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The Category of Bratteli Diagrams

Massoud Amini, George A. Elliott, and Nasser Golestani

Abstract. A category structure for Bratteli diagrams is proposed and a functor from the category
of AF algebras to the category of Bratteli diagrams is constructed. Since isomorphism of Bratteli
diagrams in this category coincides with Bratteli’s notion of equivalence, we obtain in particular a
functorial formulation of Bratteli’s classiûcation of AF algebras (and at the same time, of Glimm’s
classiûcation ofUHF algebras). It is shown that the three approaches to classiûcation of AF algebras,
namely, through Bratteli diagrams, K-theory, and a certain natural abstract classifying category, are
essentially the same from a categorical point of view.

1 Introduction

AF algebraswere ûrst introduced and studied by Bratteli in 1972 [2]. AnAF algebra is
a C∗-algebra which is the closure of the union of an increasing sequence of its ûnite-
dimensional C∗-subalgebras. _e class of AF algebras has an interesting variety of
examples [2,4]. AF algebras are generalizations of UHF algebras which were studied
by Glimm in 1960 [11] and of matroid C∗-algebras (stably isomorphic to UHF alge-
bras) introduced byDixmier in 1967 [5]. Glimm gave a classiûcation ofUHF algebras.
In a brilliant leap, Bratteli generalized Glimm’s classiûcation to arbitrary AF algebras
(see below—_eorem 3.11 is a reformulation of this).

In 1976, Elliott gave a classiûcation of AF algebras using K-theory [8]. In fact,
Elliott showed that the functor K0∶AF → DG, from the category of AF algebras
with ∗-homomorphisms to the category of (scaled countable) dimension groupswith
order-preserving homomorphisms, is a strong classiûcation functor, in the sense that
if A1 ,A2 ∈ AF and K0(A1) ≅ K0(A2), then we have A1 ≅ A2, and in fact every iso-
morphism fromK0(A1) onto K0(A2) comes from an isomorphism fromA1 ontoA2
(see [8], [16, Section 7.2], and [10, Sections 5.1–5.3] for details). _is categorical idea,
ûnding a (strong) classiûcation functor from a given category to another,more acces-
sible category, is useful in the classiûcation of various categories (see [10]).

_e classiûcation of AF algebras obtained by Bratteli in [2] used what are now
called Bratteli diagrams. Bratteli associated to each AF algebraA an inûnite directed
graph B(A), its Bratteli diagram (see Deûnition 2.2), and used these very eòectively
to study AF algebras. Some attributes of an AF algebra can be read directly from its
Bratteli diagram, for instance its ideal structure. Bratteli showed that forA1 ,A2 ∈ AF,
A1 ≅ A2 if A1 and A2 have the same Bratteli diagram, i.e., B(A1) = B(A2) (see
_eorem 3.10). In fact Bratteli determined, in terms of the Bratteli diagrams of A1
andA2, exactly when A1 andA2 are isomorphic.
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_e Category of Bratteli Diagrams 991

Denote by BD the set of all Bratteli diagrams. _en, Bratteli’s theorem asserts that
the map B∶AF → BD has the property that if A1 ,A2 ∈ AF and B(A1) = B(A2), or
even justB(A1) is equivalent inBratteli’s sense toB(A2), thenA1 ≅ A2. _e question
that arises naturally here iswhether themapB∶AF→ BD can bemade into a functor,
and if so, whether it is a classiûcation functor. _is paper answers these questions.

In Section 2 we deûne an appropriate notion of morphism in BD and we show
that BDwith thesemorphisms is a category (_eorem 2.7). In Section 3we show that
B∶AF → BD is a (strong) classiûcation functor (_eorem 3.11); thus for A1 ,A2 ∈ AF
we have A1 ≅ A2 if, and only if, B(A1) ≅ B(A2). _is is a functorial formulation of
Bratteli’s theorem and would appear to be a deûnitive elaboration of the classiûcation
of AF algebras from the Bratteli diagram point of view. In particular, just the fact that
themap is a functor yields Glimm’s classiûcation theorem for UHF algebras (see the
proof of_eorem 3.13).

In Section 4, it is shown that the functor B∶AF → BD is a full functor (_eo-
rem 4.1), which means that homomorphisms in the codomain category can be li�ed
back to homomorphisms in the domain category (this was done for isomorphisms in
_eorem 3.11).

In Section 5, we investigate the relation between the category BD of Bratteli di-
agrams and two abstract classifying categories, AFout and AFout, for AF algebras
(cf. [10]). We show that there is a strong classiûcation functor fromAFout toBDwhich
is faithful and full (_eorem 5.9) and is an equivalence of categories (_eorem 5.11).

In Section 6, we investigate the relation between AFout and the category DG of
dimension groups. We show that there is a strong classiûcation functor from AFout

to DG which is faithful and full (_eorem 6.3) and is an equivalence of categories
(_eorem 6.4). It is shown that the three strong classiûcation functors B∶AF → BD,
F∶AF → AFout, and K0∶AF → DG that classify AF algebras are essentially the same
(_eorem 6.7).

2 The Category of Bratteli Diagrams BD
_e notion of a Bratteli diagram was introduced by Bratteli to study AF algebras [2].
_ere are various formal deûnitions (just with diòerent formulations) for a Bratteli
diagram; for example, see [6] and [13]. What is behind these deûnitions is the very
special structure of a∗-homomorphism betweenûnite-dimensionalC∗-algebras. _e
following theorem of Bratteli describes this structure [2]. Let us just quote this theo-
rem, with some slight changes, from [4].
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_eorem 2.1 Let A1 = Mn1 ⊕ ⋅ ⋅ ⋅ ⊕Mnk and A2 = Mm1 ⊕ ⋅ ⋅ ⋅ ⊕ Mm l be ûnite-
dimensional C∗-algebras (where the n’s and m’s are non-zero), and let ϕ∶A1 → A2
be a ∗-homomorphism. _en there is a unique l × k matrix E = (a i j) of positive (i.e.,
non-negative) integers with the property that there is a unitary v = (v1 , . . . , v l) in A2
such that if we set ϕ i = π i ○ ϕ∶A1 →Mm i then

v iϕ i(u1 , . . . , uk)v∗i =
⎛
⎜⎜⎜⎜
⎝

u(a i1)
1 0

⋱
u(a ik)

k
0 0(s i)

⎞
⎟⎟⎟⎟
⎠

for (u1 , . . . , uk) ∈ A1 ,

where s i is deûned by the equation ∑k
j=1 a i jn j + s i = m i , for each 1 ≤ i ≤ l . _us, if V1

and V2 denote the column matrices such that V T
1 = (n1 ⋅ ⋅ ⋅ nk) and V T

2 = (m1 ⋅ ⋅ ⋅m l),
then EV1 ≤ V2. Moreover, we have
(i) ϕ is injective if and only if for each j there is an i such that a i j ≠ 0;
(ii) ϕ is unital if and only if EV1 = V2, i.e., s i = 0 for each 1 ≤ i ≤ l .

Proof See [2, Proposition 1.7] and [4, Corollary III.2.2].

Let us call the matrix E in the previous theorem the multiplicity matrix of ϕ, and
denote it by Rϕ (this is the notation used in [1]). In general, let Vi be a k i × 1 matrix
of non-zero positive integers for i = 1, 2; by a multiplicity matrix E = (a i j) from V1
to V2 we shall mean a k2 × k1 matrix of positive integers such that EV1 ≤ V2. We shall
use the notation E∶V1 → V2 to mean that E is a multiplicity matrix from V1 to V2. E
will be called an embedding matrix if for each j there is an i such that a i j ≠ 0 (in other
words, if the algebramap induced by E, as deûned above, is injective).

