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The Category of Bratteli Diagrams
Massoud Amini, George A. Elliott, and Nasser Golestani

Abstract. A category structure for Bratteli diagrams is proposed and a functor from the category
of AF algebras to the category of Bratteli diagrams is constructed. Since isomorphism of Bratteli
diagrams in this category coincides with Bratteli’s notion of equivalence, we obtain in particular a
functorial formulation of Bratteli’s classification of AF algebras (and at the same time, of Glimm’s
classification of UHF algebras). It is shown that the three approaches to classification of AF algebras,
namely, through Bratteli diagrams, K-theory, and a certain natural abstract classifying category, are
essentially the same from a categorical point of view.

1 Introduction

AF algebras were first introduced and studied by Bratteli in 1972 [2]. An AF algebra is
a C*-algebra which is the closure of the union of an increasing sequence of its finite-
dimensional C*-subalgebras. The class of AF algebras has an interesting variety of
examples [2,4]. AF algebras are generalizations of UHF algebras which were studied
by Glimm in 1960 [11] and of matroid C*-algebras (stably isomorphic to UHF alge-
bras) introduced by Dixmier in 1967 [5]. Glimm gave a classification of UHF algebras.
In a brilliant leap, Bratteli generalized Glimm’s classification to arbitrary AF algebras
(see below—Theorem 3.11 is a reformulation of this).

In 1976, Elliott gave a classification of AF algebras using K-theory [8]. In fact,
Elliott showed that the functor Ko: AF — DG, from the category of AF algebras
with *-homomorphisms to the category of (scaled countable) dimension groups with
order-preserving homomorphisms, is a strong classification functor, in the sense that
if A, A, € AF and Ko (A;) 2 Ko(A;), then we have A; ~ A,, and in fact every iso-
morphism from Ko (A, ) onto Ky (A, ) comes from an isomorphism from A, onto A,
(see [8], [16, Section 7.2], and [10, Sections 5.1-5.3] for details). This categorical idea,
finding a (strong) classification functor from a given category to another, more acces-
sible category, is useful in the classification of various categories (see [10]).

The classification of AF algebras obtained by Bratteli in [2] used what are now
called Bratteli diagrams. Bratteli associated to each AF algebra A an infinite directed
graph B(A), its Bratteli diagram (see Definition 2.2), and used these very effectively
to study AF algebras. Some attributes of an AF algebra can be read directly from its
Bratteli diagram, for instance its ideal structure. Bratteli showed that for A;, A, € AF,
A; 2 A, if A; and A, have the same Bratteli diagram, i.e., B(A;) = B(A,) (see
Theorem 3.10). In fact Bratteli determined, in terms of the Bratteli diagrams of A,
and A,, exactly when A; and A, are isomorphic.
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Denote by BD the set of all Bratteli diagrams. Then, Bratteli’s theorem asserts that
the map B: AF — BD has the property that if A;, A, € AF and B(A;) = B(A,), or
even just B(A,) is equivalent in Bratteli’s sense to B(A, ), then A; = A,. The question
that arises naturally here is whether the map B: AF — BD can be made into a functor,
and if so, whether it is a classification functor. This paper answers these questions.

In Section 2 we define an appropriate notion of morphism in BD and we show
that BD with these morphisms is a category (Theorem 2.7). In Section 3 we show that
B: AF — BD is a (strong) classification functor (Theorem 3.11); thus for A;, A, € AF
we have A; 2 A, if, and only if, B(A;) = B(A,). This is a functorial formulation of
Bratteli’s theorem and would appear to be a definitive elaboration of the classification
of AF algebras from the Bratteli diagram point of view. In particular, just the fact that
the map is a functor yields Glimm’s classification theorem for UHF algebras (see the
proof of Theorem 3.13).

In Section 4, it is shown that the functor B: AF — BD is a full functor (Theo-
rem 4.1), which means that homomorphisms in the codomain category can be lifted
back to homomorphisms in the domain category (this was done for isomorphisms in
Theorem 3.11).

In Section 5, we investigate the relation between the category BD of Bratteli di-

agrams and two abstract classifying categories, AF°"* and AF°", for AF algebras

(cf- [10]). We show that there is a strong classification functor from AF°"* to BD which
is faithful and full (Theorem 5.9) and is an equivalence of categories (Theorem 5.11).

In Section 6, we investigate the relation between AF°"" and the category DG of

dimension groups. We show that there is a strong classification functor from AF°"'
to DG which is faithful and full (Theorem 6.3) and is an equivalence of categories
(Theorem 6.4). It is shown that the three strong classification functors B: AF — BD,

F:AF — AF°", and Ko: AF — DG that classify AF algebras are essentially the same
(Theorem 6.7).

2 The Category of Bratteli Diagrams BD

The notion of a Bratteli diagram was introduced by Bratteli to study AF algebras [2].
There are various formal definitions (just with different formulations) for a Bratteli
diagram; for example, see [6] and [13]. What is behind these definitions is the very
special structure of a *-homomorphism between finite-dimensional C*-algebras. The
following theorem of Bratteli describes this structure [2]. Let us just quote this theo-
rem, with some slight changes, from [4].
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Theorem 2.1 Let Ay = M, ®---&M,, and A, = M, & --- ® M,,, be finite-
dimensional C*-algebras (where the n’s and m’s are non-zero), and let ¢: A1 - A,
be a x-homomorphism. Then there is a unique | x k matrix E = (a;;) of positive (i.e.,
non-negative) integers with the property that there is a unitary v = (vy,...,v;) in A,
such that if we set ¢; = m; o ¢: Ay > M, then

ul(““) 0

vigi(uy, ..., ux)v; = b (a) for (uy,...,ug) € Ay,
k
0 0(s)

where s; is defined by the equation Z;‘zl a;jnj+s; = my, foreach 1< i < 1. Thus, if V)
and V, denote the column matrices such that V; = (ny---ny) and V,f = (my---my),
then EV, < V,. Moreover, we have

(i) ¢ is injective if and only if for each j there is an i such that a;; # 0;
(ii) ¢ is unital if and only if EV; = V3, i.e, s; = 0 foreach1< i < I.

Proof See [2, Proposition 1.7] and [4, Corollary I11.2.2]. [ |

Let us call the matrix E in the previous theorem the multiplicity matrix of ¢, and
denote it by Ry (this is the notation used in [1]). In general, let V; be a k; x 1 matrix
of non-zero positive integers for i = 1,2; by a multiplicity matrix E = (a;;) from
to V, we shall mean a k, x k; matrix of positive integers such that EV; < V,. We shall
use the notation E: V; - V, to mean that E is a multiplicity matrix from V; to V,. E
will be called an embedding matrix if for each j there is an i such that a;; # 0 (in other
words, if the algebra map induced by E, as defined above, is injective).

Let us recall the formulation of the definition of a Bratteli diagram in [10, Sections 2
and 3], which uses the matrix language and is more flexible for our purposes.

Definition 2.2 By a Bratteli diagram let us mean an ordered pair B = (V,E), V =
(V)2 and E = (E,, )24, such that the following hold:

n=1>
(i) each V, isak, x 1 matrix of non-zero positive integers for some k, > 1;
(ii) each E, is an embedding matrix from V,, to V..

Let us denote such a B by the diagram

E E E
Vi — V2 vy 2

Let us write E, = Ejyoy -+ Ey1En for n < m and E,,,, = I, where I is the identity
matrix of order k,. Note that E,,,,, is a multiplicity matrix from V;, to V,,,.

Remark  InDefinition 2.2, we have in fact defined the notion of a “non-zero" Bratteli
diagram. This is enough for working with non-zero (in particular, unital) AF algebras.
For the zero AF algebra, we get the zero Bratteli diagram, which is nothing but a single
zero square matrix of size one, denoted by 0.
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Let BD denote the set of all Bratteli diagrams. We wish to define morphisms be-
tween objects in BD to make it a category. In order to formulate the correct no-
tion of morphism for our purposes, we first need to define the notion of premor-
phism. Recall that a sequence (f,,)52; of positive integers is said to be cofinal in N if
sup{f, | n € N} = +oo.

Definition 2.3 Let B = (V,E) and C = (W,S) be Bratteli diagrams. A premor-
phism f: B — C is an ordered pair ( (F,)2,, (fa)52,) where (F,)52, is a sequence of
matrices and (f,,)52; a cofinal sequence of positive integers with f; < f, < --- such
that the following hold:

(i)  each F, is a multiplicity matrix from V,, to Wy, ;

(ii) the diagram of f: B — C commutes:

E

v, E, v, E; v, 3
| o A
3

Wi S, W s Ws 5

Commutativity of the diagram of course amounts to saying that for any positive inte-
ger n we have F, ., E, = Sy, 7. Fy; that is, the square

Ey,
Vn > Vn+1

Fni iFnJrl

Wy, —— W,
Sfufur

n+l1

commutes. (This implies the general property of commutativity, namely, that any two
paths of maps between the same pair of points in the diagram agree, i.e., have the
same product.)

Let B, C, and D be objects in BD and let f: B - C and g: C — D be premorphisms,
f= ((Fn);';l, (fn)ff’:l) and g = ( (Gu)2ys (g,,)i‘;l). The composition of f and g is
defined as gf = ((H,)52y, (hn)32,), where H, = Gy, F, and hy, = gy,

Remark  In Definition 2.3, it is implicitly assumed that the Bratteli diagrams in
question are non-zero. Let us define the zero premorphism as follows. Let B be a
Bratteli diagram. The zero premorphism from B to 0 (the zero Bratteli diagram) is the
ordered pair (B, 0). Similarly, the zero premorphism from 0 to B is (0, B). (Note that
a morphism in a category depends on both the domain and the codomain objects.)
The composition of the zero premorphism with any other premorphism is defined to
be zero.

Proposition 2.4  The set BD, with premorphisms as defined above as maps, is a (small)
category.

Proof First let us check that if f:B — C and g:C — D are premorphisms, with
f = (B (i) and g = ((Ga)i2y (g4)i5a)- then g f given as above, by
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H, = Gf,F, and h, = gy, is a premorphism. Write B = (V,E), C = (W, S), and
D=(Z,T).
Let n be a positive integer and consider the following diagram:

E,
Vn > Vn+1

Fnl lprﬁl

an — W
Sfufus

n+l

\LanH

Since f and g are premorphisms, we have
TnpsnaHn = Tioysn, G

= an+1anfn+1Fn
= an+1Fn+1En
=HynE,.

This shows that g f is indeed a premorphism.

Now for any Bratteli diagram B = (V, E) define the premorphism idz: B — B by
idg = ((In)521> (in )52, ) » where I, is the identity matrix of order equal to the number
of columns of V,;, and i,, = n. For any premorphisms f: B - C and h: C - B we have
idgh=hand fidg = f.

