
SEMIPRIME NEAR-RINGS

STEFANIA DE STEFANO and SIMONETTA DI SIENO

(Received 14 July 1989; revised 14 May 1990)

Communicated by B. J. Gardner

Abstract

Some properties of ν-semiprime ($\nu = 0, 1, 2$) near-rings are pointed out. In particular ν-semiprime near-rings which contain nil non-nilpotent ideals are studied.

1. Preliminaries

Throughout this paper, N will denote a right zerosymmetric near-ring and terminology and notation will agree with those introduced by Pilz in [4]. In particular, for any two sets A and B, the product AB will be the set of the products ab with a in A and b in B.

Let I be a two-sided ideal of N. As Pilz suggests in [4, 2.108], the following definitions can be given:

(a) I is 0-semiprime if every two-sided ideal A of N, such that A^2 is contained in I, is contained in I;
(b) I is 1-semiprime if every left ideal L of N, such that L^2 is contained in I, is contained in I;
(c) I is 2-semiprime if every N-subgroup S of N, such that S^2 is contained in I, is contained in I.

Being N zerosymmetric, every 2-semiprime ideal is 1-semiprime too and every 1-semiprime ideal is 0-semiprime too. Moreover, the 0-semiprime ideals are the semiprime ideals in the usual sense [4, Definition 2.82].

© 1991 Australian Mathematical Society 0263-6115/91 $A2.00 + 0.00
Adapting the proof for 0-semiprime ideals, one proves that for $\nu = 0, 1, 2$ the following conditions are equivalent:

(i) I is a ν-semiprime two-sided ideal;

(ii) if x does not belong to I, then $(x)^2\nu$ is not contained in I, where $(x)_0, (x)_1, (x)_2$ mean the two-sided ideal, the left ideal and the N-subgroup respectively, generated by x;

(iii) if X_ν properly contains I, the product $X^2\nu$ is not contained in I, where X_0, X_1 and X_2 respectively denote a two-sided ideal, a left ideal and an N-subgroup of N.

It is an immediate consequence of condition (ii) that I is a ν-semiprime ideal ($\nu = 0, 1, 2$) if and only if N/I is an $sp\nu$-system, that is, a set S such that if $s \in S$ there exist two elements s_1, s_2 of $(s)_\nu$ whose product s_1s_2 belongs to S.

Observe that, for $\nu = 0, 1, 2$, any intersection of ν-semiprime ideals is ν-semiprime. In particular, this applies to ν-prime ideals [4, 2.108]: so, for every ideal I of N, the ν-prime radical $P_\nu(I)$ (that is, the intersection of the ν-prime ideals containing I) is ν-semiprime.

2. ν-semiprime near-rings

A near-ring N will be called ν-semiprime if (0) is ν-semiprime ($\nu = 0, 1, 2$).

For instance, for every near-ring N and every ν-semiprime ideal B, the near-ring $N' = N/B$ is ν-semiprime: in particular, for each ideal I of N, the near-ring $N/P_\nu(I)$ is ν-semiprime. By definition, a ν-semiprime near-ring does not contain any ideal (respectively left ideal or N-subgroup) X_ν such that $X^2\nu = (0)$; moreover,

Proposition 2.1. If N is ν-semiprime ($\nu = 0, 1, 2$) and if X_ν is a two-sided ideal, a left ideal or an N-subgroup of N such that there is a positive integer n for which $X^n_\nu = (0)$, then X is zero.

Proof. For the sake of brevity, write X instead of X_ν. The statement is true by assumption if n is 2. To obtain a contradiction, suppose now that $X^n = (0)$ with $n > 2$ and $X^{n-1} \neq (0)$. Then there exist $(n-1)$ elements $x_1, x_2, \ldots, x_{n-1}$ of X such that the product $y = x_1 \cdots x_{n-1}$ is different from zero.

If $\nu = 0, 1$ consider the (two-sided or left) ideal I generated by y. Since I is contained in the (respectively, two-sided or left) ideal (X^{n-1}) generated
by X^{n-1}, it follows that

$$I^2 \subseteq (X^{n-1}) \cdot I \subseteq (X^{n-1}) \cdot X.$$

As right distributivity implies $(X^{n-1}) \cdot X \subseteq (X^n)$ and X^n is zero by assumption, it follows that $I^2 = (0)$, that is, $I = (0)$, since N is ν-semiprime. So y is zero, which is a contradiction.

If $\nu = 2$, consider the N-subgroup $I = x_1 \cdot x_2 \cdot x_3 \cdot \ldots \cdot x_{n-1}$. From $I \subseteq X^{n-1}$ it follows $I^2 \subseteq X^{2n-2} \subseteq X^n = (0)$, that is, $I = (0)$, since N is 2-semiprime. Consequently $x_1 \cdot \ldots \cdot x_{n-1} = y$ is zero which contradicts the choice of y.