Let us recall the formulation of the deûnition of a Bratteli diagram in [10, Sections 2
and 3], which uses thematrix language and is more �exible for our purposes.

Deûnition 2.2 By a Bratteli diagram let us mean an ordered pair B = (V , E), V =
(Vn)∞n=1 and E = (En)∞n=1, such that the following hold:
(i) each Vn is a kn × 1 matrix of non-zero positive integers for some kn ≥ 1;
(ii) each En is an embedding matrix from Vn to Vn+1.
Let us denote such a B by the diagram

V1
E1 // V2

E2 // V3
E3 // ⋅ ⋅ ⋅ .

Let us write Enm = Em−1 ⋅ ⋅ ⋅ En+1En for n < m and Enn = I, where I is the identity
matrix of order kn . Note that Enm is amultiplicity matrix from Vn to Vm .

Remark InDeûnition 2.2,wehave in fact deûned thenotion of a “non-zero"Bratteli
diagram. _is is enough forworkingwith non-zero (in particular, unital)AF algebras.
For the zeroAF algebra,we get the zeroBratteli diagram,which is nothing but a single
zero squarematrix of size one, denoted by 0.
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_e Category of Bratteli Diagrams 993

Let BD denote the set of all Bratteli diagrams. We wish to deûne morphisms be-
tween objects in BD to make it a category. In order to formulate the correct no-
tion of morphism for our purposes, we ûrst need to deûne the notion of premor-
phism. Recall that a sequence ( fn)∞n=1 of positive integers is said to be coûnal in N if
sup{ fn ∣ n ∈ N} = +∞.

Deûnition 2.3 Let B = (V , E) and C = (W , S) be Bratteli diagrams. A premor-
phism f ∶B → C is an ordered pair ((Fn)∞n=1 , ( fn)∞n=1) where (Fn)∞n=1 is a sequence of
matrices and ( fn)∞n=1 a coûnal sequence of positive integers with f1 ≤ f2 ≤ ⋅ ⋅ ⋅ such
that the following hold:
(i) each Fn is amultiplicity matrix from Vn to Wfn ;
(ii) the diagram of f ∶B → C commutes:

V1
E1 //

F1

��

V2
E2 //

F2
��

V3
E3 //

F3}}

⋅ ⋅ ⋅

W1 S1

// W2 S2
// W3 S3

// ⋅ ⋅ ⋅ .

Commutativity of the diagram of course amounts to saying that for any positive inte-
ger n we have Fn+1En = S fn fn+1Fn ; that is, the square

Vn
En //

Fn

��

Vn+1

Fn+1

��
Wfn S fn fn+1

// Wfn+1

commutes. (_is implies the general property of commutativity, namely, that any two
paths of maps between the same pair of points in the diagram agree, i.e., have the
same product.)

Let B, C, and D be objects inBD and let f ∶B → C and g∶C → D be premorphisms,
f = ((Fn)∞n=1 , ( fn)∞n=1) and g = ((Gn)∞n=1 , (gn)∞n=1) . _e composition of f and g is
deûned as g f = ((Hn)∞n=1 , (hn)∞n=1) , where Hn = G fnFn and hn = g fn .

Remark In Deûnition 2.3, it is implicitly assumed that the Bratteli diagrams in
question are non-zero. Let us deûne the zero premorphism as follows. Let B be a
Bratteli diagram. _e zero premorphism from B to 0 (the zero Bratteli diagram) is the
ordered pair (B, 0). Similarly, the zero premorphism from 0 to B is (0, B). (Note that
a morphism in a category depends on both the domain and the codomain objects.)
_e composition of the zero premorphism with any other premorphism is deûned to
be zero.

Proposition 2.4 _e setBD,with premorphisms as deûned above asmaps, is a (small)
category.

Proof First let us check that if f ∶B → C and g∶C → D are premorphisms, with
f = ((Fn)∞n=1 , ( fn)∞n=1) and g = ((Gn)∞n=1 , (gn)∞n=1) , then g f given as above, by
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Hn = G fnFn and hn = g fn , is a premorphism. Write B = (V , E), C = (W , S), and
D = (Z , T).

Let n be a positive integer and consider the following diagram:

Vn
En //

Fn

��

Vn+1

Fn+1

��
Wfn S fn fn+1

//

G fn

��

Wfn+1

G fn+1

��
Zhn Thn hn+1

// Zhn+1 .

Since f and g are premorphisms, we have

Thn+1hnHn = Thn+1hnG fnFn

= G fn+1S fn fn+1Fn

= G fn+1Fn+1En

= Hn+1En .

_is shows that g f is indeed a premorphism.
Now for any Bratteli diagram B = (V , E) deûne the premorphism idB ∶B → B by

idB = ((In)∞n=1 , (in)∞n=1) ,where In is the identitymatrix of order equal to the number
of columns of Vn , and in = n. For any premorphisms f ∶B → C and h∶C → B we have
idB h = h and f idB = f .

One checks easily that associativity holds using the associativity of matrix multi-
plication. _is completes the proof that BD, with premorphisms, is a category.

Itwill be clear later that the category BDwith premorphisms is not suitable for the
classiûcation of AF algebras and that we need to consider morphisms—consisting of
equivalence classes of premorphisms—for the purposes of classiûcation.

Deûnition 2.5 Let B, C be Bratteli diagrams, and f , g∶B → C be premorphisms,
i.e., maps in the category BD of Proposition 2.4, with B = (V , E), C = (W , S), f =
((Fn)∞n=1 , ( fn)∞n=1) , and g = ((Gn)∞n=1 , (gn)∞n=1) . Let us say that f is equivalent to g,
and write f ∼ g, if there are sequences (nk)∞k=1 and (mk)∞k=1 of positive integers such
that nk < mk < nk+1 and fnk < gmk < fnk+1 for each k ≥ 1, and the diagram

Vn1
//

Fn1

��

Vm1
//

Gm1

��

Vn2
//

Fn2

��

Vm2
//

Gm2

��

⋅ ⋅ ⋅

Wfn1
// Wgm1

// Wfn2
// Wgm2

// ⋅ ⋅ ⋅

commutes, i.e., each minimal square commutes: for each k ≥ 1,

GmkEnkmk = S fnk gmk
Fnk and Fnk+1Emknk+1 = Sgmk fnk+1

Gmk .

At the end of this section we will give two other deûnitions for equivalence of pre-
morphisms (Deûnition 2.9 and Deûnition 2.10). _esemay bemore natural in some
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_e Category of Bratteli Diagrams 995

sense (since they do not use subsequences), but we shall show that all three equiva-
lence relations are the same (Proposition 2.11).

Remark In Deûnition 2.5, we have deûned the equivalence of a pair of non-zero
premorphisms. _is notion extends in an obvious way to encompass the zero pre-
morphism (which is deûned in the remark following Deûnition 2.3), since for each
Bratteli diagram B,Hom(B, 0) andHom(0, B) have only one element.

Lemma 2.6 Let B,C ∈ BD. _en ∼ is an equivalence relation on the set of premor-
phisms from B to C.