One checks easily that associativity holds using the associativity of matrix multi-
plication. This completes the proof that BD, with premorphisms, is a category. W

It will be clear later that the category BD with premorphisms is not suitable for the
classification of AF algebras and that we need to consider morphisms—consisting of
equivalence classes of premorphisms—for the purposes of classification.

Definition 2.5 Let B, C be Bratteli diagrams, and f, g:B — C be premorphisms,
i.e., maps in the category BD of Proposition 2.4, with B = (V,E), C = (W, S), f =
( (Fn)i2ss (fn)zc;l) ,and g = ( (Gu)i2ys (gn)zc;l) . Let us say that f is equivalent to g,
and write f ~ g, if there are sequences (1 )2, and (my);2, of positive integers such
that ny < my < ngy and fo,, < gm, < fu,,, for each k > 1, and the diagram

\% Vin, Va, Vin,
Wfrn ng1 Wf"z ngz

commutes, i.e., each minimal square commutes: for each k > 1,

GmiEngmy = ankgmk Fu, and  Fu Emny,, = ngkfnkH G-

At the end of this section we will give two other definitions for equivalence of pre-
morphisms (Definition 2.9 and Definition 2.10). These may be more natural in some
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sense (since they do not use subsequences), but we shall show that all three equiva-
lence relations are the same (Proposition 2.11).

Remark  In Definition 2.5, we have defined the equivalence of a pair of non-zero
premorphisms. This notion extends in an obvious way to encompass the zero pre-
morphism (which is defined in the remark following Definition 2.3), since for each
Bratteli diagram B, Hom(B, 0) and Hom(0, B) have only one element.

Lemma 2.6 Let B,C € BD. Then ~ is an equivalence relation on the set of premor-
phisms from B to C.

Proof Itisobvious that ~ is symmetric. Reflexivity follows from Definition 2.3, using
the cofinality condition. Let f, g, h: B — C be premorphisms such that f ~ gand g ~
h, and let us show that f ~ h. Write B= (V, E), C = (W, S), f = ((Fa)2p (fu)321)s
8= ( (Gn)iZrs (8n Zo=1) ;and h = ( (Hn) s (hn)zil)-

Choose sequences (71 )4, and (my)ze, establishing f ~ g, according to Defini-
tion 2.5, and sequences (px )y, and (g )4, for g ~ h. Construct sequences (1 )2,
and (sx )2, inductively as follows to show that f ~ h. Set n, = ry. There is ko > 1such
that py, > my; set gx, = s1. Each square in the diagram

Vfl le VPko \/51
Fr, l Gmy l GPkO l Hg, l
Wfrl ngl ngo thl

commutes, by the definitions of f ~ gand g ~ h, and since g is a premorphism. Thus,
H51E7’131 = Sfrl hs, F"l'
There is k; > 1 such that my, > pg,+1; set ng, 41 = r2. In the diagram

V51 VPk0+1 th Vrz
H51 l GPk‘,+1 i Gmk1 l Frz l
Why, —— Wg,, ., Weu,, Wy,

each square commutes, and so we have F, E,r, = Sy, 1, H,.

Continuing this procedure we obtain sequences ()32, and (sx )2, with r; < s; <
ry < sy <---and f,, < hy < f;, < h;, < -+ such that commutativity holds as required
in Definition 2.5 for f ~ h. This shows that ~ is transitive, and so it is an equivalence
relation. ]

Let us call an equivalence class of premorphisms between Bratteli diagrams B
and C, with respect to the relation ~, a morphism from B to C. Let us denote the
equivalence class of a premorphism f:B — C by [f]: B — C, or if there is no confu-
sion, just by f.

The equivalence class of the zero premorphism (which makes sense only when
B =0or C =0) is called the zero morphism (see the remark preceding Lemma 2.6).
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The composition of morphisms [f]:B — C and [g]: C — D should defined as
[¢f]:B = D where gf is the composition of premorphisms. This composition is
well defined, as is shown in the proof of the following theorem.

Theorem 2.7  The set BD, with morphisms as defined above, is a category.

Proof First, we must show that the composition of two morphisms is well defined,
i.e., independent of the choice of representatives. Let f,[: B - Cand g, h: C - D be
premorphisms such that f ~ [ and g ~ h, and let us show that g f ~ hl.

Write B = (V,E), C = (W,S),and D = (Z,T),and f = ((F.){*, (fa)i2), & =
((Gu)izis (g0)7°) and g f = ((Un)ils (un)i). Thenuy = gf, and Uy = Gy, Fy, ac-
cording to Definition 2.3. Also write h = ( (Hn)7, (hn);";l) = ( (L), (l,,)f") ,
and hl = ((X,)321, (%4)5°). Then x, = hy, and X, = Hj, L, according to Defini-
tion 2.3.

Let (nx)z2, and (my )2, be sequences exhibiting the equivalence f ~ [, and let
(Pr)re, and (qk)re, be sequences exhibiting the equivalence g ~ h, according to
Definition 2.5. Let us construct sequences (i )42, and (s )2, exhibiting the equiva-
lence g f ~ hl. Set ny = ry. There is ko > 1 such that py, > f,,. Thereis k; > 1 such that
Ly, 2 qrys set s1 = my,. Consider the diagram

an Wp ko Wq ko M/lsl
Gle l kao l qun i H181 J/
ngrl ZngO thko Zh’s]

Each square in this diagram commutes, because g and / are premorphisms and g ~ h.
Thus Hy, Sy, 1, = Tu, x, Gy, (notethatu, = gr and x;, = hy, ). Hence the diagram

Vrl - ‘/51

Fﬁl ile

Wf"l - VVI&

Gr, l iHlsl

Ly, —> Zx,,

commutes, and then we have r; < s, u,, < x5, and X E, 5, = Ty, x, Un,-
There is k; > 1such that g, > I;,. There is k3 > 1 with f,,k3 > Pky+1; S€t Ny, = 1.
Each square in the following diagram commutes:

Msl quz ka2+1 Wfrz
Hlsl l H‘ik2 l Gl’k2+l i Gfr2 i
Zn,, thkz ngkzﬂ = Zgy,, -
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Thus, we have Gy, Sy, 1, = Tk, u,, Hi, - Therefore the diagram

‘/;1 - VT2

lel lﬂz

th Wlfl

Hlsl l icfrz

Ly, —> Zu,

commutes, and then we have s; < 2, x5, < uy,, and Uy, Es,,, = T, uyy X -
Continuing this procedure, we obtain sequences (7)o, and (s )32, such that r; <
§1 <1y <sp<---andu, < x5 < Uy, <X <---and the commutativity required in
Definition 2.5 for g f ~ hl is valid. Hence, [g f] = [hl].
Finally, since by Proposition 2.4 BD with premorphisms is a category, it follows
that composition of morphisms as defined, which we have shown is well defined,
makes BD a category. u

Let us refer to BD, with morphisms as defined above, as the category of Bratteli
diagrams.

It is tempting to propose an alternative definition for equivalence of two premor-
phisms (¢f. Definition 2.5) as follows: f ~ g if the diagram containing both f and g
commutes, in the sense that each triangle and each square in the diagram is com-
mutative (alternatively, any two paths with the same endpoints agree). However, this
relation is not transitive, even if we strengthen the definition of a premorphism to con-
sist of only embedding matrices instead of multiplicity matrices. The point is that an
embedding matrix is not necessarily injective, as is seen with the following example.

Example 2.8 The following embedding matrices Ej, E;, and E3 are such that E3E; =
EsEy, but Ey # E. Let Vi = (1), Vo = (3), V5 = (6), E1 = (3), E2 = (3), and
E; = (12). Thus, E;, E: Vi - V; and E;: V, — V3 are embedding matrices. We have
E3E; = E3E; = (4), but E; # E;. The only thing we can say is that there is a unitary
u € C*(V3) such that h(E;)h(E;) = (Adu)h(Es)h(E;), by Lemmas 3.4 and 3.5, but
h(E;) # h(E,), since E; # E,. (See the remark following Lemma 3.4 for notation.)

Here are two correct alternative formulations of the definition for equivalence of
premorphisms. We shall use the first one in a number of places later.

Definition 2.9 Let f,g:B — C be premorphisms in BD such that B = (V,E),

C= (W), f = (B)itn (f)i)» and g = ((Gu)iur (4)32a) - Let us say that f
is equivalent to g, in the second sense, if for each n > 1there is an m > f,, g, such that
St.mFn = Sg,mGn.

Definition 2.10 Let f,g:B — C be premorphisms in BD such that B = (V,E),

C=(W,8), f = ((Fu)iZp (fa)il1) and g = ((Gn)iZp> (gn)iy)- Let us say that f
is equivalent to g, in the third sense, if for each n > 1 and for each k > n, there is an
m > fu, gk such that S¢ ,, F, = Sg, i GrE k.
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Let us show that these two definitions are equivalent to Definition 2.5.

Proposition 2.11  Definitions 2.5, 2.9, and 2.10 are equivalent.

Proof The fact that these definitions are equivalent is based on the following obser-
vation. If we assume that a pair of premorphisms are equivalent in the sense of any
one of these definitions, then the union of the corresponding diagrams is commuta-
tive at infinity, in the sense that any two paths with the same endpoints agree, after
going sufficiently further out, i.e., composing with a long enough subsequent path. In
fact, this is, in each sense, just a reformulation of the definition. (But let us proceed,
more prosaically perhaps, in cyclic order.)

Definition 2.5 implies Definition 2.9. Suppose that f ~ g in the sense of Defini-
tion 2.5. Let n > 1 and assume that f, < g,. There is k > 1 such that ny > n. Thus,
fu < fu, and g, < gpm,. Using Definition 2.5 and the fact that f, g are premorphisms
we have

Sf"gmk Fn = ankgmk anfnk F”
= ankgmk F”kEnnk
= GmkEnkmkEnnk

= Sg g, Gn-

Therefore, if f, < g, we have Sy, Fy =S¢, Gu. Similarly, if g, < fu, thereis [ > 1
such that g, < f, < fm, and Sy, s, Fn = Sg, 1, Gn. Set max(gm, fm,) = m. Then we
have S, Fy = Sg,mGhn.

Definition 2.9 implies Definition 2.10. Suppose that k, n are positive integers with
k > n. Applying Definition 2.9, we get m > fy, g such that S¢, ,,, Fx = Sg, m Gg. Using
Definition 2.9 and the fact that f is a premorphism we have

anan = kamenkon
= SpmFrEnk
= SgumGiEnk.