Therefore, if $X^n = (0)$, also $X^{n-1} = (0)$ and, from the inductive assumption, X is zero.

Thus N is ν-semiprime ($\nu = 0, 1, 2$) if and only if N has no nilpotent two-sided ideal, left ideal, N-subgroup (respectively).

The 0-semiprime near-rings were studied by many authors (for instance, see [3], [5]), while the 2-semiprime ones with descending chain condition on N-subgroups were studied by Blackett in [1]. Here some new properties are pointed out in the case where N is 1-semiprime. In this case N has no nilpotent left ideal; nevertheless we will suppose that N has at least one non-zero nil left ideal. Among other things, this fact implies that in N the descending chain condition on left ideals (and a fortiori on N-subgroups) does not hold; so this study is complementary to Blackett’s one. Besides, observe that the nil ideals of N cannot be minimal as N-subgroups, because, for every near-ring N, the following result holds.

Proposition 2.2. If H is a minimal N-subgroup of N, then H is either nilpotent of index 2 or idempotent.

3. 1-semiprime near-rings

From now on N will be a 1-semiprime near-ring with at least one non-zero nil left ideal. By Zorn’s lemma, this assumption forces N to have at least one left ideal which is maximal in the family of nil left ideals: call each of them a *maximal nil left ideal*. Now, for every left ideal L, denote by $(0 : L)$ the annihilator of L; $(0 : L)$ is a two-sided ideal of N and we prove

Proposition 3.1. Let L be a maximal nil left ideal and L' be a nil left ideal of N. Then $(0 : L) \subseteq (0 : L')$.
PROOF. Call \(S \) the left ideal generated by \((0 : L) \cdot L'\); \(S \) is nil since it is contained in \(L' \); actually it will be proved to be zero and hence the result will hold.

First of all observe that the set \((0 : L) \cdot L'\) is contained in \((0 : L)\), so \(SL = (0) \). As a consequence, the left ideal \(L + S \) is nil: in fact, for every \(l \in L \) and every \(s \in S \), let \(h \) and \(k \) be the least positive integers such that \(l^h = 0 = s^k \). It is a routine calculation to verify that, if \(n = \max(h, k) \), the element \((l + s)^n\) belongs to \(S \) and then \(l + s \) is nilpotent. For instance, if \(n = 2 \),

\[
(l + s)^2 = l(l + s) + s(l + s) = (l(l + s) - l^2) + l^2 + (s(l + s) - sl) + sl
\]

and, since by assumption \(l^2 = 0 \) and \(sl \) belongs to \(SL \), which is zero, \((l + s)^2\) is the sum of two elements of \(S \). Now, since \(L \) is a maximal nil left ideal, the nil left ideal \(L + S \) must coincide with \(L \), and therefore \(S \) must be contained in \(L \). As it is also contained in \((0 : L)\), \(S^2 \) is zero, and so \(S \) is zero, for \(N \) is 1-semiprime.

Consequently in a 1-semiprime near-ring \(N \) all the maximal nil left ideals have the same annihilator: it will be called the nil-annihilator of \(N \) and will be denoted by \(\alpha(N) \).

Furthermore, the following statement holds

Proposition 3.2. The nil-annihilator of \(N \) coincides with the nil-annihilator of any sum of maximal nil left ideals of \(N \).

Proof. Let \(L, L' \) be two maximal nil left ideals and let \(x \) be an element of \(\alpha(N) \). For all \(l \in L \), \(l' \in L' \) we have

\[
x(l + l') = x(l + l') - xl \in L'.
\]

But \(x(l + l') \) belongs also to \(\alpha(N) \) and therefore

\[
x(l + l') \in L' \cap (0 : L') = (0).
\]

This proves that \((0 : L) \subseteq (0 : (L + L'))\). Since the converse is obvious, one sees that \((0 : L) = (0 : (L + L'))\).

By induction the result may be extended to any finite sum of maximal nil left ideals and also to those which are not finite, since every element of such a sum is a finite sum of elements of maximal nil left ideals.

4. Properties of the nil-annihilator of \(N \)

The nil-annihilator of \(N \) is a two-sided ideal different from \(N \), because, if \(\alpha(N) \) coincided with \(N \), then for every maximal nil left ideal \(L \) this
would imply \(L^2 \subseteq NL = (0) \), contradicting the fact that \(N \) is 1-semiprime.

Proposition 4.1. The nil-annihilator of \(N \) is not nil and does not contain any non-zero nil left ideal.