Proof It is obvious that∼ is symmetric. Re�exivity follows fromDeûnition 2.3, using
the coûnality condition. Let f , g , h∶B → C be premorphisms such that f ∼ g and g ∼
h, and let us show that f ∼ h. Write B = (V , E), C = (W , S), f = ((Fn)∞n=1 , ( fn)∞n=1) ,
g = ((Gn)∞n=1 , (gn)∞n=1) , and h = ((Hn)∞n=1 , (hn)∞n=1) .
Choose sequences (nk)∞k=1 and (mk)∞k=1 establishing f ∼ g, according to Deûni-

tion 2.5, and sequences (pk)∞k=1 and (qk)∞k=1 for g ∼ h. Construct sequences (rk)∞k=1
and (sk)∞k=1 inductively as follows to show that f ∼ h. Set n1 = r1. _ere is k0 ≥ 1 such
that pk0 > m1; set qk0 = s1. Each square in the diagram

Vr1
//

Fr1

��

Vm1
//

Gm1

��

Vpk0
//

Gpk0

��

Vs1

Hs1

��
Wfr1

// Wgm1
// Wgpk0

// Whs1

commutes, by the deûnitions of f ∼ g and g ∼ h, and since g is a premorphism. _us,
Hs1Er1 s1 = S fr1 hs1

Fr1 .
_ere is k1 ≥ 1 such that mk1 > pk0+1; set nk1+1 = r2. In the diagram

Vs1
//

Hs1

��

Vpk0+1
//

Gpk0+1

��

Vmk1
//

Gmk1

��

Vr2

Fr2

��
Whs1

// Wgpk0+1
// Wgmk1

// Wfr2 ,

each square commutes, and so we have Fr2Es1 r2 = Shs1 fr2 Hs1 .
Continuing this procedure we obtain sequences (rk)∞k=1 and (sk)∞k=1 with r1 < s1 <

r2 < s2 < ⋅ ⋅ ⋅ and fr1 < hs1 < fr2 < hs2 < ⋅ ⋅ ⋅ such that commutativity holds as required
in Deûnition 2.5 for f ∼ h. _is shows that ∼ is transitive, and so it is an equivalence
relation.

Let us call an equivalence class of premorphisms between Bratteli diagrams B
and C, with respect to the relation ∼, a morphism from B to C. Let us denote the
equivalence class of a premorphism f ∶B → C by [ f ]∶B → C, or if there is no confu-
sion, just by f .

_e equivalence class of the zero premorphism (which makes sense only when
B = 0 or C = 0) is called the zero morphism (see the remark preceding Lemma 2.6).
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_e composition of morphisms [ f ]∶B → C and [g]∶C → D should deûned as
[g f ]∶B → D where g f is the composition of premorphisms. _is composition is
well deûned, as is shown in the proof of the following theorem.

_eorem 2.7 _e set BD, with morphisms as deûned above, is a category.

Proof First, wemust show that the composition of two morphisms is well deûned,
i.e., independent of the choice of representatives. Let f , l ∶B → C and g , h∶C → D be
premorphisms such that f ∼ l and g ∼ h, and let us show that g f ∼ hl .

Write B = (V , E), C = (W , S), and D = (Z , T), and f = ((Fn)∞1 , ( fn)∞n=1) , g =
((Gn)∞n=1 , (gn)∞1 ) , and g f = ((Un)∞n=1 , (un)∞1 ) . _en un = g fn andUn = G fnFn , ac-
cording to Deûnition 2.3. Also write h = ((Hn)∞1 , (hn)∞n=1) , l = ((Ln)∞n=1 , (ln)∞1 ) ,
and hl = ((Xn)∞n=1 , (xn)∞1 ) . _en xn = h ln and Xn = H lnLn , according to Deûni-
tion 2.3.

Let (nk)∞k=1 and (mk)∞k=1 be sequences exhibiting the equivalence f ∼ l , and let
(pk)∞k=1 and (qk)∞k=1 be sequences exhibiting the equivalence g ∼ h, according to
Deûnition 2.5. Let us construct sequences (rk)∞k=1 and (sk)∞k=1 exhibiting the equiva-
lence g f ∼ hl . Set n1 = r1. _ere is k0 ≥ 1 such that pk0 > fn1 . _ere is k1 ≥ 1 such that
lmk1

≥ qk0 ; set s1 = mk1 . Consider the diagram

Wfr1
//

G fr1

��

Wpk0
//

Gpk0

��

Wqk0
//

Hqk0

��

Wls1

H ls1

��
Zg fr1

// Zgpk0
// Zhqk0

// Zh ls1
.

Each square in this diagram commutes, because g and h are premorphisms and g ∼ h.
_us H ls1 S fr1 ls1 = Tur1 xs1

G fr1 (note that ur1 = g fr1 and xs1 = h ls1 ). Hence the diagram

Vr1
//

Fr1

��

Vs1

Ls1

��
Wfr1

//

G fr1

��

Wls1

H ls1

��
Zur1

// Zxs1

commutes, and then we have r1 < s1, ur1 < xs1 , and Xs1Er1 s1 = Tur1 xs1
Ur1 .

_ere is k2 ≥ 1 such that qk2 > ls1 . _ere is k3 ≥ 1 with fnk3
≥ pk2+1; set nk3 = r2.

Each square in the following diagram commutes:

Wls1
//

H ls1

��

Wqk2
//

Hqk2

��

Wpk2+1
//

Gpk2+1

��

Wfr2

G fr2

��
Zh ls1

// Zhqk2

// Zgpk2+1
// Zg fr2

.
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_us, we have G fr2 S ls1 fr2 = Txs1 ur2
H ls1 . _erefore the diagram

Vs1
//

Ls1

��

Vr2

Fr2

��
Wfr1

//

H ls1

��

Wls1

G fr2

��
Zxs1

// Zur2

commutes, and then we have s1 < r2, xs1 < ur2 , and Ur2Es1 r2 = Txs1 ur2
Xs1 .

Continuing this procedure,we obtain sequences (rk)∞k=1 and (sk)∞k=1 such that r1 <
s1 < r2 < s2 < ⋅ ⋅ ⋅ and ur1 < xs1 < ur2 < xs2 < ⋅ ⋅ ⋅ and the commutativity required in
Deûnition 2.5 for g f ∼ hl is valid. Hence, [g f ] = [hl].
Finally, since by Proposition 2.4 BD with premorphisms is a category, it follows

that composition of morphisms as deûned, which we have shown is well deûned,
makes BD a category.

Let us refer to BD, with morphisms as deûned above, as the category of Bratteli
diagrams.

It is tempting to propose an alternative deûnition for equivalence of two premor-
phisms (cf. Deûnition 2.5) as follows: f ∼ g if the diagram containing both f and g
commutes, in the sense that each triangle and each square in the diagram is com-
mutative (alternatively, any two paths with the same endpoints agree). However, this
relation isnot transitive, even ifwe strengthen the deûnition of a premorphism to con-
sist of only embedding matrices instead ofmultiplicity matrices. _e point is that an
embedding matrix is not necessarily injective, as is seen with the following example.

Example 2.8 _e following embeddingmatrices E1, E2, and E3 are such that E3E1 =
E3E2, but E1 ≠ E2. Let V1 = (1), V2 = (2

2), V3 = (6), E1 = (2
2), E2 = (02), and

E3 = (1 2). _us, E1 , E2∶V1 → V2 and E3∶V2 → V3 are embedding matrices. We have
E3E1 = E3E2 = (4), but E1 ≠ E2. _e only thing we can say is that there is a unitary
u ∈ C∗(V3) such that h(E3)h(E1) = (Adu)h(E3)h(E2), by Lemmas 3.4 and 3.5, but
h(E1) ≠ h(E2), since E1 ≠ E2. (See the remark following Lemma 3.4 for notation.)

Here are two correct alternative formulations of the deûnition for equivalence of
premorphisms. We shall use the ûrst one in a number of places later.

Deûnition 2.9 Let f , g∶B → C be premorphisms in BD such that B = (V , E),
C = (W , S), f = ((Fn)∞n=1 , ( fn)∞n=1) , and g = ((Gn)∞n=1 , (gn)∞n=1) . Let us say that f
is equivalent to g, in the second sense, if for each n ≥ 1 there is an m ≥ fn , gn such that
S fnmFn = SgnmGn .

