a locally connected continuum and the cl(£) contains no arc. Take
a,beX. By (1.1) of Theorem 1 there exists exactly one irreducible continuum
I' in X from a to b and, since X is locally connected, I' is the arc ab; hence X
is arc-wise connected. Suppose (a) is not true.

Let p e ab—a—b. Since cl(£) does not contain an arc, we can take
p $ cl(E). Since X is normal [7: p. 74], there exists an open set U about p
such that cl(C7) • (a+b+cl(E)) = 0. Let ab = aa'+a'pb'+b'b such that
aa' and bb' are disjoint arcs and a'pb' is the maximal subarc containing p of ab
such that a'pb'—a'—V C U. By normality there exists, for each x e a'pb' • U,
an open set Vm about x such that cl(FJ C U—aa'—W. Since va.t(ab) = 0,
there exist y e Vm—ab and a maximal arc q'yx' such that q' e E—ab and
x' eab—a—b.

Let V'p be such that cl(F^) CVP. Then it is necessary there exist in V'p
infinitely many yt such that the q'iytx'{ are mutually disjoint and q\ $ cl(F,,).
Hence there exists a limiting set N of the q'tyix'f such that there exist
x eN • ab • cl(V'p) and q eN—cl(V'p). Therefore X cannot be hereditarily
locally connected, under the supposition int(«6) = 0. Hence (b) implies
(a) and the Theorem is true.

1 The definition of endpoint is in [6 : p. 113].
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COROLLARY 3.1. Let X be a metric compact continuum, and let E be the
set of endpoints of X. A necessary and sufficient condition that Xbea dendrite
such that cl(£) contains no arc is that, for each pair of distinct points a and b
in X, there exist a unique subcontinuum I of X irreducible from a to b and

The proof follows at once from definition [9: p. 88] and from Theorem 3.

3. Generalized hereditarily unicoherent continua

Let B{J) be a class {/„} of mutually homeomorphic continua; below
/ , / ' , / " always are elements of B{J). Always R, R', R" are regions of the
compact Hausdorff space S. If x e R, we say R is about x; and if X C M
we say X is in M.

We define B (/)-cartesian membrane, as we did to generalize an »-sphere
in [2], as follows. Let F be a compact subset of the imbedding compact
Hausdorff space 5; each J C S. Let M be a subcontinuum in F, b e M, and
C be homeomorphic to / . Denote by (C x M, b) the decomposition space
[6: pp. 273—274] of the upper semi-continuous decomposition of the carte-
sion product CxM, where the only nondegenerate element is taken as
C X b (intuitively, the decomposition space is a sort of generalized cone with
vertex at the point Cxb). With this notation, we give:

DEFINITION 1. We say that F is a B{J)~cartesian membrane from b to J
if and only if there is a homeomorphism h from (C X M, b) onto F for some
M such that: (i) for some aeM—b, J = h(Cxa); (ii) for all qeM—b,
h{Cxq) e B(J); and (iii) h(Cxb) —b.UM is irreducible from a to b, then
we prefix the above definition with "irreducible". We say b is the vertex of F
and / is the membrane-base, or the base, of F. If M is a continuum, J CM
and there exists a B(/)-cartesian membrane F in M with base / , we say
/ membrane-bases in M.

For example, let 5 be a 2-sphere and B(J) be the class of 1-spheres in 5.
Then a hemisphere F is an irreducible B(J) -cartesian membrane with some
J e B(J) as base.

DEFINITION 1.1. A continuum M is a B{J)-continuum if and only if:
(a) there exists some / in M; and (b) each J in M membrane-bases in M.
Recall JeB(J) herein.

DEFINITION 1.2. A B(/)-continuum M is B{J)-unicoherent if and only
if, for every two I?(/)-subcontinua C and C such that M = C-\-C and there
exists some / in C • C, then C • C is a B(/)-continuum. A B(/)-continuum
M has hereditarily a property P if and only if every B (J) -subcontinuum in M
also has property P.
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SEMIGROUP EXAMPLE 2. Let each Ct (i = 1, 2, • • •, n) be a cone homeo-
morphic to the complex number disc, and with multiplication that of this
disc. Let Ct n Ci+1 be the one point which is the unit in Cit but is the zero
in Ci+1, and otherwise the Ct are disjoint; for z e Ct and z' eCt (j > i), let
zz' = z'z = z: this is the type of multiplication used by Hunter in Example 2,
Fig. 2, of [5: p. 243]. Here S — u Ct is a hereditarily B(/)-continuum and
a topological semigroup, for B(J) the class of simple closed curves in S:
the same is true of Hunter's Examples 1 and 2 of [5: pp. 242—243], his
Example 2 has no arc at its unit element, and in neither do the elements of
B{J) occur everywhere densely, although they do in our S above.