Indeed if \(L' \) is a nil left ideal contained in \(\alpha(N) \) and \(L \) is a maximal nil left ideal containing \(L' \) it follows that

\[
L' \subseteq L \cap \alpha(N) = L \cap (0 : L) = (0).
\]

Proposition 4.2. \(\alpha(N) \) is a 0-semiprime ideal.

Proof. Let \(B \) be a two-sided ideal such that \(B^n \) is contained in \(\alpha(N) \). It must be proved that \(B \) is contained in \(\alpha(N) \), that is, for every maximal nil left ideal \(L \) of \(N \), the product \(BL \) is zero. Indeed the left ideal \(K \) generated by \(BL \) is contained in \(B \cap L \) and therefore

\[
K^n \subseteq B^n \cap L \subseteq \alpha(N) \cap L = (0)
\]

which implies \(K = (0) \) (because \(N \) is 1-semiprime) and consequently \(BL = (0) \).

Proposition 4.3. The nil-annihilator of \(N \) is zero if and only if every two-sided ideal contains a non-zero nil left ideal.

Proof. Let \(\alpha(N) \) be different from zero: then it is a two-sided ideal which contains no non-zero nil left ideal. On the contrary, if \(\alpha(N) = (0) \), for every non-zero two-sided ideal \(B \) and for every maximal nil left ideal \(L \), \(BL \) is different from zero.

Let \(x \) be a non-zero element of \(BL \): the left ideal generated by \(x \) is the required ideal since it is non-zero, is contained in \(B \cap L \) and so nil.

Consider now the factor near-ring \(N' = N/\alpha(N) \) and the canonical epimorphism \(\pi: N \to N' \). If \(L \) is a nil left ideal of \(N \), then by Proposition 4.1, \(\pi(L) \) is a non-zero nil left ideal of \(N' \), so \(N' \) too contains a non-zero nil left ideal. On the other hand, since \(\alpha(N) \) is 0-semiprime, \(N' \) is 0-semiprime (see 4.2): if \(N' \) is also 1-semiprime, its nil-annihilator can be defined and one has

Theorem 4.4. If \(N' \) is 1-semiprime, then \(\alpha(N') \) is zero.

Proof. In order to prove that \(\alpha(N') \) is zero, it is sufficient to show that if \(B \) is a two-sided ideal of \(N \) with \(\pi(B) = \alpha(N') \), then \(B \) is contained
in \(\alpha(N) \), or, equivalently, that for every maximal nil left ideal \(L \) of \(N \) the product \(BL \) is zero.

Now, the left ideal \(K \) generated by \(BL \) is nil (since it is contained in \(L \)); so also its image \(\pi(K) \) is nil and contained in \(\pi(B) = \alpha(N') \). But \(\alpha(N') \) does not contain any non-zero nil left ideal: thus \(K \) must be contained in \(\alpha(N) \) and, by the same argument, \(K \) and its generating set \(BL \) must be zero.

The assumption of Theorem 4.4 is satisfied when \(N \) is 2-semiprime and has a left identity. Moreover, we have

Theorem 4.5. If \(N \) is a 2-semiprime near-ring with a left identity and a non-zero nil left ideal, then \(N' \) is 2-semiprime too (and consequently contains a non-zero nil left ideal and \(\alpha(N') \) is zero.)

Proof. In order to prove that \(N' \) has no non-zero nilpotent \(N' \)-subgroups, first of all we remark that if \(S' \) is a nilpotent \(N' \)-subgroup of \(N' \) and \(S \) is its preimage in \(N \), then \(S \) is an \(N \)-subgroup of \(N \).

Since \(S' \) is nilpotent, there is a positive integer \(n \) such that \(S^n \) is contained in \(\alpha(N) \). So, for any maximal nil left ideal \(L \), the product \(S^n L \) is zero and consequently

\[
(SL)^n = (SL) \cdot \ldots \cdot (SL) \subseteq S \cdot S^{n-1} \cdot L = S^n L = (0).
\]

Let now \(sl \) be any element of \(SL \): \(Nsl \) is an \(N \)-subgroup, nilpotent of index at most \(n \), for \(Nsl \) is contained in \(SL \); therefore \(Nsl \) is zero, since \(N \) is 2-semiprime. Since \(N \) has a left identity, this implies \(sl = 0 \), for each \(s \in S \) and \(l \in L \). Thus \(SL \) is zero, so \(S \) is contained in the nil-annihilator of \(N \) and \(S' = \pi(S) \) is zero.

The remaining properties are consequences of the Theorem 4.4 and the preceding remarks.

References

Dipartimento di Matematica
Università degli Studi
Via Saldini 50
20133 Milano
Italy