Deûnition 2.10 Let f , g∶B → C be premorphisms in BD such that B = (V , E),
C = (W , S), f = ((Fn)∞n=1 , ( fn)∞n=1) , and g = ((Gn)∞n=1 , (gn)∞n=1) . Let us say that f
is equivalent to g, in the third sense, if for each n ≥ 1 and for each k ≥ n, there is an
m ≥ fn , gk such that S fnmFn = SgkmGkEnk .
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Let us show that these two deûnitions are equivalent to Deûnition 2.5.

Proposition 2.11 Deûnitions 2.5, 2.9, and 2.10 are equivalent.

Proof _e fact that these deûnitions are equivalent is based on the following obser-
vation. If we assume that a pair of premorphisms are equivalent in the sense of any
one of these deûnitions, then the union of the corresponding diagrams is commuta-
tive at inûnity, in the sense that any two paths with the same endpoints agree, a�er
going suõciently further out, i.e., composingwith a long enough subsequent path. In
fact, this is, in each sense, just a reformulation of the deûnition. (But let us proceed,
more prosaically perhaps, in cyclic order.)

Deûnition 2.5 implies Deûnition 2.9. Suppose that f ∼ g in the sense of Deûni-
tion 2.5. Let n ≥ 1 and assume that fn ≤ gn . _ere is k ≥ 1 such that nk ≥ n. _us,
fn ≤ fnk and gn ≤ gmk . Using Deûnition 2.5 and the fact that f , g are premorphisms
we have

S fn gmk
Fn = S fnk gmk

S fn fnk
Fn

= S fnk gmk
FnkEnnk

= GmkEnkmkEnnk

= Sgn gmk
Gn .

_erefore, if fn ≤ gn we have S fn gmk
Fn = Sgn gmk

Gn . Similarly, if gn < fn , there is l ≥ 1
such that gn ≤ fn ≤ fm l and S fn fml

Fn = Sgn fml
Gn . Set max(gmk , fm l ) = m. _en we

have S fnmFn = SgnmGn .

Deûnition 2.9 impliesDeûnition 2.10. Suppose that k, n are positive integers with
k ≥ n. Applying Deûnition 2.9, we get m ≥ fk , gk such that S fkmFk = SgkmGk . Using
Deûnition 2.9 and the fact that f is a premorphism we have

S fnmFn = S fkmS fn fkFn

= S fkmFkEnk

= SgkmGkEnk .

_erefore, S fnmFn = SgkmGkEnk .

Deûnition 2.10 implies Deûnition 2.5. Set n1 = 1. Applying Deûnition 2.10, one
obtains m ≥ fn1 , gn1 such that S fn1 mFn = Sgn1 mGn . Since {gk ∣ k ≥ 1} is coûnal in N,
there is m1 > n1 such that gm1 > m. Using Deûnition 2.9 and the fact that g is a
premorphism, we have

S fn1 gm1
Fn1 = Sgn1 gm1

Gn1 = Gm1En1m1 .

Continuing this procedure, we obtain sequences (nk)∞k=1 and (mk)∞k=1 of positive in-
tegers that satisfy Deûnition 2.5.
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3 The Category of AF Algebras and the Functor B

To deûne the category of AF algebrasAF, in such away thatwewill be able to deûne a
functor B from AF to BD, ûrst we need to identify exactly what the Bratteli diagram
of an AF algebra depends on.

Let A = ⋃n≥1 An be an AF algebra, where (An)∞n=1 is an increasing sequence of
ûnite-dimensional C∗-subalgebras of A. Since there are inûnitely many sequences
with this property, we need to ûx one of them. Each An is ∗-isomorphic to a ûnite-
dimensional C∗-algebra A′n = Mm1 ⊕ ⋅ ⋅ ⋅ ⊕Mm l via themap ϕn ∶An → A′n . We then
obtain the ∗-homomorphism ϕ′n ∶A′n → A′n+1 with ϕ′n = ϕn+1ϕ−1

n , and the following
diagram commutes:

An
� � //

ϕn

��

An+1

ϕn+1

��
A′n ϕ′n

// A′n+1 .

By _eorem 2.1, there is a multiplicity matrix En corresponding to ϕ′n ; that is,
En = Rϕ′n . But En depends on ϕn and ϕn+1, as a diòerent choice of ϕn permuting iden-
tical direct summands of A′n of course results in a diòerent Rϕ′n .

Deûnition 3.1 Let AF denote the category whose objects are all triples

(A, (An)∞n=1 , (ϕn)∞n=1) ,

where A is an AF algebra, (An)∞n=1 is an increasing sequence of ûnite-dimensional
C∗-subalgebras of A such that⋃∞n=1 An is dense in A, and each ϕn is a ∗-isomorphism
from An onto a C∗-algebra A

′

n = Mm1 ⊕ ⋅ ⋅ ⋅ ⊕Mm l for some m1 , . . . ,m l depending
on An .

Let A1 = (A, (An)∞n=1 , (ϕn)∞n=1) and A2 = (B, (Bn)∞n=1 , (ψn)∞n=1) be in AF. By a
morphism ϕ from A1 to A2 let us just mean a ∗-homomorphism from A to B. _en
AF with morphisms thus deûned is a category. Let us call AF with morphisms as
deûned the category of AF algebras.

Remark In Deûnition 3.1, we have ûxed a sequence of ∗-isomorphisms (ϕn)∞n=1
for the AF algebra (A, (An)∞n=1 , (ϕn)∞n=1) to be able to associate a particular Bratteli
diagram to the algebra. In [2], Bratteli also ûxed a sequence of systems ofmatrix units
for theAF algebra tobe able to associate the diagram. _ese are equivalentprocedures.

Next we quote a result of Bratteli with slight changes [2], which will be used to
justifyDeûnition 3.3, below, and in a number of places later. Before that, let us ûx the
following notation which will be used frequently. We need this to avoid restricting
the results to just the unital case.

Notation _roughout this note, for a C∗-algebra A, we shall use two (minimal)
unitizations A∼ and A+ as deûned in [18]. In fact, when A is not unital, both of them
are equal and contain A as a maximal ideal of codimension one. When A is unital,
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A∼ = A but again A+ contains A as a maximal ideal of codimension one. _e units
of A∼ and A+ will both be denoted by 1.

Lemma 3.2 Let A = ⋃n≥1 An be an AF algebra where (An)∞n=1 is an increasing se-
quence of ûnite-dimensional C∗-subalgebras of A. Let B be a ûnite-dimensional C∗-
subalgebra of A. _en for each ε > 0 there is a unitary u ∈ A∼ with ∥u − 1∥ < ε and a
positive integer n such that uBu∗ ⊆ An .

Proof In the unital case, the lemma is essentially [2, Lemma 2.3]. To deal with the
non-unital case, just add a unit to both algebras and use the same lemma.

Deûnition 3.3 Let A = (A, (An)∞n=1 , (ϕn)∞n=1) be in the category AF, and let us
deûne B(A) in BD as follows. Consider the given isomorphisms ϕn ∶An → A′n and
deûne ϕ′n ∶A′n → A′n+1 by ϕ′n = ϕn+1ϕ−1

n , for each n ≥ 1; then the following diagram
commutes, for each n:

An
� � //

ϕn

��

An+1

ϕn+1

��
A′n ϕ′n

// A′n+1 .

Write A′n =Mmn1 ⊕ ⋅ ⋅ ⋅ ⊕Mmnkn
, and set

Vn =
⎛
⎜
⎝

mn1
⋮

mnkn

⎞
⎟
⎠
.

By _eorem 2.1, there is a unique embedding matrix En corresponding to ϕ′n ; that is,
En = Rϕ′n . Set B(A) = ((Vn)∞n=1 , (En)∞n=1) .