Therefore, S¢, 1y Fy = Sg,m Gk Enk-

Definition 2.10 implies Definition 2.5. Set n; = 1. Applying Definition 2.10, one
obtains m > f,,, gn, such that Sy, ,,Fy = Sg, mGy. Since {g | k > 1} is cofinal in N,
there is m; > n; such that g, > m. Using Definition 2.9 and the fact that g is a
premorphism, we have

an,gm1 Fy, = Sgnlgm1 Gm = GmlEnlml-

Continuing this procedure, we obtain sequences (1 )32, and ()32, of positive in-
tegers that satisfy Definition 2.5. ]
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3 The Category of AF Algebras and the Functor B

To define the category of AF algebras AF, in such a way that we will be able to define a
functor B from AF to BD, first we need to identify exactly what the Bratteli diagram
of an AF algebra depends on.

Let A = Uns1 Ay be an AF algebra, where (A,);2, is an increasing sequence of
finite-dimensional C*-subalgebras of A. Since there are infinitely many sequences
with this property, we need to fix one of them. Each A, is *-isomorphic to a finite-
dimensional C*-algebra A’ = M,,, ® --- ® M,,, via the map ¢,,: A, - A’,. We then
obtain the *-homomorphism ¢: A}, — A’,.; with ¢/, = ¢,,1¢,", and the following
diagram commutes:

An(—> An+1

¢" l \L ¢n+1

Ay~ A
By Theorem 2.1, there is a multiplicity matrix E, corresponding to ¢/; that is,
E, = Ry.But E, depends on ¢, and ¢,1, as a different choice of ¢, permuting iden-
tical direct summands of A’, of course results in a different Ry .

Definition 3.1 Let AF denote the category whose objects are all triples

(A (An)52s (9n)is)

where A is an AF algebra, (A,)$, is an increasing sequence of finite-dimensional
C*-subalgebras of A such that U, A, is dense in A, and each ¢, is a *-isomorphism
from A, onto a C*-algebra A/n =My, & - ®M,,, for some my,...,m; depending
onA,.

Let Ay = (A, (An)32 (64)32) and Az = (B, (B,)521, (¥a);2,) bein AF. Bya
morphism ¢ from A, to A, let us just mean a *-homomorphism from A to B. Then
AF with morphisms thus defined is a category. Let us call AF with morphisms as
defined the category of AF algebras.

Remark  In Definition 3.1, we have fixed a sequence of *-isomorphisms (¢, ),
for the AF algebra (A, (A4,)521, (¢4)521) to be able to associate a particular Bratteli
diagram to the algebra. In [2], Bratteli also fixed a sequence of systems of matrix units
for the AF algebra to be able to associate the diagram. These are equivalent procedures.

Next we quote a result of Bratteli with slight changes [2], which will be used to
justify Definition 3.3, below, and in a number of places later. Before that, let us fix the
following notation which will be used frequently. We need this to avoid restricting
the results to just the unital case.

Notation  Throughout this note, for a C*-algebra A, we shall use two (minimal)
unitizations A~ and A* as defined in [18]. In fact, when A is not unital, both of them
are equal and contain A as a maximal ideal of codimension one. When A is unital,
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A~ = Abut again A* contains A as a maximal ideal of codimension one. The units
of A~ and A" will both be denoted by 1.

Lemma 3.2 Let A = U,»1 A be an AF algebra where (A, ), is an increasing se-
quence of finite-dimensional C*-subalgebras of A. Let B be a finite-dimensional C*-
subalgebra of A. Then for each ¢ > 0 there is a unitary u € A~ with |u - 1| < ¢ and a
positive integer n such that uBu™ C A,,.

Proof In the unital case, the lemma is essentially [2, Lemma 2.3]. To deal with the
non-unital case, just add a unit to both algebras and use the same lemma. ]

Definition 3.3 Let A = (A, (A,)7, ((/5,,)2":1) be in the category AF, and let us
define B(A) in BD as follows. Consider the given isomorphisms ¢,: A, - A/, and
define ¢/: A, - A, by ¢!, = ¢n1¢,", for each n > 1; then the following diagram
commutes, for each n:

Anc—> An+1

¢" l l ¢n+1

/ /
An ’ An+1'
n

Write A’ = M, @ - ® M,,,, , and set

By Theorem 2.1, there is a unique embedding matrix E,, corresponding to ¢/; that is,
E, = R(/);- Set B(A) = ( (Vn);il’ (En)rozo=1) .

Let ¢: A; — A, be a morphism in AF where A; = (A, (A,)52,, (¢4)32;) and
A, = ( B, (B,)1 (W );":1) ,in other words, a x-homomorphism from A to B. Define
B(¢): B(Ay) - B(A,) as follows. There is an f; > 1 and a unitary u; € B~ such that
u1¢(Ay)u; € By and |uy -1 < 1, by Lemma 3.2. Let g1:A; — By, be such that
g1 = (Aduy) o ¢ 1a,. Now define 1,: A} - B by 1 = V841" Denote by F; the
multiplicity matrix corresponding to #;, according to Theorem 2.1; that is, F; = R,,,.

Similarly, choose unitaries u,, us,... in B~ and positive integers f,, f3,... with
fi € fo < -+ such that u,¢(A,)uj; € By,, |un — 1] < 3, for each n > 1, and the
sequence ( f, )52, is cofinal in N. (The condition |u, —1| < 1 is important and will be
used in the proof of Proposition 3.8.) Let g,: A, — By, be such that g, = (Adu,) o
¢ 14, and define n,: A}, — B by 1, = V7, 8n¢,'s set Ry, = F,. We will show that
((Ea)2ys (fn)Z‘;l) is a premorphism from B(A,) to B(A,) (see Proposition 3.8).
Denote by B(¢) the equivalence class of the premorphism ( (F,)52, (f4)52;) (asin
Definition 2.5). The following (a priori non-commutative) diagram illustrates the idea
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of this definition:

o ) ;
A .
¢! ¢21l ¢;ll
AC A,C AsC
(Adu)é (Aduz)Ndus)N
B¢ BC Bj,C
121 V/zl Wsl
B{ ’ B; I’ Bg I’
¥ 123 Y3

In an obvious way, the diagram associated to the zero algebra in AF is the zero Brat-
teli diagram, and the morphism associated to the zero homomorphism is the zero
morphism.

We shall need a number of lemmas to show that B: AF — BD is well defined, i.e.,
that B(¢) is independent of the choice of sequences (f,,)52; and (u,)52,. The first
two lemmas are well known in the special case of injective x-homomorphisms. Before
that, let us introduce an important notion (or perhaps just notation!) that will be used
frequently.

Remark  Let ¢: A — B be a »-homomorphism between finite-dimensional C*-
algebras. By the multiplicity matrix of ¢, Rg, we mean that there have been implicitly
fixed two #-isomorphisms ¢;: A —> A’ and ¢,: B — B’, where A’ and B’ are finite-
dimensional C*-algebras M, ®---®M,,, and M, ®---® M,,,, respectively, and R¢
is the multiplicity matrix of ¢,¢¢;": A’ - B’, according to Theorem 2.1.

Lemma 3.4 Let ¢:A — Band y:B — C be »-homomorphisms between finite-
dimensional C*-algebras. Then Ry¢ = RyRg.

Proof One can give a proof for the case of injective *-homomorphisms using the
matrix units [14, Lemma 15.3.2], and it is easy to conclude it for the general case using
the matrix language and Theorem 2.1. ]

Remark  Let V; be a column matrix of non-zero positive integers for i = 1,2 and
let E: V; — V, be a multiplicity matrix. Write V,T = (1,---n) and V,I' = (m;---m;).
Let C*(V;) denote the C*-algebra M,, @ --- ® M,, and similarly for C* (V). Write
E = (a;j). Then there is a canonical *-homomorphism h(E):C*(V;) - C*(V3)
which is defined by

ul(a“) 0
ni(h(E)(ul,...,uk)) = ; (an) for (uy,...,ux) € C*(V1),
u

0 C oW
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where s; is such that 2?:1 a;jnj+s; = m;, foreach1 < i < I. Recall that for a unital C*-
algebra A and a unitary element u in A, the *-isomorphism Adu: A — A is defined
by (Adu)(a) = uau* (a € A). In particular, the conclusion of Theorem 2.1 could be
summarized as ¢ = (Adu)h(E), where u = v*.

We shall need the following lemma in a number of places later. It is proved in
[17, Theorem 1.11.9], and also is obvious in view of Theorem 2.1 and the remark above.

Lemma 3.5 Let ¢,y: A — B be x-homomorphisms between finite-dimensional C*-
algebras. Then Ry = Ry, if and only if there is a unitary u in B such that ¢ = (Ad u)y.

The following corollary (used, if not explicitly stated, in [2]) is given in the case of
injective *-homomorphisms in [14, Lemma 15.3.2].

Corollary 3.6 Let V; be a column matrix of non-zero positive integers for 1 < i < 4.
Let Ex: Vi —» V3, Ex: V5 — Vi, Es: Vi — V3, and Eq: Vy — Vi be multiplicity matrices
such that the diagram

Vi —s v,

Vi——> Vs
E;

commutes; that is, E4E; = EE3. Let ¢1: C* (V1) — C*(Va), ¢2:C*(V3) —» C*(Va),
$3:C* (V) = C*(V3), and ¢p4:C*(V,) - C*(Vy) be *-homomorphisms such that
Ry, = E; for1 < i < 4. Then there is a unitary u € C*(Vy) such that the following
diagram commutes:

C*(V) —> ¢*(va)

¢3\L J{(Ad“)%

C* (V) —5= C*(Va;
ie., (Adu)¢4¢1 = ¢2¢3.

Proof By Lemma 3.4 we have Ry, 4, = E4E; = E;E3 = Ry,4,. Thus by Lemma 3.5,
there is a unitary u € C*(Vy) such that (Adu)¢a¢; = $2¢3. [ |

Next we give a slight modification of [2, Lemma 2.4]. Since our *-homomorphisms
are not assumed to be unital, we prove a non-unital version which is suitable for our
purposes. This lemma gives a criterion to check whether two *-homomorphisms be-
tween finite-dimensional C*-algebras have the same multiplicity matrices. We will
use it to show that the functor B: AF — BD is well defined (in the proof of Proposi-
tion 3.8) and in a number of places later.

Lemma 3.7 Let ¢,y: A — B be x-homomorphisms between finite-dimensional C*-
algebras such that |¢ — y| < 1. Then there is a unitary u in B such that ¢ = (Adu)y
and hence Ry = Ry,
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Proof Let{efj :1<1<k,1<1,j< n;} beasetof matrix units for A. Setpi.j = ¢(efj)
andqi.j = w(efj),foreachl <l<kandl<i,j<n. Fix1<I<k. Since | pl,—qh) <1,
by [11, Lemma 1.8] there is a partial isometry w; € B such that p!, = w;w; and ¢!, =
wiwy. Then wigh,w; = py. Set

n

k
35" phwial, = w.