We wish to generalize (1.1) of Theorem 1.
We need the following Hypotheses (HI) —(H4). Let F and F' be irre-

ducible B(/)-cartesian membranes with / as base and b and V respectively
as vertices. Then:

(Hi) If F and F' are different membranes, then F ^ F • F';
(H2) If either Fo = 0 and / " = 0, or if Fo is a submembrane of F

with vertex b and base / " and JF0 • F' = 0, then each / ' in (F+ F'—Fo) + / "
membrane-bases in (F-\-F'—Fo)-\-J";

(H3) If / ' in F • F' does not membrane-base in F • F', then there
exists a vertex b of F such that b $ F'; and

(H4) If R D b and R' D b', then / does not membrane-base in

We are now in position to state and prove a generalization of (1.1)
of Theorem 1; and (HI) —(H4) are illustrated in Examples below.

THEOREM 4. Let S be a compact B{J)-continuum and let hypotheses
(HI) and H2) be satisfied. Then S is hereditarily B(J)-unicoherent if and only
if, for every J in S, there exists a unique irreducible B{J)-cartesian membrane
based by J.

PROOF of necessity. Given S is hereditarily B(J)-unicoherent; suppose
J in S membrane-bases two different irreducible B(J) -cartesian membranes
F and F'. In (H2) let Fo+J" = 0; then F+F= Fisa£(/)-continuum, as
are F' and F+F'. In Definition 1.2 let C = F,C = F' and so M = F+F'.
Thus / in F • F' must membrane-base an irreducible B(JT)-cartesian mem-
brane F" in F • F' by Definition 1.2. Since F =£ F • F' by (HI) and
F-F'D F", F and F" are different membranes. Hence by (HI) F" ^ F" • F;
but F" D F • F" D F" and so F" = F" • F. Therefore / can membrane-
base only one irreducible B (J)-cartesian membrane in S.

PROOF of sufficiency. By hypothesis any / is the base of only one
B(J)-cartesian membrane in S. Suppose 5 is not hereditarily 2?(/)-unico-
herent. Then by Definition 1.2 there exist .B(/)-continua M, C and C such
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that SDM, M = C+C and there exists J'CC • C, but C • C is not a
J3(/)-continuum. Let JCC • C. Since C and C are £(/)-continua, there
exist irreducible B{J)-cartesian membranes, F in C and F' in C, and each
has / as base. But by hypothesis F = F', and so C • C contains F with
base / . Hence each J in. C • C membrane-bases in C • C, and so C • C is a
Z?(/)-continuum, which is a contradiction. Therefore the Theorem is true.

EXAMPLE 3.1 in which (HI) and (H4) do not hold. In the (x, y)-plane
let Fj, be the closure of the interior of the triangle with vertices (1, 0), (0, 0)
and (0,1) and let F2 be defined similarly for (\, 0), (0, 0) and (0,1); let
S = F^F^ and let B(J) be the class of straight line intervals in S. Let /
be the element from (0, 0) to (0, 1). Then Fx and F2 can be irreducible
B(/)-cartesian membranes with base / . But F2= F2- Fu contrary to
(Hi); also (H4) does not hold for this S. Both the necessary and the suffi-
cient condition of Theorem 4 do not hold. Obviously, we can take B(J)
as a class of hereditarily indecomposable continua, and obtain a similar
example.

EXAMPLE 3.2 in which the conclusion of Theorem 4 holds. In the
(x, y)-plane let z = (0,0), q = (1,1) and zq be the rectilinear interval from z
to q. Let c — (2,0) and from c take a set N, homeomorphic to an arc minus
one endpoint and with zq as limiting set, and N • zq = 0 = (N—c) • (a;-axis).
Thus cl(2V) = M is irreducible from c to q. Revolve in 3-space about the
ar-axis zq, cl(N) and q, and let F, F' and / be the sets so obtained. Let
S = F-\-F' and B(J) be the class of simple closed curves in S. Then S is a
hereditarily B(/)-unicoherent continuum. Here F = F' • F, contrary to
the conclusion of (HI); however, F is a JS(/)-cartesian membrane with base
/ , but F' is not for z e M since (ii) of Definition 1 is not satisfied at z.
Perhaps (HI) can be proved as a theorem when B(J) is a class of (»—1)-
spheres (we partially tried this with the stronger hypothesis of Theorem 2
in [2]).