Let ϕ∶A1 → A2 be a morphism in AF where A1 = (A, (An)∞n=1 , (ϕn)∞n=1) and
A2 = (B, (Bn)∞n=1 , (ψn)∞n=1) , in otherwords, a∗-homomorphism fromA to B. Deûne
B(ϕ)∶B(A1) → B(A2) as follows. _ere is an f1 ≥ 1 and a unitary u1 ∈ B∼ such that
u1ϕ(A1)u∗1 ⊆ B f1 and ∥u1 − 1∥ < 1

2 , by Lemma 3.2. Let g1∶A1 → B f1 be such that
g1 = (Adu1) ○ ϕ ↾A1 . Now deûne η1∶A′1 → B′f1 by η1 = ψ f1 g1ϕ−1

1 . Denote by F1 the
multiplicity matrix corresponding to η1, according to _eorem 2.1; that is, F1 = Rη1 .

Similarly, choose unitaries u2 , u3 , . . . in B∼ and positive integers f2 , f3 , . . . with
f1 ≤ f2 ≤ ⋅ ⋅ ⋅ such that unϕ(An)u∗n ⊆ B fn , ∥un − 1∥ < 1

2 , for each n ≥ 1, and the
sequence ( fn)∞n=1 is coûnal inN. (_e condition ∥un − 1∥ < 1

2 is important and will be
used in the proof of Proposition 3.8.) Let gn ∶An → B fn be such that gn = (Adun) ○
ϕ ↾An and deûne ηn ∶A′n → B′fn by ηn = ψ fn gnϕ−1

n ; set Rηn = Fn . We will show that
((Fn)∞n=1 , ( fn)∞n=1) is a premorphism from B(A1) to B(A2) (see Proposition 3.8).
Denote byB(ϕ) the equivalence class of the premorphism ((Fn)∞n=1 , ( fn)∞n=1) (as in
Deûnition 2.5). _e following (a priori non-commutative) diagram illustrates the idea
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of this deûnition:

A′1
ϕ′1 //

ϕ−1
1
��

A′2
ϕ′2 //

ϕ−1
2
��

A′3
ϕ′3 //

ϕ−1
3
��

⋅ ⋅ ⋅

A1
� � //

(Ad u1)ϕ
��

A2
� � //

(Ad u2)ϕ

  

A3
� � //

(Ad u3)ϕ

!!

⋅ ⋅ ⋅

B f1
� � //

ψ1

��

B2
� � //

ψ2

��

B f2
� � //

ψ3

��

⋅ ⋅ ⋅

B′1 ψ′1
// B′2 ψ′2

// B′3 ψ′3
// ⋅ ⋅ ⋅ .

In an obvious way, the diagram associated to the zero algebra in AF is the zero Brat-
teli diagram, and the morphism associated to the zero homomorphism is the zero
morphism.

We shall need a number of lemmas to show that B∶AF → BD is well deûned, i.e.,
that B(ϕ) is independent of the choice of sequences ( fn)∞n=1 and (un)∞n=1. _e ûrst
two lemmas arewell known in the special case of injective ∗-homomorphisms. Before
that, let us introduce an important notion (or perhaps just notation!) thatwill be used
frequently.

Remark Let ϕ∶A → B be a ∗-homomorphism between ûnite-dimensional C∗-
algebras. By themultiplicitymatrix of ϕ, Rϕ , wemean that there have been implicitly
ûxed two ∗-isomorphisms ϕ1∶A → A′ and ϕ2∶B → B′, where A′ and B′ are ûnite-
dimensional C∗-algebrasMn1 ⊕⋅ ⋅ ⋅⊕Mnk andMm1 ⊕⋅ ⋅ ⋅⊕Mm l , respectively, and Rϕ
is themultiplicity matrix of ϕ2ϕϕ−1

1 ∶A′ → B′, according to _eorem 2.1.

Lemma 3.4 Let ϕ∶A → B and ψ∶B → C be ∗-homomorphisms between ûnite-
dimensional C∗-algebras. _en Rψϕ = RψRϕ .

Proof One can give a proof for the case of injective ∗-homomorphisms using the
matrix units [14, Lemma 15.3.2], and it is easy to conclude it for the general case using
thematrix language and_eorem 2.1.

Remark Let Vi be a column matrix of non-zero positive integers for i = 1, 2 and
let E∶V1 → V2 be amultiplicity matrix. Write V T

1 = (n1 ⋅ ⋅ ⋅ nk) and V T
2 = (m1 ⋅ ⋅ ⋅m l).

Let C∗(V1) denote the C∗-algebraMn1 ⊕ ⋅ ⋅ ⋅ ⊕Mnk and similarly for C∗(V2). Write
E = (a i j). _en there is a canonical ∗-homomorphism h(E)∶C∗(V1) → C∗(V2)
which is deûned by

π i(h(E)(u1 , . . . , uk)) =
⎛
⎜⎜⎜⎜
⎝

u(a i1)
1 0

⋱
u(a ik)

k
0 0(s i)

⎞
⎟⎟⎟⎟
⎠

for (u1 , . . . , uk) ∈ C∗(V1),

https://doi.org/10.4153/CJM-2015-001-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-001-8


1002 M. Amini, G. A. Elliott, and N. Golestani

where s i is such that∑k
j=1 a i jn j+s i = m i , for each 1 ≤ i ≤ l . Recall that for a unitalC∗-

algebra A and a unitary element u in A, the ∗-isomorphism Adu∶A → A is deûned
by (Adu)(a) = uau∗ (a ∈ A). In particular, the conclusion of _eorem 2.1 could be
summarized as ϕ = (Adu)h(E), where u = v∗.

We shall need the following lemma in a number of places later. It is proved in
[17,_eorem I.11.9], and also is obvious in view of_eorem 2.1 and the remark above.

Lemma 3.5 Let ϕ,ψ∶A → B be ∗-homomorphisms between ûnite-dimensional C∗-
algebras. _en Rϕ = Rψ if and only if there is a unitary u in B such that ϕ = (Adu)ψ.

_e following corollary (used, if not explicitly stated, in [2]) is given in the case of
injective ∗-homomorphisms in [14, Lemma 15.3.2].

Corollary 3.6 Let Vi be a column matrix of non-zero positive integers for 1 ≤ i ≤ 4.
Let E1∶V1 → V2, E2∶V3 → V4, E3∶V1 → V3, and E4∶V2 → V4 be multiplicity matrices
such that the diagram

V1
E1 //

E3
��

V2

E4

��
V3 E2

// V4

commutes; that is, E4E1 = E2E3. Let ϕ1∶C∗(V1) → C∗(V2), ϕ2∶C∗(V3) → C∗(V4),
ϕ3∶C∗(V1) → C∗(V3), and ϕ4∶C∗(V2) → C∗(V4) be ∗-homomorphisms such that
Rϕ i = E i for 1 ≤ i ≤ 4. _en there is a unitary u ∈ C∗(V4) such that the following
diagram commutes:

C∗(V1)
ϕ1 //

ϕ3

��

C∗(V2)

(Ad u)ϕ4

��
C∗(V3) ϕ2

// C∗(V4);

i.e., (Adu)ϕ4ϕ1 = ϕ2ϕ3.

Proof By Lemma 3.4 we have Rϕ4ϕ1 = E4E1 = E2E3 = Rϕ2ϕ3 . _us by Lemma 3.5,
there is a unitary u ∈ C∗(V4) such that (Adu)ϕ4ϕ1 = ϕ2ϕ3.

Nextwe give a slightmodiûcation of [2,Lemma 2.4]. Since our∗-homomorphisms
are not assumed to be unital, we prove a non-unital version which is suitable for our
purposes. _is lemma gives a criterion to check whether two ∗-homomorphisms be-
tween ûnite-dimensional C∗-algebras have the same multiplicity matrices. We will
use it to show that the functor B∶AF → BD is well deûned (in the proof of Proposi-
tion 3.8) and in a number of places later.