1=1i=1

—_

Thus we have wqgjw* = pf.j, for the above values of 7, j, I. Also we have ww* = ¢(1)

and w*w = y(1), and so w is a partial isometry from (1) to ¢(1). If ¢ and y are

unital, the proof is complete at this point. Since B is finite-dimensional, there is a

partial isometry v € B such that w + v is unitary and wv* = w*v = 0; set w +v = u. We
1 1 * I _ faas I o* _

have vq;; = vy(1)q;; = vw*wq;; = 0, and similarly q;,v* = 0, for the above values of

i, j, 1. Therefore, quju* = wqgjw* = pi-j, and so ¢ = (Adu)y. [ |
Proposition 3.8 B:AF — BD is a functor.

Proof First, let us show that B is well defined. Following the notation of Def-
inition 3.3, we need to show first that ((F,,)ff’:l, ( f,,);"zl) is a premorphism from
B(A1) = (V,E) to B(A,) = (W,S). Fix n > 1. Consider the following (a priori
non-commutative) diagram:

Ay ——=Apn

gnl lgnﬂ

Bfn(H Bfn+1'

Since |u,—1| < 1, wehave || gu—gne1]a, <[ (Adun)¢—(Ad tyir) | < 2[un—tpa| <
1, for each n > 1. Applying Lemma 3.7 for g,: A, — By,,, and gn41 la,: Ay = By,
we get F,iEy = Sy, 7., Fu. This shows that ( (F,)52, (f4)32;) is a premorphism.

To check that the morphism B(¢) is well defined we also need to show that it is
independent of the choice of u,’s and f,’s. Therefore, let (v, )52, be another sequence
of unitaries in B~ and (h, )52, an increasing cofinal sequence of positive integers such
that v, ¢(A,)v); € By, and ||v, - 1|| < %, for each n > 1. Let k,: A, — By, be such
that k, = (Adv,) o ¢ 4, and set H, = Ry, , the multiplicity matrix of k,. We have
to show that the two premorphisms ( (F, )52, (f4)521) and (((Hy)32y (ha)i2y) are
equivalent.

Fix n > 1. We may assume, without loss of generality, that f,, < h,. Then we have
the following (a priori non-commutative) diagram:

Ap

+| N

Bfncﬁ Bh

ne
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We have ||g, — ku|| < [(Adun)¢ — (Adv,)¢| < 2|uy — va| <1. Applying Lemma 3.7
for g,: A, = By, and k,: A, = By, we conclude that the following diagram is com-

mutative:
N
Fn

an anhn Whn °
Therefore, the premorphisms ( (F, )52y, (f4)52;) and ( (Hn)52s (h,,):":l) are equiv-
alent, by Proposition 2.11. This completes the proof that the map B is well defined.
Suppose that ¢: A; — A, and y: A, — Az are morphisms in AF. Let us
show that B(y¢) = B(y)B(¢). Write A; = (A, (An)52 (6n)32), Az =

(B (Bu)sze (wn)iza)» As = (Co(Cu)iZy (Ma)in)» B(A) = (V,E), B(Az) =
(W,S), and B(A3) = (Z,T). Thus, ¢ and y are *-homomorphisms from A to B
and from B to C, respectively. Choose a sequence of unitaries (u,)5, in B~ with
|lun =1 < §, n € N, and a sequence of positive integers (f,)s2; which construct

a premorphism ( (Fu)2ys (fa );,“;1) for B(¢), according to Definition 3.3. Similarly,
choose (v,)52; with v, =1 < 5, n € N, and (g,)52; which give a premorphism
((G)321 (gn)32y) for B(y) and choose (w,)52, with |w, — 1| < 1, n € N, and

3
(hn )52, which give a premorphism ((H,)32,, (ha )52, ) for B(y¢), according to Def-
inition 3.3.

Fix a positive integer n. Then (Adu,)¢(A,) € By,, (Advy, )y(By,) € Cg, , and
(Adw,)y¢(A,) € Cp,. We may assume, without loss of generality, that g7 < h,,.
Then we have the following (a priori non-commutative) diagram:

Ay

(Adu,)¢

Bfn (Adwa)yo

(Aden)Wl
Cgfn(—> Cy,.

Let us estimate the distance between the *-homomorphisms
(Advys)yo (Aduy)p:A, - Cp, and (Adw,)y¢:A, - Cy,.
For any x € A we have

|(Advy, )y o (Adun)¢(x) - (Adwn)yd(x)|
< [[(Advy, )y o (Adun)(x) - (Advy, )y (x)]
+ [ (Advy,)y¢(x) - (Adwa)yd(x) |
<[[(Adun)$(x) = $(x) [ +2]vy, —wallx]
< 2fun =1 |x] +2]vg, = walx]-
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Thus,

1 1 1
I(Advg, )y o (Aduy)6 ~ (Adw, )yl < 2y 1 +2lvs, ~wyll < 5+ 5+ 5 =1
By Lemma 3.7, the homomorphisms (Ad vy, )y o (Adu, )¢ and (Adw, )y ¢ have the
same multiplicity matrices. Thus, the diagram

an Hy

Gy, J{

ngn Zh n

is commutative. By Definition 2.5, the premorphism ( (H, )52, (hs)52;) is equiv-
alent to the composition of ( (Gu)2ys (gn);il) and ((F,)52, (f4)32). Note that
this composition of premorphisms is an admissible premorphism for y¢ in the sense
required in Definition 3.3, since |wy,u, — 1| < ; + § < 3. By Definition 3.3 (which is
vindicated by the fact, proved above, that B(y¢) defined in this way is well defined),
this composition represents B(y¢), and so B(w¢) = B(y)B(¢).

The remaining condition, B(id4 ) = idg4), is clear. [ |

The following lemma is used to prove Theorem 3.11. The hypothesis of this lemma
is just Bratteli’s notion of equivalence of Bratteli diagrams in his paper [2], which is
easily seen to be the same as isomorphism in our category. We include a proof for the
convenience of the reader.

Lemma 3.9 Let Ay = (A, (An)320 (60)521)> Az = (B, (Bu)i2ss (v)32y) be in
AF with B(A1) = (Vi) (En)i2y), and B(Az) = ((W)521, (S4)321). Then
Ay = A, in AF if and only if there are sequences (ri )32, and (t )32, of positive integers
withr < t; < rp < t; < ---, and there are multiplicity matrices Ry: V,, — Wy, and

Ti: Wy, = Vy,,» for each k > 1, such that the following diagram commutes:

E E
Vi, Vi, Vi,

Wi, Wi, St
2t3

rirs rar3

sf1 [>]

Proof First suppose that A; = A,. There is a *-isomorphism ¢: A - B such that
d(Up2  Ay) = Uz By, by [2, Lemma 2.6]. Set r; = 1. Since ¢(U;j2; Ar) = Une; Bas
there is t; > 1 with ¢(A,,) € By,. Similarly there is r, > t; such that ¢ ™' (B,,) € A,,.
Continuing this procedure, we obtain sequences (i )42, and ()32, with rp < ; <
ry < tp < ---such that ¢(A,,) € By, and ¢"'(By,) S A,,,,, for each k > 1. Note
that C*(V,) = A}, and C*(W,) = B,, forn > 1. Fix k > 1. Define g:A] -
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B and 8;:B; — Al with &(x) = vy (¢(4;)(x))), x € A, , and &(x) =

Tk+1

$r (67 (v} (x))), x € B}, . Set

! ! ! ! A !
ok =Gp o 1Prem2 Pr, A0d Br =V V2V,

Then Okex = ax and x4k = Pi. Set Ri = R,, and Ty = R;,. By Lemma 3.4 we have
TkRk = Er,r,,, and Ry Ty = Sy, +,., i-., the above diagram commutes.

Now let us prove the converse. Define ay and f3; as above. Let ¢; = h(R;) and 87 =
h(Ty) (see the remark following Lemma 3.4 for the notation h(+)). By Corollary 3.6,
there is a unitary u € A} such that (Adu)dje; = a5 set & = (Adu)dy, thus 61 =
ay. Set &5 = h(R;). Again by Corollary 3.6, there is a unitary v € B} such that
(Adv)esdy = Bis set & = (Adv)es, thus €,8; = ;. Continuing this procedure, we
obtain injective *-homomorphisms ex: A}, — Bj_and 0:B;, — A, ,foreachk >1,
such that the following diagram commutes:

(3% o

Al Al Al
N e N A
B! B!

ty B ty Ba

Let A" = lim(A/, ,ax) and B’ = lim(Bj , fx). Thus there is an injective *-homo-
— k — k
morphism &: A’ - B. Let a*: A} — A’ and *: B} — B’ be the *-homomorphisms
that come from the construction of the direct limit; thus a**'a; = a*, 518, = ¥,
and ea® = ke, for each k > 1. We have B* = 18, = B**le;, 0 = eak*18y, hence
ﬁk(B’tk) c ¢(A’"), for each k > 1; thus ¢ is also onto and hence is a *-isomorphism.
Moreover,
Azlim(A}, ax) 2 A= B' 2 lim(By, ax) = B.

Thus there is a *-isomorphism ¢: A - B such that ¢(U52; An) € U, By. Therefore,
Al = Az in AF. |

The following theorem is due to Bratteli ([2], [4, Proposition II1.2.7]).

Theorem 3.10 (Bratteli) If A = U,» An and B = U, B, have the same Bratteli
diagrams, then they are isomorphic.

In fact, as indicated in Lemma 3.9 above, Bratteli proved more. In the setting of
Theorem 3.10, he showed that if the Bratteli diagram of A is equivalent, in his sense
(which is exactly the same as being isomorphic, in our sense, i.e., in the category of
Bratteli diagrams of Theorem 2.7) to the Bratteli diagram of B, then A is isomorphic
to B.

Recall that a functor F: € — D was called in [10] a classification functor if F(a)
F(b) implies a = b, for each a,b € C, and a strong classification functor if each iso-
morphism from F(a) onto F(b) is the image of an isomorphism from a to b. With
these concepts, one has a functorial formulation of Bratteli’s theorem.