LEMMA 3. Let F = h(CxM,b) be a B(J)-cartesian membrane with
base J and let R be a region about b. Then R • F contains a B(J)-cartesian
membrane Fo = h(CxM', b) with base h(Cxm0) = J" such that M' CM
and m0 e M'.

The proof follows without great difficulty from Definition 1: note
that C x b is a point in the decomposition space (C X M, b) and b = h(C x b).
Thus the proof depends upon the definition of open set in (Cx M, b) about
(Cx6).See[6:p. 274].

Wilder in [7: p. 47] gives six properties, holding for an »-sphere (n > I),
each of which he shows is equivalent to the Phragmen-Brouwer Property,
which is his Property I'. We generalize Property I' in Definition 1.4, his
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Property I as Property (WI) in Definition 1.5 and his Property V as Property
(WV) in Definition 1.6. This enables us to prove certain properties of a
hereditarily B(J)-continuum, when hypotheses (HI) — (H4) hold.

DEFINITION 1.3. We say that N does not B(J)-separate M, or that
M—N is not B (J)-separate, if and only if every / in M—N membrane-
bases in M—N.

DEFINITION 1.4. We say the B{J)-continuum M has the B(J)-Phrag-
men-Brouwer Property if and only if, for each pair of disjoint sets A and B
of M such that M ^ A-\-B, and neither A nor B B(J)-separates M, then
A-\-B does not B(J) -separate M. (We do not seem to need A and B closed
in our proofs; in either case a 2-sphere does not have this property in contrast
to Wilder's [7: pp. 47, 60]).

THEOREM 5. Let S be a compact B(J)-continuum such that (HI) —(H4)
hold. Then S is hereditarily B(J)-unicoherent if and only if S hereditarily has
the B (J)-Phragmen-Brouwer Property.

PROOF of the necessity (in which (HI) and (H2) are needed). Let M be a
B(/)-subcontinuum of S, and A and B be disjoint subsets such that
M =£ A-\-B. Suppose A-\-B does £(/)-separate M, while A and B do not.
By Definition 1.3 there exists / in M—A—B which does not membrane-
base in M—A — B. Since M is a B{J) -continuum, / does base an irreducible
B(/)-cartesian membrane F i n M. But JCM—A—B and M—A—BC
M—A, and so by Definition 1.3/ membrane-bases in M—A, and similarly in
M—B. Since (HI) and (H2) hold, Theorem 4 is true here. Therefore
FCM—A—B, and so / must membrane-base in M—A—B, which is a
contradiction. Thus the necessity is true.

PROOF of the sufficiency where (H2), (H3) and (H4) are needed.
Suppose false and so there exist 5 (/)-continua M, C and C, M = C-\-C,
C • CD J' and some / in C • C does not membrane-base in C • C. By
Definition 1.1 there exist irreducible B(J) -cartesian membranes F in C and
F' in C and each with / as base. By (H3) there exist vertices b and V of
F and F' respectively such that b$F' and b' $ F. Let M' = F+F' and by
(H2) M' is a B(/)-continuum. By Lemma 3 there exist irreducible sub-
membranes Fo and F'o in F—F • F' and F'—F • F' respectively. By (H2)
each J in M'—Fo membrane-bases in M'—Fo, and similarly for M'—F'o;
thus by Definition 1.3 neither Fo nor F'o B(J)-separates M'. Hence by the
B(/)-Phragmen-Brouwer Property Fo-\-F'o does not, and so each / in
M'—Fo—F'o is a membrane-base there; this is contrary to (H4) and so the
Theorem is true.

DEFINITION 1.5. We say the B(/)-continuum M has B{J)-Property (WI)
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if and only if, for each pair A and B of disjoint subsets such that M =£ A + B
and / membrane-bases in both M—A and in M—B, then / membrane-
bases in M—A—B.

THEOREM 6. The B(J)-Property (WI) is equivalent to the B{J)-Phrag-
men-Brouwer Property.

The proof follows at once from Definitions 1.3, 1.4 and 1.5.

DEFINITION 1.6. A B{J)-continuum M is said to have B(J)-Property
{WV) if and only if, for every JinM there exists subcontinuum N of M—J
such that / does not membrane-base in M—N.

In the Examples below let B(J) be a class of 1-spheres. Then the 2-
sphere does not have 2?(/)-Property (WV), in contrast to Wilder's original
properties [7: p. 47 and Theorem 5.19, p. 60], which however fail for the
1-sphere.