Lemma 3.7 Let ϕ,ψ∶A → B be ∗-homomorphisms between ûnite-dimensional C∗-
algebras such that ∥ϕ − ψ∥ < 1. _en there is a unitary u in B such that ϕ = (Adu)ψ
and hence Rϕ = Rψ .
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Proof Let {e li j ∶ 1 ≤ l ≤ k, 1 ≤ i , j ≤ n l} be a set ofmatrix units forA. Set pl
i j = ϕ(e li j)

and q l
i j = ψ(e li j), for each 1 ≤ l ≤ k and 1 ≤ i , j ≤ n l . Fix 1 ≤ l ≤ k. Since ∥pl

11−q l
11∥ < 1,

by [11, Lemma 1.8] there is a partial isometry w l ∈ B such that pl
11 = w lw∗

l and q l
11 =

w∗
l w l . _en w l q l

11w
∗
l = p11. Set

k

∑
l=1

n l

∑
i=1

pl
i1w l q l

1i = w .

_us we have wq l
i jw

∗ = pl
i j , for the above values of i , j, l . Also we have ww∗ = ϕ(1)

and w∗w = ψ(1), and so w is a partial isometry from ψ(1) to ϕ(1). If ϕ and ψ are
unital, the proof is complete at this point. Since B is ûnite-dimensional, there is a
partial isometry v ∈ B such thatw+v is unitary andwv∗ = w∗v = 0; setw+v = u. We
have vq l

i j = vψ(1)q l
i j = vw∗wq l

i j = 0, and similarly q l
i jv

∗ = 0, for the above values of
i , j, l . _erefore, uq l

i ju
∗ = wq l

i jw
∗ = pl

i j , and so ϕ = (Adu)ψ.

Proposition 3.8 B∶AF→ BD is a functor.

Proof First, let us show that B is well deûned. Following the notation of Def-
inition 3.3, we need to show ûrst that ((Fn)∞n=1 , ( fn)∞n=1) is a premorphism from
B(A1) = (V , E) to B(A2) = (W , S). Fix n ≥ 1. Consider the following (a priori
non-commutative) diagram:

An
� � //

gn

��

An+1

gn+1

��
B fn
� � // B fn+1 .

Since ∥un−1∥ < 1
2 ,we have ∥gn−gn+1∥An ≤ ∥(Adun)ϕ−(Adun+1)ϕ∥ ≤ 2∥un−un+1∥ <

1, for each n ≥ 1. Applying Lemma 3.7 for gn ∶An → B fn+1 and gn+1 ↾An ∶An → B fn+1 ,
we get Fn+1En = S fn fn+1Fn . _is shows that ((Fn)∞n=1 , ( fn)∞n=1) is a premorphism.

To check that the morphism B(ϕ) is well deûned we also need to show that it is
independent of the choice of un ’s and fn ’s. _erefore, let (vn)∞n=1 be another sequence
of unitaries in B∼ and (hn)∞n=1 an increasing coûnal sequence of positive integers such
that vnϕ(An)v∗n ⊆ Bhn and ∥vn − 1∥ < 1

2 , for each n ≥ 1. Let kn ∶An → Bhn be such
that kn = (Ad vn) ○ ϕ ↾An and set Hn = Rkn , the multiplicity matrix of kn . We have
to show that the two premorphisms ((Fn)∞n=1 , ( fn)∞n=1) and ((Hn)∞n=1 , (hn)∞n=1) are
equivalent.
Fix n ≥ 1. Wemay assume, without loss of generality, that fn ≤ hn . _en we have

the following (a priori non-commutative) diagram:

An

gn

��

kn

!!
B fn
� � // Bhn .
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We have ∥gn − kn∥ ≤ ∥(Adun)ϕ − (Ad vn)ϕ∥ ≤ 2∥un − vn∥ < 1. Applying Lemma 3.7
for gn ∶An → Bhn and kn ∶An → Bhn , we conclude that the following diagram is com-
mutative:

Vn

Fn

��

Hn

""
Wfn S fn hn

// Whn .

_erefore, the premorphisms ((Fn)∞n=1 , ( fn)∞n=1) and ((Hn)∞n=1 , (hn)∞n=1) are equiv-
alent, by Proposition 2.11. _is completes the proof that themap B is well deûned.

Suppose that ϕ∶A1 → A2 and ψ∶A2 → A3 are morphisms in AF. Let us
show that B(ψϕ) = B(ψ)B(ϕ). Write A1 = (A, (An)∞n=1 , (ϕn)∞n=1) , A2 =
(B, (Bn)∞n=1 , (ψn)∞n=1) , A3 = (C , (Cn)∞n=1 , (ηn)∞n=1) , B(A1) = (V , E), B(A2) =
(W , S), and B(A3) = (Z , T). _us, ϕ and ψ are ∗-homomorphisms from A to B
and from B to C, respectively. Choose a sequence of unitaries (un)∞n=1 in B∼ with
∥un − 1∥ < 1

4 , n ∈ N, and a sequence of positive integers ( fn)∞n=1 which construct
a premorphism ((Fn)∞n=1 , ( fn)∞n=1) for B(ϕ), according to Deûnition 3.3. Similarly,
choose (vn)∞n=1 with ∥vn − 1∥ < 1

8 , n ∈ N, and (gn)∞n=1 which give a premorphism
((Gn)∞n=1 , (gn)∞n=1) for B(ψ) and choose (wn)∞n=1 with ∥wn − 1∥ < 1

8 , n ∈ N, and
(hn)∞n=1 which give apremorphism ((Hn)∞n=1 , (hn)∞n=1) forB(ψϕ), according toDef-
inition 3.3.
Fix a positive integer n. _en (Adun)ϕ(An) ⊆ B fn , (Ad v fn)ψ(B fn) ⊆ Cg fn

, and
(Adwn)ψϕ(An) ⊆ Chn . We may assume, without loss of generality, that g fn ≤ hn .
_en we have the following (a priori non-commutative) diagram:

An

(Ad un)ϕ
��

(Adwn)ψϕ

��

B fn

(Ad v fn )ψ

��
Cg fn

� � // Chn .

Let us estimate the distance between the ∗-homomorphisms

(Ad v fn)ψ ○ (Adun)ϕ∶An → Chn and (Adwn)ψϕ∶An → Chn .

For any x ∈ Awe have

∥(Ad v fn)ψ ○ (Adun)ϕ(x) − (Adwn)ψϕ(x)∥
≤ ∥(Ad v fn)ψ ○ (Adun)ϕ(x) − (Ad v fn)ψϕ(x)∥

+ ∥(Ad v fn)ψϕ(x) − (Adwn)ψϕ(x)∥
≤ ∥(Adun)ϕ(x) − ϕ(x)∥ + 2∥v fn −wn∥∥x∥
≤ 2∥un − 1∥∥x∥ + 2∥v fn −wn∥∥x∥.
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_us,

∥(Ad v fn)ψ ○ (Adun)ϕ − (Adwn)ψϕ∥ ≤ 2∥un − 1∥ + 2∥v fn −wn∥ <
1
2
+ 1

4
+ 1

4
= 1.