Theorem 3.11  The functor B: AF — BD is a strong classification functor.
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Proof Let A1 = (A, (Ax)21 (¢4)52) and Ay = (B, (B,)52y, (ya)i2,) in AF
be such that B(A;) = B(A,). Write B(A;) = ((Vi)52p (En)32,) and B(Ay) =
((W)521,(Sn)32,) . There are premorphisms f: B(A;) - B(A;) and g: B(A,) -
B(Ay) such that [g f] = [idpa,)] and [fg] = [ids (a,)]-

Suppose that f = ((Fu)i2p (fa)ier)> & = ((Gu)i2i (gn)5), b = gf,and I =
fgwhere h = ((Hy)52p, (b)) and I = ((Ln)32y (1n)52,) . Choose sequences
(ni)re, and (my )2, for gf ~ idz(4,) and choose (Pk)re, and (qi)pe, for fg ~
idg(4,), according to Definition 2.5. Thus we have

(31) Enkmj = Ehnk ijnka Hn,-Emkn,- = Emkh,,ja
(32) Spia; = Slpk‘b‘LPk’ Lp;Sqip; = qulp,-’

for any positive integers k and j with k < j. We construct sequences (ry )4, and
(tk) %o, to apply Lemma 3.9. Set r; = m;. The diagram

Em1n2

Vi, —— Va,

commutes by Equation (3.1), where I is the identity matrix with suitable size. Set
R{ = Fy, Epn,- Thus the diagram

commutes. There is j > 1 such that q; > f,,,. The diagram

S‘Zij+1
ij ’ WPj+1

lGPjH

ng+1

ngPjﬂ

—_—
ij S Wle+1
9j'Pj+1
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commutes, by Equation (3.2). Set T{ = Gp,,,Sy;1, - Then the diagram
J
8pjn
N
Wy, Wi
& Sqi’Pj+1 i

commutes. Since g is a premorphism we have

/ _ — —
I Sfﬂz q; ~ GPj+ISquj+lsfn2 q ~ GPi+1 anszH B Eh"2g1’j+1 anz'

Hence, the following diagram is commutative:

Erlh,,2 Eh"Zng+1
Vrl hn2 Vgpj+1
Fng+1
R Gfn, T
W w,. W, .
s anz 3 qj quIPj+1 Pj+1
Set t; = gj and Ry = Sy, ;. Rj. Then the diagram
Erlhnz
_—
Ve, Vgl’j+1
Fng-H
Ry T,
Wi 1
1 P
S‘l’p]-+1 j+1

is commutative. Continuing this procedure, we obtain sequences (r )7, and (fx)72,
of positive integers with r < f; < r, < t; < ---, and multiplicity matrices Ry: V;, —
Wy, and Ty: Wy, - V,,, for each k > 1, such that all the diagrams in Lemma 3.9
commute. In fact, by the construction, for each k > 1 there are positive integers xj
and yj with r; < x; <t and t; < yx < rgqq such that Ry = Ska t Fx, Erpx, and
Ty = Egyrens GriStiyi- Therefore, by Lemma 3.9, A; 2 A,.

To show that the classification functor B: AF — BD is strong, note that the *-iso-
morphism ¢: A — B given by Lemma 3.9 satisfies ¢(U5z; An) S Use, By, and there-
fore f above is admissible in Definition 3.3, so that B(¢) = [f].

An alternative proof can be given using [10, Theorem 3] as follows. By Theorem 5.9
we have B = B F and B is a strong classification functor, and by [10, Theorem 3] so
also is F. This shows that B is the composition of two strong classification functors
and so it is also a strong classification functor. ]

Corollary 3.12 Let Ay, A, € AF. Then A, = A, in AF ifand only if B(A,;) = B(A,)
in BD.

Proof Since B:AF — BD is a functor, A; = A, implies B(A;) = B(A,). The
converse follows from Theorem 3.11. |
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As an application of Theorem 3.11, we can give a proof of Glimm’s theorem. Recall
that, with the notation of Definition 3.1, an AF algebra A = (4, (4,)521, (¢4)52,) in
AFis called a UHF algebra if A is unital, each A, contains the unit of A, and each A, is
a simple C*-algebra; thus A, = My, for some k,, > 1. Let B(A) = (V, E); thus V,, =
(ky). According to Theorem 2.1, since the *-homomorphism ¢,+1¢;," My, > My, .,
is unital, we have k,|k,,4; and E,, = Ry, 921 = knn1 [kn. Therefore, the Bratteli diagram
of A is independent of the choice of ¢,,’s.

Denote by P the set of all prime numbers. Define € 4: P — N u {0, oo } with

ea(p) =sup{m>0:p"|k,, forsomen>1}, pelP.

The following famous result of Glimm is an easy consequence of Proposition 3.8 and
Theorem 3.11.

Theorem 3.13 (Glimm, [11], Theorem 1.12) Let A, A, € AF be two UHF algebras.
Then A, =2 Ay ifand only ifeq, = €4,.

Proof Let A; = (A, (An)2) (n)521) and Ay = (B, (By)32y, (va)52y). Write
B(A1) = (V,E) and B(A,) = (W,S). According to the remarks preceding this
theorem, there are sequences (k,)52; and (m,)$2; of natural numbers such that
Vn = (k,) and W,, = (m,,), for each n > 1, and ki|k,|--- and m;|m,|---. Note that
&4, = €4, if and only if

(3.3) Vn>131>1 kym; and VI>13n>1 mylk,.

Suppose that A; 2 A,. Then by Proposition 3.8, B(A;) = B(A,), i.e., there are
premorphisms f:B(A;) - B(A,) and g: B(A,) - B(A;) such that gf ~ idpa,)
and fg ~idp(4,), and Condition (3.3) follows.

Now suppose that €4, = €4,; thus, Condition (3.3) is satisfied. In other words,
there are strictly increasing sequences (f,)ne; and (g,)52; of non-zero positive
integers such that k,[my, and m,l|k,,, for each n > 1. Define premorphisms

fB(A1) — B(Az) and g B(A,) — B(Ar) with £ = ((F.)52, (fa)32,) and
g = ((Gu)21 (gn)321), where F, = (my,[k,) and G, = (kg,/my). It is easy to
see that g f ~ idp 4,y and fg ~ idp(4,); thus, B(A;) = B(A;). Therefore by Theo-
rem 3.11 we have A; = A,.

Alternatively (not using Theorem 3.11, but the functorial property of Proposi-
tion 3.8 is still used in the first half of the theorem), A and B can be seen each to
have the structure of an infinite tensor product of matrix algebras of prime order,
with the multiplicities of the primes determined by the Bratteli diagram data, from
which isomorphism is immediate if the data is the same. ]

4 A Homomorphism Theorem

Let us consider further the properties of the functor B: AF — BD. The following result
may be considered as a generalization of part of Theorem 3.11. Theorem 3.11 says that
isomorphisms in the codomain category can be lifted back to isomorphisms in the
domain category, and in particular to homomorphisms. The following theorem states
this for arbitrary homomorphisms. (Theorem 3.11 cannot be deduced immediately
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from Theorem 4.1; but see [10].) (The proofs of the two theorems are similar: roughly
speaking, a two-sided and a one-sided intertwining argument.)

Theorem 4.1  The functor B: AF — BD is a full functor in the sense that if A, A, € AF
and f:B(Ay) - B(A,) is a morphism in BD, then there is a morphism ¢: A; - A,
in AF such that B(¢) = f.

Proof LetA;,A; € AFand f:B(A;) - B(A,) be a morphism in BD. Write A; =

(A ()30 (@n)i) s Az = (By (Ba)iZ (va)ia)s BGA) = (Va2 (Bn)ia)s
and B(A,) = ((W)21 (Sn)521) - Suppose that f is the equivalence class of the pre-

morphism ( (F,)52;, (fa)52;), according to Definition 2.3. Thus, each F,, is a multi-
plicity matrix from V, to Wy, and the following diagram commutes:

" Ei v, E, v, Es
1%

F3
W S, W, : W3 5

By Theorem 2.1, there is a *-homomorphism g,: A, — By, with multiplicity ma-
trix Fy, i.e., Rg, = Fy, n 2 1, and we have the following (a priori non-commutative)

diagram:
A€ AxC A5C
Y
&3
B(C B,€ B;C

Using Corollary 3.6, we can replace g, with (Ad u, ) g», for some unitary u, € B,, such
that the first left square is commutative. Since unitaries do not change multiplicity
matrices (Lemma 3.5), one can continue this procedure to obtain unitaries (¢, ),»2
such that the above diagram is commutative when each g, is replaced by (Ad u,)gy
(n > 2). Therefore there is a *-homomorphism ¢: A — B such that ¢ [4,= g and
¢ ta,= (Aduy)gy, for each n > 2. Using Lemma 3.5, we have R(aqu,)g, = Fu> 11 2 2.
Therefore, B(¢) = f. |

Proposition 4.2 Let B = ( (Va)e2y, (E,,):"Zl) be a Bratteli diagram. Then there is an
A € AF such that B(A) = B.

Proof By Definition 2.2, each E, is an embedding matrix. Set A, = C*(V,) and
hy, = h(E,), for each n > 1. (See the remark following Lemma 3.4 for the nota-
tions C*(V,) and h(E,).) By Theorem 2.1, h,: A}, — A’ _, is injective. Now set
A =lim (A}, h,) and let a™: A%, > A denote the *-homomorphism that comes from
the construction of the direct limit, n > 1. Set A,, = «”(A’,) and denote by ¢,,: A, —
A, the inverse of a": A, — A, (which exists, since each h, is injective). Now A =
(A, (An)321s (¢0)32)) € AFand B(A) = B. ]

Let AF, be the subcategory of AF whose objects are unital AF algebras and whose
morphisms are unital homomorphisms; more precisely, (A, (An )52, (¢ );’f’:l) € AF
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is an object of AF; if A is unital and each A, contains the unit of A. The next propo-
sition follows from part (2) of Theorem 2.1.

Proposition 4.3 Let A € AF and B(A) = (V,E). Then A is in AF, if and only if
E.V, = Vyi1, foreach n e N.

Next we give a criterion to check if the functor B sends two AF algebras to the
same diagram. The proof is straightforward.

Proposition 4.4  Let Ay and A, bein AF with Ay = (A, (A,)321, (¢0)52) and A, =
(B, (Bn)2ys (Wn)32y). Then B(Ay) = B(A,) if and only if there is a *-isomorphism
¢: A > B such that $(A,) = B, and the multiplicity matrix of ¢ 14,: A, — By, is the
identity, for each n > 1.

The following theorem (essentially due to Bratteli) gives a combinatorial criterion
for isomorphism of Bratteli diagrams.