EXAMPLE 4.1 in which (H2) does not hold. Let F" = h"(CxM, b) be
an irreducible BfJ)-cartesian membrane with base / = h"(Cxa); thus M
is irreducible from a to b, and further take M as follows: let t and t' be arcs
with only endpoints in common and such that t-\-t' — K is a simple closed
curve in M — where M—K is the union of the mutually separate sets
H and H' and H is homeomorphic to an arc minus one endpoint, as similarly
is H'; let H have t as limiting set, and similarly H' have t'. Thus F" contains
the torus T = h"(CxK), and so F" does not satisfy (H2), since for c e C
f = h"(cxK) in F"+.F" = F" does not membrane-base in F". Take
c0 e C and let E be a 2-cell interior to T and such that Fr(E) = h"(coxK).
Then 5 = F"-\-E is a B(J)-continuum, and hereditarily so. Take c' e C—c0

and c" e C—co—c'. Then h"(c'xK) is a / ' which is a base for two different
irreducible B(/)-cartesian membranes F and F' such that F+F' = T+E,
in contradiction to the sufficiency conclusion of Theorem 4. Let A be the
irreducible continuum from / to T in h"(c'xM), and similarly B be in
h"(c"xM); the B(/)-Phragmen-Brouwer Property does not hold for these
disjoint A and B.

EXAMPLE 4.2 in which (H2) does not hold. Recall the nature of F'—F
in Example 3.2; take a set E', homeomorphic to this, in place of £ in Example
4.1, such that E' is interior to the torus T, but has T as its limiting set and
such that E'-\-T is an irreducible B{J)-cartesian membrane with vertex c
interior to the torus. Thus, for F" of Example 4.1, S = F"-\-E' is a here-
ditarily S(/)-continuum, the conclusion of Theorem 4 holds, although (H2)
does not. In both Examples 4.1 and 4.2, S has hereditarily the B(J)-
Property (WV).

HYPOTHESIS (H.5) Let F, F', Fo =£ 0 and / " be as in (H2). Then
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F-\-F'—J" is the union of two mutually separate sets Fo—J" and F-\-F'—
Fo. (FQ is as in Lemma 3.)

THEOREM 7. Let S be a compact B{J)-continuum and (HI) —(H5)
be true. Then S is hereditarily B [J)-unicoherent if and only if S has hereditarily
the B(J)-Property (WV).

PROOF of necessity. Let M be a .B^-subcontinuum of S and let J C M.
Since (Hi) and (H2) holds, Theorem 4 does, and so there exists only one
irreducible B(J) -cartesian membrane F in M with base / . By Lemma 3
there exists submembrane Fo in F and Fo ^ F. Then J does not membrane-
base in M—Fo, for if it did this would contradict Theorem 4. Thus in
Definition 1.6 we can take Fo as the subcontinuum N of M—J. Therefore S
has hereditarily the J3(/)-Property (WV).

PROOF of the sufficiency. Let M, C, C be 5(/)-continua, 5DM,
M — C-\-C, C • C D J, but suppose / is not a membrane-base in C • C.
By Definition 1.1 there exist B(J) -cartesian membranes F in C and F' in C
each with base / ; and let, by (H3), b be a vertex of F such that b $ F'.
Let R be a region about b such that F' • cl(i?) = 0. By Lemma 3 there exists
Fo about b with base / " and F0C R • F. By Definition 1.6 there exists a
subcontinuum N of (F+F')—J" such that / " does not membrane-base
in F+F'-N. By (H5) / " separates F+F' into Fo-J" and F+F'-Fo,
and so N is contained in one of these sets. But J" membrane-bases Fo and so
N(IF+F'-FO; by (H2), / " membrane-bases in (F+F'-Fo)+J" and so
N(£F0. This is a contradiction, and so S is hereditarily J5(/)-unicoherent.

We conclude: it is difficult to describe point sets of complex construc-
tion as in [10: pp. 78—88]. In spite of losses, intuitively to do this for point
set theory, there are some advantages in eliminating the algebraic machinery
of [7: pp. 129—130, 209—210, etc.] by means of the topologically simpler
irreducible membranes used above in generalizing "connectedness". But
difficulty remains, partly hidden above by (HI) —(H5), because basic
definitions cannot be simple here.

The concepts above may be of interest in obtaining new characteriza-
tions (and properties) of ^-spheres, as in part used in our paper to appear
soon in Pacific Journal of Mathematics; this does illustrate some basic
trouble in such an attempt.
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