By Lemma 3.7, the homomorphisms (Ad v fn)ψ ○ (Adun)ϕ and (Adwn)ψϕ have the
samemultiplicity matrices. _us, the diagram

Vn

Fn

��
Hn

��

Wfn

G fn

��
Zg fn

// Zhn

is commutative. By Deûnition 2.5, the premorphism ((Hn)∞n=1 , (hn)∞n=1) is equiv-
alent to the composition of ((Gn)∞n=1 , (gn)∞n=1) and ((Fn)∞n=1 , ( fn)∞n=1) . Note that
this composition of premorphisms is an admissible premorphism for ψϕ in the sense
required in Deûnition 3.3, since ∥w fnun − 1∥ < 1

4 +
1
8 <

1
2 . By Deûnition 3.3 (which is

vindicated by the fact, proved above, that B(ψϕ) deûned in this way is well deûned),
this composition represents B(ψϕ), and so B(ψϕ) = B(ψ)B(ϕ).

_e remaining condition,B(idA) = idB(A), is clear.

_e following lemma is used to prove_eorem 3.11. _e hypothesis of this lemma
is just Bratteli’s notion of equivalence of Bratteli diagrams in his paper [2], which is
easily seen to be the same as isomorphism in our category. We include a proof for the
convenience of the reader.

Lemma 3.9 Let A1 = (A, (An)∞n=1 , (ϕn)∞n=1) , A2 = (B, (Bn)∞n=1 , (ψn)∞n=1) be in
AF with B(A1) = ((Vn)∞n=1 , (En)∞n=1) , and B(A2) = ((Wn)∞n=1 , (Sn)∞n=1) . _en
A1 ≅ A2 inAF if and only if there are sequences (rk)∞k=1 and (tk)∞k=1 of positive integers
with r1 < t1 < r2 < t2 < ⋅ ⋅ ⋅, and there are multiplicity matrices Rk ∶Vrk → Wtk and
Tk ∶Wtk → Vrk+1 , for each k ≥ 1, such that the following diagram commutes:

Vr1
Er1 r2 //

R1 !!

Vr2
Er2 r3 //

R2 !!

Vr3
// ⋅ ⋅ ⋅

Wt1 S t1 t2

//
T1

==

Wt2 S t2 t3

//
T2

==

⋅ ⋅ ⋅ .

Proof First suppose that A1 ≅ A2. _ere is a ∗-isomorphism ϕ∶A → B such that
ϕ(⋃∞n=1 An) = ⋃∞n=1 Bn , by [2, Lemma 2.6]. Set r1 = 1. Since ϕ(⋃∞n=1 An) = ⋃∞n=1 Bn ,
there is t1 > 1 with ϕ(Ar1) ⊆ Bt1 . Similarly there is r2 > t1 such that ϕ−1(Bt1) ⊆ Ar2 .
Continuing this procedure, we obtain sequences (rk)∞k=1 and (tk)∞k=1 with r1 < t1 <
r2 < t2 < ⋅ ⋅ ⋅ such that ϕ(Ark) ⊆ Btk and ϕ−1(Btk) ⊆ Ark+1 , for each k ≥ 1. Note
that C∗(Vn) = A′n and C∗(Wn) = B′n , for n ≥ 1. Fix k ≥ 1. Deûne εk ∶A′rk →
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B′tk and δk ∶B
′
tk → A′rk+1

with εk(x) = ψtk(ϕ(ϕ−1
rk (x))) , x ∈ A′rk , and δk(x) =

ϕrk+1(ϕ−1(ψ−1
tk (x))) , x ∈ B

′
tk . Set

αk = ϕ′rk+1−1ϕ
′
rk+1−2 ⋅ ⋅ ⋅ ϕ′rk and βk = ψ′tk+1−1 ψ

′
tk+1−2 ⋅ ⋅ ⋅ψ′tk .

_en δkεk = αk and εk+1δk = βk . Set Rk = Rεk and Tk = Rδk . By Lemma 3.4 we have
TkRk = Erk rk+1 and Rk+1Tk = Stk tk+1 , i.e., the above diagram commutes.

Now let us prove the converse. Deûne αk and βk as above. Let ε1 = h(R1) and δ′1 =
h(T1) (see the remark following Lemma 3.4 for the notation h(⋅)). By Corollary 3.6,
there is a unitary u ∈ A′r2 such that (Adu)δ′1ε1 = α1; set δ1 = (Adu)δ′1, thus δ1ε1 =
α1. Set ε′2 = h(R2). Again by Corollary 3.6, there is a unitary v ∈ B′t2 such that
(Ad v)ε′2δ1 = β1; set ε2 = (Ad v)ε′2, thus ε2δ1 = β1. Continuing this procedure, we
obtain injective ∗-homomorphisms εk ∶A′rk → B′tk and δk ∶B

′
tk → A′rk+1

, for each k ≥ 1,
such that the following diagram commutes:

A′r1
α1 //

ε1   

A′r2
α2 //

ε2   

A′r3 // ⋅ ⋅ ⋅

B′t1 β1

//
δ1

>>

B′t2 β2
//

δ2

>>

⋅ ⋅ ⋅ .

Let A′ = limÐ→(A′rk , αk) and B′ = limÐ→(B′tk , βk). _us there is an injective ∗-homo-
morphism ε∶A′ → B′. Let αk ∶A′rk → A′ and βk ∶B′tk → B′ be the ∗-homomorphisms
that come from the construction of the direct limit; thus αk+1αk = αk , βk+1βk = βk ,
and εαk = βkεk , for each k ≥ 1. We have βk = βk+1βk = βk+1εk+1δk = εαk+1δk , hence
βk(B′tk) ⊆ ε(A′), for each k ≥ 1; thus ε is also onto and hence is a ∗-isomorphism.
Moreover,

A ≅ limÐ→(A′k , αk) ≅ A′ ≅ B′ ≅ limÐ→(B′k , αk) ≅ B.
_us there is a ∗-isomorphism ϕ∶A→ B such that ϕ(⋃∞n=1 An) ⊆ ⋃∞n=1 Bn . _erefore,
A1 ≅ A2 in AF.

_e following theorem is due to Bratteli ([2], [4, Proposition III.2.7]).

_eorem 3.10 (Bratteli) If A = ⋃n≥1 An and B = ⋃n≥1 Bn have the same Bratteli
diagrams, then they are isomorphic.

In fact, as indicated in Lemma 3.9 above, Bratteli proved more. In the setting of
_eorem 3.10, he showed that if the Bratteli diagram of A is equivalent, in his sense
(which is exactly the same as being isomorphic, in our sense, i.e., in the category of
Bratteli diagrams of_eorem 2.7) to the Bratteli diagram of B, then A is isomorphic
to B.

Recall that a functor F∶C → D was called in [10] a classiûcation functor if F(a) ≅
F(b) implies a ≅ b, for each a, b ∈ C, and a strong classiûcation functor if each iso-
morphism from F(a) onto F(b) is the image of an isomorphism from a to b. With
these concepts, one has a functorial formulation of Bratteli’s theorem.

_eorem 3.11 _e functor B∶AF→ BD is a strong classiûcation functor.
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Proof Let A1 = (A, (An)∞n=1 , (ϕn)∞n=1) and A2 = (B, (Bn)∞n=1 , (ψn)∞n=1) in AF
be such that B(A1) ≅ B(A2). Write B(A1) = ((Vn)∞n=1 , (En)∞n=1) and B(A2) =
((Wn)∞n=1 , (Sn)∞n=1) . _ere are premorphisms f ∶B(A1) → B(A2) and g∶B(A2) →
B(A1) such that [g f ] = [idB(A1)] and [ f g] = [idB(A2)].