Theorem 4.5 Let B=(V,E)and C = (W,S) be two Bratteli diagrams. Then B~ C
in BD if and only if there is a third Bratteli diagram D = (Z, T') that is constructed from
two subsequences of B and C as follows. There are positive integers (ri )52, and (tx)re,
withr <ty <ry <ty <---suchthat Zyx_y = Vi, Zok = Wiy, Tak—1,2k41 = Erpre,y» and
Tok2k+2 = Sty te,yo fOr each k > 1, i.e., the following diagram is commutative:

Erlrz E'z's
Vr 4 Wt 7 Vr > Wt 2 Vr 3 Wt3
Sr, ts Sf2t3

Proof Choose A; and A, in AF such that B(A;) = Band B(A,) = C, as in Propo-
sition 4.2. We have B = Cifand only if A; = A,, by Corollary 3.12. Now the statement
follows from Lemma 3.9, on observing that in the proof of this lemma, the multiplicity
matrices Ry and T} are indeed embedding matrices. [ |

Proposition 4.6  Assume ¢: Ay — A, is a morphism in AF and ( (Fn)iss (fn);il)
is an arbitrary premorphism whose equivalence class is B(¢). Write B(A;) = (V,E)
and B(A,) = (W,S).

(i) ¢ is injective if and only if each F, is an embedding matrix.

(i) If Ay, Ay € AFy, then ¢ is unital if and only if F, V,, = Wy, n > L

Proof First suppose that f = ((F,,);l“;l, (fa ;":1) is the premorphism associated
to ¢, as in Definition 3.3. In this case, the statements (i) and (ii) follow from
the parts (i) and (ii) in Theorem 2.1. Now suppose that f = ((F,)2y, (fa)521)
is an arbitrary premorphism, the equivalence class of which is B(¢). Let g =

((Gn)21 (gn)521) bea premorphism associated to ¢, as in Definition 3.3. Applying
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Definition 2.9 and Proposition 2.11, we see that the statements (i) and (ii) hold for F,,
if and only if they hold for G,,, which they do as shown. ]

5 Relations with Abstract Classifying Categories

In this section, let us investigate the relation between the following three classifying
categories for AF algebras: the category of Bratteli diagrams BD, the abstract category

AF°", and the abstract category AF°"" introduced in [10]. In the next section we will
also consider the category of dimension groups DG introduced in [9].
In particular, now and in the next section we shall show that the three categories

BD, AF°", and DG are all equivalent, and hence are classifying categories for each
other.

Let us also investigate the relation between the strong classification functors
B:AF — BD, J:AF — AF°", and 7:AF — AF°", and in the next section, the
relation to the functor Ky: AF — DG.

The following lemma may be considered as part of the literature (basically due to
Glimm, see below); we give a proof anyway (cf. Lemma 4.2 and Theorem 4.3 of [9]).

Lemma 5.1 For each € > 0 there is a § > 0 such that if A is a unital C*-algebra, B is a
C*-subalgebra of A containing the unit of A, and u is a unitary of A with d(u, B) < 4,
then there is a unitary v € B such that |u - v|| < e.

Proof The statement follows from [11, Lemma 1.9]. In fact, in the proof of [11,
Lemma 1.9], Glimm does not use the assumption of orthogonality of projections.
Thus putting E; = E; = F; = F, = 1in that lemma, the statement follows. There
is also a direct proof as follows. Set & = min{e, ¢ }. Let A be a unital C*-algebra, B a
C*-subalgebra of A containing the unit of A, and u a unitary of A with d(u, B) < 4.

Thus there is a € B such that |u — a| < 8. Thus a is invertible. Set v = (aa*) 2a;
hence vv* = v*v =1and v is a unitary in B. We have

[aa® —1| < |aa™ — au™| + |au™ — uu™|
<lafla” - u"]+]a-u]

<(lal +D)la-u]

1
<3la-ul<=.
2

Thus [|(aa*)™!| < 2. Using functional calculus we have

oyl oy
[(aa™)™> 1] < |(aa*)™" - 1]
< [(aa™)7| |aa” -1]
<2|aa” 1|

<6lla-u| <L
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Therefore we have
Ju—v] <u-(aa*)"2ul +|(aa*) Tu-v|
_1 _1
< 1= (aa*)72 |+ |(aa*) 2| |u - a|
<6lla—u| +2]a-ul

<8la-uf<e. [ |

The following immediate consequence of Lemma 5.1 enables us to approximate the
unitaries of an AF algebra by unitaries of an increasing sequence of C*-subalgebras
with dense union. We will use this statement in the proof of Lemma 5.3.

Corollary 5.2 Let A = U,s1 A, be a unital AF algebra where (A, )2, is an increasing
sequence of finite-dimensional C*-subalgebras of A each containing the unit of A. Then
u € Ais a unitary if and only if there are unitaries (u, ), such that u, € Ay, n 2 1,
and u, — u.

We shall need the following technical lemma in the proof of Lemma 5.4 and Corol-
lary 5.7.

Lemma 5.3 Let B = U,» B, be an AF algebra where (B, );c, is an increasing
sequence of finite-dimensional C*-subalgebras of B. Let A be a finite-dimensional
C*-algebra and let ¢,y:A — B be x-homomorphisms such that |¢ — y| < L
Let u,v be unitaries in B~ such that there are positive integers n and m such that
u¢p(A)u* € B, and vy(A)v* € B,,. Then there is a positive integer k > n, m such that
the x-homomorphisms (Adu)¢, (Adv)y: A — By have the same multiplicity matrices,
ie., R(Adu)([) = R(Adv)t/w

Proof Let 1 denote the unit of B~. Set B, = B, + CI, so that B = U, B;. By
Corollary 5.2, there is a positive integer k > #n,m and a unitary w € B} such that
luv* —w|| < 3(1-]¢ - y|). We have the following (a priori non-commutative)
diagram:

Ad
a8y,

(Adu)qﬁl lAdw

B,“—— By.
Consider the two *-homomorphisms (Adw)(Adv)y, (Adu)¢$: A — Bi. We have
[(Adw)(Adv)y - (Adu)¢| = [(Adwv)y - (Adu) ¢ <2[wv —uf + ¢ -y| <1

Hence by Lemma 3.7, R(ad w)(adv)y = R(adu)e- Now define n: By — By with n(x) =
(Adw)(x), x € Bg. Then there is a unitary w’ € By such that # = Adw’. In fact,
w € By and thus w = a + A1, for some a € B and A € C. Set w' = a + Alp,. Since w is a
unitary, so is w’, and we have (Adw)(x) = (Adw’)(x), x € Bg. Thus = Adw’ and
hence R, is the identity matrix, by Theorem 2.1. On the other hand, (Adw)(Adv)y =
1o (Adv)y, and 50 Radw)(adv)y = Ryo(adv)y = RyR(adv)y = R(adv)y. Therefore
we have Riaduyp = R(adv)y- [ |
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The functor B: AF — BD is of course not faithful (we follow [12,15] for categori-
cal definitions). The following gives useful criteria to check whether the images un-
der B of two morphisms of AF are equal in BD. This enables us to make connections

between morphisms of BD and morphisms of the categories AF°"* and AF°"* (see
Theorems 5.8 and 5.9 below).

Lemma 5.4 Let A, Ay € AF where Ay = (A, (A)2 ($0)52) and A, =

(B, (Bu)32y (Wn)2y)- Let ¢, y: Ay — A, be morphisms in AF. The following state-

ments are equivalent:

(i) B(¢)=B(y)

(i) there is a sequence of unitaries (uy, ) ooy in B~ such that ¢ = (Adu, )y on A, for
nxl

(iil) there is a sequence of unitaries (4, )52, in B~ such that

$(a) = lim (Adu)y(a),
forae A

Proof Choose a sequence of unitaries (v, )5e, in B, and a sequence of positive in-
tegers (fu) 2y, as in Definition 3.3, giving rise to a premorphism ( (Fy )52y, (fa)521)
with equivalence class B(¢). Similarly, choose a sequence of unitaries (w, )5,
in B”, and a sequence of positive integers (g,)52,, giving rise to a premorphism
((Gu)3z1s (gn)32y) for B(y).

(i) = (ii): Suppose that B(¢) = B(v). Hence ( (Fn)iss (fn);il) is equivalent to
((Gu)321 (gn)321) - Fix n > 1. By Proposition 2.1, there is an m > f,, g such that
Sf.mFn = Sg,mGn, where Sy, ,, and S, ,,, are the multiplicity matrices of the injections
ji:Bf, = By and jy: By, < By, respectively. On the other hand, F,, and G, are the
multiplicity matrices of (Adv,)¢: A, — By, and (Adw,)y: A, — By, , respectively,
by Definition 3.3. Thus R;,(ady,)¢ = SfmFn = Sg,mGn = Rj,(Adw,)y- By Lemma 3.5,
there is a unitary u € B,, such that j;(Adv,)¢ = (Adu)jr(Adw,)y on A,. Set
w = u — 1p, + 1, where 1 is the unit of B”. One can easily see that w is a unitary
in B~ and again we have j;(Adv,)¢ = (Adw)j,(Adw,)y on A,. Set u, = viww,.
Therefore ¢ = (Adu, )y on A,,.

(ii) = (iii): This holds as (A, )22, is increasing with union dense in A.

(iii) = (i): Suppose that there is a sequence of unitaries (u,):>; in B~ such
that ¢ is the pointwise limit of the sequence ( (Ad un)q/) :10:1 on A. Fix n > 1. Since

( (Aduy, )1//) :z | converges ¢ on compact subsets of A and the unit ball of A, is com-
pact, |(Adu,,)y — ¢|a, — 0, as m tends to infinity. Thus there is an n’ > 1 such
that |(Adu, )y — ¢4, <1 Setu = v, and v = w,u},. Hence u¢(A,)u* ¢ By, and
v(Ad u, )y (A,)v* = w,y(A,)w; € Bg,. Applying Lemma 5.3, thereisan m > f,, g,
such that (Adu)¢, (Adv) o ((Aduu)y): A, — By, have the same multiplicity ma-
trices; that is, (Adv,)¢, (Adw,)y: A, — By, have the same multiplicity matrices. By
Proposition 2.11, the premorphisms ( (Fn)iss (fn);‘;l) and ( (Gu)2ys (gn);‘;l) are
equivalent and therefore B(¢) = B(v). [ |
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Remark  Lemma 5.4 remains valid if we replace B~ with B*. Since, if B is non-
unital, we have B~ = B*, and if B is unital, according to our convention, B~ = B; thus
by the techniques applied in the proof of Lemma 5.3 and Lemma 5.4 for interchanging
the unitaries of B and B*, the statement is also true for B* instead of B".

In general, the sequence of unitaries in Lemma 5.4 cannot be replaced by a single
unitary. In other words, in the setting of that lemma, the condition B(¢) = B(y)
does not necessarily imply that there is a unitary u € B~ with ¢ = (Adu)y. (See the
following example.)

Example 5.5 Consider the C*-algebra A = K(I?) and let (e, )2, be an orthonor-
mal basis for /2. Consider the C*-subalgebra A, generated by the rank one operators
{ei ® e} |1<i,j<njforn>1 ThenA; € Ay € ---,and A = U An. De-
fine ¢, y: A - A as follows. Set ¢ = id4. For each n € N, let u,, denote the unitary
in A~ = K(I*) ® I defined by u,(ex) = exy1, for 1 < k < n, u,(ens1) = ), and
un(ex) = ex, for k > n + 2. Then Adu, and Adu,, agree on A, when n < m. Set
¢ = Adu, on A,, n > 1. Then ¢: A - A is a *-homomorphism and ¢ = (Adu,)y
on A,, n > 1. Suppose that there were a unitary u € A~ such that ¢ = Adu. Then
u(e,) @u(en)* =d(en®ey) = enr1 ®e;,y, n 21 Thus, u(e,) = Aye,; for some
complex number A, with absolute value one. Set f, = MjAy---Ay_1€4, 1 > 1. Then
(fn)52, is an orthonormal basis for I> and u(f,,) = fu+1, n > 1; in other words, u is
the unilateral shift, which is not a unitary.

Corollary 5.6 Let Ay, A, € AF and ¢, y: Ay - A, be morphisms in AF such that
¢ = (Ad u)y for some unitary u in A5. Then B(¢) = B(w).

Corollary 5.7  Let ¢,y: A; — A, morphisms in AF with |¢ — | < 1. Then we have
B(¢) = B(y)

Proof Following the notation of Lemma 5.4 and the first paragraph of its proof, we
have v, ¢(A,)v; € By, and w,y(A,)w;, € Bg,, n > 1, by Definition 3.3. Fix n > 1. By
Lemma 5.3, the *-homomorphisms (Adv,)¢, (Adw,)y: A, — By, have the same
multiplicity matrices, for some positive integer k,, > f,,, g». By Lemma 3.5, there is a
unitary u € By, such that (Adv,)¢ = (Adu)(Adw,)y on A,. Setw = u—1p, +1,
where 1 is the unit of B~. Then w is a unitary in B~ and again we have (Adv,)¢ =
(Adw)(Adw,)y on A,. Setting u,, = viww,, we have ¢ = (Adu, )y on A, and so
B(¢) = B(y) by Lemma 5.4. [ |

Consider the category AF°"" associated to AF as described in [10]; its objects are
the same as those of AF and its morphisms are as follows. An inner automorphism
for an object (A, (An)21, (¢n)521) of AF isa *-isomorphism Ad u: A — A, for some
unitary u € A*. Two morphisms ¢, y: A; — A, are equivalent if ¢ = (Adu)y for
some inner automorphism Ad u of A,. Let F(¢) denote the equivalence class of ¢.
These equivalence classes are the morphisms of AF°"'. Denote by F: AF — AF°"" the
functor which assigns to each object of AF itself, and maps morphisms as above. Now
(10, Theorem 1] states that F: AF — AF°"" is a strong classification functor. Obviously,
it is also a full functor.

https://doi.org/10.4153/CJM-2015-001-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-001-8

1016 M. Amini, G. A. Elliott, and N. Golestani

Theorem 5.8  There is a unique functor B: AF°®* — BD such that B = BF:

AF — 75 AF™

RN

BD.
Moreover, it is a strong classification functor and a full functor.

Proof Define B: AF®" — BD as follows. For A € AF set B(A) = B(A). Let
¢: Ay - A, be a morphism in AF. By Lemma 5.4 (and the remark following that),
B( (Ad u)¢) = B(¢), for each inner automorphism Ad u of A,. It therefore makes
sense to set %(3"(({))) = B(¢). It is immediate that B: AF®"" — BD is a functor
and B = BF. Hence B is full, since B is (by Theorem 4.1). Uniqueness follows from
B = BT and the fact that F is surjective on both objects and (since it is full) on maps.
That B: AF°"* — BD is a strong classification functor follows from the fact that B is
(Theorem 3.11). ]

Note that the functor B: AF°" — BD is not faithful. For example, let ¢ and v be
the morphisms in AF defined in Example 5.5. Then B(F(¢)) = B(¢) = B(y) =

@( F(y)),but F(¢) + F(y), by Example 5.5; cf. Theorem 5.9.
Now let us examine the classifying category AF°"" for AF, as described in [10]. It

is better than AF°"* (in some sense) for the purposes of classification, because AF°"*
is a classifying category not only for AF, but also for AF°"" (and it has even fewer
automorphisms); however, BD is even better than (although, by Theorem 5.11, it is

just equivalent to) AF°", since it is a classifying category for AF°"' and so for all
three of these categories (by Theorem 5.9), but is in some sense more explicit. (For
one thing, it is a small category.)

Consider the category AF°"" as a subcategory of §°*t which is defined in [10, Exam-
ple 4.3], where 8 denotes the category of separable C*-algebras (not necessarily uni-

tal). More precisely, the objects of AF°"* are the same as of AF and its morphisms are
as follows. For each pair of objects A; and A, in AF, and for each ¢ in Hom(A;, A,),
denote by F(¢) the closure of the equivalence class F(¢) in Hom(A;, A,), in the

topology of pointwise convergence. These are the morphisms of AF°"". By [10, The-

orem 3] and [10, Example 4.3], AF®" is a category. Now define the functor F:AF —»
AF°" as follows. J assigns to each object of AF itself and maps morphisms as above.
By [10, Theorem 3] and [10, Example 4.3], F:AF > AF®" isa strong classification

functor. (It follows immediately that the quotient map from AF°"' to AF°"" is also a
strong classification functor, but this is not of interest to us here.)
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Theorem 5.9  There is a unique functor B: AF°"* — BD such that B = BJ:

AF — 7 AFOUt

RN

BD.

It is a strong classification functor, surjective on objects, and a full functor. Moreover,
for each pair of morphisms ¢, y: A1 —~ A, in AF we have B(¢) = B(vy) if and only if
F(¢) = F(y); in other words, B is a faithful functor.

Proof First let us show that for each pair of morphisms ¢, y:A; - A, in AF we
have B(¢) = B(y) if and only if F(¢) = F(v). Suppose that B(¢) = B(v). By
Lemma 5.4 and the remark following that, there is a sequence of unitaries (1, )52,
in B* such that ¢ is the pointwise limit of the sequence ( (Adu, )1//) oil where B is the

algebra (i.e., the first component) of A,. Thus, for each unitary u € 13n+_, (Adu)¢is the
pointwise limit of the sequence ( (Ad uu,)y) :i - Therefore, F(¢) ¢ F(w). Hence
F(¢) c F(v) and by symmetry F(¢) = F(y). Now suppose that F(¢) = F(v).

Then, ¢ is the pointwise limit of a sequence ( (Ad u,,)l//) :.;1’ for some sequence of
unitaries (#,)52; in B*. By Lemma 5.4, B(¢) = B(v).

Now define B: AF°"* — BD as follows. For A € AF set B(A) = B(A). Let ¢: A, —
Az be a morphism in AF. Set B(F(¢)) = B(¢). By the preceding paragraph, B is
well defined, and faithful. Also, we have B = B J. That B is a functor, and uniqueness
of B, follow from the fact that J is a full functor, or, rather, even surjective. Since B
is a strong classification functor and a full functor, so also is B. (That B is a strong
classification functor also follows from the fact that it is full and faithful and applying
Lemma 5.10, below.) n

As we shall see, the functor B: AF®"" — BD is an equivalence of categories (see
Theorem 5.1 below). This is mainly based on the categorical properties of this functor.
Therefore, let us first state this result in a categorical setting, in Lemma 5.10. We shall

use this lemma to show that the functor B: AF®"" — BD is an equivalence of categories
(Theorems 5.11).

Recall that a functor F: € — D is called an equivalence of categories if there is a
functor G: D — € such that FG = ide and GF = idp [12,15]. If H: D — C is another
functor with this property, then it is easy to see that H is naturally isomorphic to G.
Therefore, G is unique up to natural isomorphism. It is well known that a functor
F: € — D is an equivalence of categories if and only if it is full, faithful, and essentially
surjective, i.e., for each d € D thereisa ¢ € € such that d = F(¢) [15, Theorem IV.4.1].
In the case that F is surjective on objects, a right inverse for F can be constructed, i.e.,
a functor G: D — € such that FG = ide and GF = idp. (A remark on the use of the
axiom of choice in this context is given in the proof.)

Lemma 5.10 Let F:C — D be a full and faithful functor. Then F is a strong classifica-
tion functor. If F is also surjective on objects, then it is an equivalence of categories, and,
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furthermore, there is a unique (up to natural isomorphism) functor G: D — C such that
FG =ide and GF 2 idp. The functor G is full, faithful, injective on objects, essentially
surjective, and (hence) a strong classification functor.

Proof That a full and faithful functor is a strong classification functor is straightfor-
ward. Since F: C — D is surjective on objects, it has a right inverse G: D — C (just as
a map on objects). Here we have used the “axiom of choice” for sets or classes: when
the objects of € form a set we use the axiom of choice for sets, and when the objects
of € form a proper class we use the global axiom of choice [3] (if for each object ¢ of D
there is a canonical object a in € such that F(a) = c, one could avoid the axiom of
choice).

The definition of G on the morphisms of D was described in the proof of [15, The-
orem IV.4.1], and so we have a functor G such that FG = ide and GF = idp. The rest
follows from the fact that each functor which is an equivalence of categories is full,
faithful, and essentially surjective [15, Theorem IV.4.1]. ]

The following theorem states that the categories AF°** and BD are equivalent, and
this equivalence, given by the functor B: AF°™ — BD, is compatible with the clas-

sification of AF algebras via the functors B: AF — BD and J: AF — AF°", i.e., the
related diagrams commute.

Theorem 5.11  The functor B: AF®™ — BD is an equivalence of categories. More

precisely, there is a unique (up to natural isomorphism) functor G:BD — AF°"" such
that BG = idpp and GB = idygeur. The functor G is full, faithful, injective on objects,
essentially surjective, and a strong classification functor. Moreover, for each B, C € BD
and each morphism ¢: G(B) — G(C) in AF, we have GB(¢) = F(¢), i.e., the following

diagram commutes:

AF — 75 AFOH

7%

Proof By Theorem 5.9, the functor B: AF°"" — BD is full, faithful, surjective on
objects, and a strong classification functor. By Lemma 5.10, it is also an equivalence

of categories and the functor §:BD — AF°" with the desired properties exists. As
indicated in the proof of Lemma 5.10, here the use of the axiom of choice is justified

as follows. Since the collection of the objects AF®™ is a proper class and BD is a
small category, we can use the global axiom of choice [3]. Alternatively, one could
use the fact that each AF algebra is (isomorphic to) a C*-subalgebra of B(I?), and
essentially the axiom of choice for sets is enough. Finally, one can choose G(B) to be
the AF algebra constructed as in Proposition 4.2.

For the last statement, let B, C € BD and ¢: §(B) — G(C) be a morphism in AF.

Note that the objects of AF and AF®" are the same, and so §(B) and G(C) are
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also in AF. We have §B(G(B)) = $B(S(B)) = §(B) = F(S(B)), and similarly
for C. Thus, $B(¢) and ¢ ?@) have the same domains and the same ranges. We have
B(5B(¢)) = B(¢) = B(F(¢)), since B = BF. By Theorem 5.9, B is faithful, and

s0 GB(¢) = F(¢). u

6 Relations with K-Theory

Consider the category DG of dimension groups, i.e., the set of all scaled countable
ordered groups which are unperforated and have the Riesz decomposition property,
with order and scale preserving homomorphisms (see [1,7,18]), and consider the well-
known K, functor Ko: AF — DG. The following statement summarizes the main
properties of the functor Ko: AF - DG.

Theorem 6.1 The functor K : AF — DG is a strong classification functor and a full
functor. Moreover, it is essentially surjective on objects.

Proof That the functor Ko: AF — DG is a strong classification functor is Elliott’s
theorem [8]. That the functor Ko: AF — DG is full is known, and the proof is similar
to the proof that it is a strong classification functor—one uses a one-sided intertwining
argument rather than a two-sided one, just as in Theorem 4.1. In fact, one can deduce
it from Theorem 4.1 together with the factorization of Ko: AF — DG through BD by
means of the inductive limit functor described in the alternative proof of Corollary 6.5
below, which is easily seen to be full, and so K is expressed as the composition of two
full functors. The last statement follows from the Effros-Handelman-Shen theorem
[7, Theorem 2.2], and the result of Elliott, [8, Theorem 5.5] characterizing K, groups
of AF algebras as inductive limits. [ |

The following lemma is surely part of the literature; we give a proof for the sake of
completeness. We follow [18] for K-theory notation.

Lemma 6.2 Let A, Ay, € AF where A, = (A, (A2, (gb,,);,“;l) and A, =

(B, (Bu)2y (Wn)32y)- Let ¢,y: Ay — A, be morphisms in AF. The following state-

ments are equivalent:

() Ko(¢) =Ko(y);

(ii) there is a sequence of unitaries (1) oo, in B such that ¢ = (Adu,)y on A,
nxL

Proof Let¢*,y":A* — B* denote the unital extensions of ¢, y: A - B. Note that
A" = U2, Af, and BT = U2, B. The proof is similar to the finite-dimensional case
[16, Theorem 7.2.6].

(i) = (ii): The proof really should be thought of as three separate steps—first re-
ducing to the case that the domain is a single finite-dimensional algebra, and then to
the case that the codomain is a single finite-dimensional algebra (using for the second
step that Ky of the limit is the limit of the Ky’s). The third step, that both algebras are
finite-dimensional, follows immediately from an argument due to Bratteli. The details
are as follows.
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Fix n > 1. By Lemma 3.2, there are unitaries u, v € B* and a positive integer m such
that ug™ (A})u* ¢ B}, andvy™* (A})v* ¢ Bj,. Define x-homomorphisms F, G: A}, -
B, with F(a) = u¢*(a)u* and G(a) = vy*(a)v*, a € A} Let {e}; : 1< < k1<
i,j < n;} be a set of matrix units for A, and set ef*! = 1-14, (where 1 is the unit
element of AY) and ng,; = 1. Then {e,l.j :1<1<k+1,1<14,j<n} is aset of matrix
units for Af,.

Setpﬁj = F(efj) and qi.j = G(efj), for the above values of i, j, . Fix1 < | < k+1. Let

pl,] be the equivalence class of the projection p!, in V(B*). Since e/, € A, for1< 1 <
k, the formal difference x = [e!,] - [0] is in Ko (A). We have [p},] - [0] = [¢(el})] -
[0] = Ko(¢)(x) = Ko(y)(x) = [g},]-[0]. Thus thereis r € Mo, (B*) such that [p}, ]+
[r] = [q},]+[r]in V(B*). For I = k+1wehave [ek*!]-[1] € Ko (A) and similarly there
is 7 € Moo (B*) such that [p5™] + [r] = [¢5"] + [r] in V/(B"). Since B* = U, B},
there is m’ > m such that r is equivalent to some projection in M, (B}, ), and we
may assume that r € M, (B},). Hence the projections diag(pl,,r), diag(qh,r) €
M (B},/) are equivalent in B*. By [16, Lemma 7.2.8] (or, rather, by its proof), there
is m; > m' such that diag(p};, r) and diag(qy;, r) are equivalent in B}, . Since B}, is
finite-dimensional, p!, is equivalent to ¢}, and so there is a partial isometry w; € B,
such that p}, = wyw} and g!; = w;w;. Now set

k+1 n

Z Zpi'lwlq{i =w.

I=1 i=1

An easy calculation shows that w is unitary in B* and wq! j = P! jw- for the above
values of i, j, 1. Thus F = (Adw)G. Set u,, = u*wv. Then ¢ = (Adu,)y on A,. We
have found a sequence of unitaries (1, )5, in B* with the property stated in part (ii),
but this is equivalent to the existence of a sequence of unitaries in B~ with the same
property, by the remark following Lemma 5.4.

(ii) = (i): Suppose that (ii) holds. As stated above, we may assume that the uni-
taries (1, )5o, arein B*. Let p be in M (A™). Then there is a positive integer # and a
projection q € Mo, (AT,) such that [ p] = [g]. Since ¢ = (Adu, )y on A,, and we have
¢* = (Adu,)y* on A3, hence . ([p]) = . ([q]) = v.([4]) = y. ([p)). Therefore
Ko(¢) =Ko (). u

Theorem 6.3  There is a unique functor Ko: AF°"" — DG such that Ky = K, F:

AF — 7o Apent

N

DG.
It is a strong classification functor, essentially surjective on objects, and a full functor.

Moreover, for each pair of morphisms ¢, y: Ay — A, in AF, we have Ko(¢) = Ko(y) if
and only if F(¢) = F(y); in other words, Ky is a faithful functor.
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Proof Define Ko: AF°"" — DG as follows. For A € AF*" set Ko(A) = Ko(A).
Let ¢: A; — A, be a morphism in AF. Set Ko(F(¢)) = Ko(¢). For each pair of
morphisms ¢, y: A; - A, in AF we have Ko(¢) = Ko(v) ifand only if F(¢) = F(v),
by Lemma 6.2. This proves that K, is well defined. The other properties of K, are
easy to prove, using Theorem 6.1 and the same properties of F as used in the proof of
Theorem 5.9.

Alternatively, the whole theorem follows immediately from Theorem 5.9 together
with the equivalence of the categories BD and DG, an elementary proof of which is
given below as an alternative proof of Corollary 6.5; one uses that the functor BD —
DG in question is just the inductive limit functor, which acts as a natural isomorphism
between the functors B and Ky, and therefore also between B and K. [ |

Next let us show that the categories AF°"* and DG are equivalent, and this equiv-

alence, given by the functor Ko: AF°"" — DG, is compatible with the classification

of AF algebras via the functors B: AF — BD and J:AF - AF°", i.., the related
diagrams commute.

Theorem 6.4  The functor Ko: AF®™ — DG is an equivalence of categories. More

precisely, there is a unique (up to natural isomorphism) functor Go: DG — AF°™ such
that Ko Go = idpg and GoKo 2 idyge. The functor G is fu& faithful, essentially
surjective, and a strong classification functor. Moreover, we have Ko GoKg = Ko:

AF—2 . DG

4 I

DG — AF°™,

So

Proof The first part of the statement follows from Theorem 6.3 and [15, Theo-
rem IV.4.1]. The functorial properties of Gy follow from [15, Theorem IV.4.1] and
Lemma 5.10. For the proof of the last part of the statement note that we can con-
struct Gy to have the property that Ko( Go(Ko(A))) = Ko(A), for each A € AF*™,

and that KO( SO(KO(V/))) = Ko(v), for each morphism y: A; — A, in AF°"" (see
the proof of [15, Theorem IV.4.1]). Therefore, for each morphism ¢: A; - A, in AF,

setting y = F(¢) we get Ko( G0(Ko(9))) =Ko(¢).
Alternatively, use the remarks at the end of the proof of Theorem 6.3. ]

The category AF®"" can be used to relate the categories BD and DG. Let us collect
all the functors in one (commutative) diagram; see Figure 1.

Corollary 6.5 There is a full, faithful, essentially surjective, and (hence) strong clas-
sification functor from BD to DG. Also there is such a functor from DG to BD.
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DG.

Figure 1

Proof Consider the functors G: BD — AF°"* and K,: AF°" — DG. Both of these are
strong classification functors and also full, faithful and essentially surjective, by The-
orems 5.11 and 6.3, and so also is K;G: BD — DG. Similarly, the functor BGy:DG —
BD has the above properties, by Theorems 5.9 and 6.4.

Alternatively, and in a much more elementary way, the obvious inductive limit
functor BD — DG, obtained by interpreting a Bratteli diagram as a sequence of finite
ordered group direct sums of copies of Z, as in [10, Section 2], is full, faithful, and es-
sentially surjective by [7, Theorem 2.2], and so by [15, Theorem IV.4.1] an equivalence
of categories. ]

Corollary 6.6 The categories BD, AF°", and DG are equivalent.

Finally let us show that the three strong classification functors B: AF — BD,

JF:AF — AF°", and Ko: AF — DG for classification of AF algebras are essentially
the same.

Theorem 6.7  Consider the three strong classification functors B: AF — BD, J: AF —
AF°", and Ko: AF — DG for AF algebras. For each objects Ay, A, in AF, the following
are equivalent:

(1) .Al = .Az in AF,

(i) F(A)) =2 TF(A,) in AF"

(IV) Ko (.Al) ~ Ky (Az) in DG.

For each pair of morphisms ¢, y: Ay — A, in AF, the following statements are equiva-
lent:

(i) B(¢) =B(y);
(i) F(¢)=F(y);
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(i) Ko(¢) = Ko(y);

(iv) there is a sequence of unitaries (u, )2, in B” such that ¢ = (Adu, )y on A, for
nxl

(v) there is a sequence of unitaries (4, )52, in B~ such that

$(a) = lim (Adu,)y(a),

fora e A.
Proof The first part follows from the fact that we are considering classification func-
tors. The second part follows from Lemma 5.4, Theorem 5.9, and Lemma 6.2. |
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