Suppose that f = ((Fn)∞n=1 , ( fn)∞n=1) , g = ((Gn)∞n=1 , (gn)∞n=1) , h = g f , and l =
f g where h = ((Hn)∞n=1 , (hn)∞n=1) and l = ((Ln)∞n=1 , (ln)∞n=1) . Choose sequences
(nk)∞k=1 and (mk)∞k=1 for g f ∼ idB(A1) and choose (pk)∞k=1 and (qk)∞k=1 for f g ∼
idB(A2), according to Deûnition 2.5. _us we have

Enkm j = Ehnk m jHnk , Hn jEmkn j = Emk hn j
,(3.1)

Spk q j = S lpk q jLpk , Lp jSqk p j = Sqk lp j
,(3.2)

for any positive integers k and j with k ≤ j. We construct sequences (rk)∞k=1 and
(tk)∞k=1 to apply Lemma 3.9. Set r1 = m1. _e diagram

Vm1

Em1n2 //

I

��

Vn2

Fn2

��
Wfn2

G fn2

��
Vm1 Em1hn2

// Vhn2

commutes by Equation (3.1), where I is the identity matrix with suitable size. Set
R′1 = Fn2Em1n2 . _us the diagram

Vr1

Er1hn2 //

R′1 !!

Vhn2

Wfn2

G fn2

<<

commutes. _ere is j ≥ 1 such that q j > fn2 . _e diagram

Wq j

Sq j p j+1 //

I

��

Wp j+1

Gp j+1

��
Vgp j+1

Fgp j+1

��
Wq j Sq j l p j+1

// Wlp j+1
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commutes, by Equation (3.2). Set T ′
1 = Gp j+1Sq j lp j+1

. _en the diagram

Vgp j+1
Fgp j+1

""
Wq j Sq j l p j+1

//

T′1
==

Wlp j+1

commutes. Since g is a premorphism we have

T ′
1 S fn2 q j = Gp j+1Sq j p j+1S fn2 q j = Gp j+1S fn2 p j+1 = Ehn2 gp j+1

G fn2 .

Hence, the following diagram is commutative:

Vr1

Er1hn2 //

R′1   

Vhn2

Ehn2 gp j+1 // Vgp j+1
Fgp j+1

##
Wfn2 S fn2 q j

//
G fn2

==

Wq j

T′1

==

Sq j l p j+1

// Wlp j+1
.

Set t1 = q j and R1 = S fn2 q jR
′
1. _en the diagram

Vr1

Er1hn2 //

R1   

Vgp j+1
Fgp j+1

""
Wt1 S t1 l p j+1

//
T′1

==

Wlp j+1

is commutative. Continuing this procedure, we obtain sequences (rk)∞k=1 and (tk)∞k=1
of positive integers with r1 < t1 < r2 < t2 < ⋅ ⋅ ⋅, and multiplicity matrices Rk ∶Vrk →
Wtk and Tk ∶Wtk → Vrk+1 , for each k ≥ 1, such that all the diagrams in Lemma 3.9
commute. In fact, by the construction, for each k ≥ 1 there are positive integers xk
and yk with rk ≤ xk ≤ tk and tk ≤ yk ≤ rk+1 such that Rk = S fxk tkFxkErk xk and
Tk = Egyk rk+1

Gyk Stk yk . _erefore, by Lemma 3.9,A1 ≅ A2.
To show that the classiûcation functor B∶AF → BD is strong, note that the ∗-iso-

morphism ϕ∶A→ B given by Lemma 3.9 satisûes ϕ(⋃∞n=1 An) ⊆ ⋃∞n=1 Bn , and there-
fore f above is admissible in Deûnition 3.3, so that B(ϕ) = [ f ].
An alternative proof can be given using [10,_eorem 3] as follows. By_eorem 5.9

we have B = BF and B is a strong classiûcation functor, and by [10, _eorem 3] so
also is F. _is shows that B is the composition of two strong classiûcation functors
and so it is also a strong classiûcation functor.

Corollary 3.12 LetA1 ,A2 ∈ AF. _enA1 ≅ A2 inAF if and only ifB(A1) ≅ B(A2)
in BD.

Proof Since B∶AF → BD is a functor, A1 ≅ A2 implies B(A1) ≅ B(A2). _e
converse follows from _eorem 3.11.
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As an application of_eorem 3.11, we can give a proof of Glimm’s theorem. Recall
that, with the notation of Deûnition 3.1, an AF algebraA = (A, (An)∞n=1 , (ϕn)∞n=1) in
AF is called aUHF algebra if A is unital, each An contains the unit of A, and each An is
a simple C∗-algebra; thus An ≅Mkn , for some kn ≥ 1. Let B(A) = (V , E); thus Vn =
(kn). According to _eorem 2.1, since the ∗-homomorphism ϕn+1ϕ−1

n ∶Mkn →Mkn+1

is unital,wehave kn ∣kn+1 and En = Rϕn+1ϕ−1
n
= kn+1/kn . _erefore, the Brattelidiagram

ofA is independent of the choice of ϕn ’s.
Denote by P the set of all prime numbers. Deûne εA∶P→ N ∪ {0,∞} with

εA(p) = sup{m ≥ 0 ∶ pm ∣kn , for some n ≥ 1}, p ∈ P.

_e following famous result of Glimm is an easy consequence of Proposition 3.8 and
_eorem 3.11.

_eorem 3.13 (Glimm, [11], _eorem 1.12) Let A1 ,A2 ∈ AF be two UHF algebras.
_en A1 ≅ A2 if and only if εA1 = εA2 .

Proof Let A1 = (A, (An)∞n=1 , (ϕn)∞n=1) and A2 = (B, (Bn)∞n=1 , (ψn)∞n=1) . Write
B(A1) = (V , E) and B(A2) = (W , S). According to the remarks preceding this
theorem, there are sequences (kn)∞n=1 and (mn)∞n=1 of natural numbers such that
Vn = (kn) and Wn = (mn), for each n ≥ 1, and k1∣k2∣ ⋅ ⋅ ⋅ and m1∣m2∣ ⋅ ⋅ ⋅. Note that
εA1 = εA2 if and only if

(3.3) ∀n ≥ 1 ∃l ≥ 1 kn ∣m l and ∀l ≥ 1 ∃n ≥ 1 m l ∣kn .

Suppose that A1 ≅ A2. _en by Proposition 3.8, B(A1) ≅ B(A2), i.e., there are
premorphisms f ∶B(A1) → B(A2) and g∶B(A2) → B(A1) such that g f ∼ idB(A1)

and f g ∼ idB(A2), and Condition (3.3) follows.
Now suppose that εA1 = εA2 ; thus, Condition (3.3) is satisûed. In other words,

there are strictly increasing sequences ( fn)∞n=1 and (gn)∞n=1 of non-zero positive
integers such that kn ∣m fn and mn ∣kgn , for each n ≥ 1. Deûne premorphisms
f ∶B(A1) → B(A2) and g∶B(A2) → B(A1) with f = ((Fn)∞n=1 , ( fn)∞n=1) and
g = ((Gn)∞n=1 , (gn)∞n=1) , where Fn = (m fn/kn) and Gn = (kgn/mn). It is easy to
see that g f ∼ idB(A1) and f g ∼ idB(A2); thus, B(A1) ≅ B(A2). _erefore by _eo-
rem 3.11 we haveA1 ≅ A2.
Alternatively (not using _eorem 3.11, but the functorial property of Proposi-

tion 3.8 is still used in the ûrst half of the theorem), A and B can be seen each to
have the structure of an inûnite tensor product of matrix algebras of prime order,
with the multiplicities of the primes determined by the Bratteli diagram data, from
which isomorphism is immediate if the data is the same.

4 A Homomorphism Theorem

Let us consider further theproperties of the functorB∶AF→ BD. _e following result
may be considered as a generalization of part of_eorem 3.11. _eorem 3.11 says that
isomorphisms in the codomain category can be li�ed back to isomorphisms in the
domain category, and in particular to homomorphisms. _e following theorem states
this for arbitrary homomorphisms. (_eorem 3.11 cannot be deduced immediately
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from _eorem 4.1; but see [10].) (_e proofs of the two theorems are similar: roughly
speaking, a two-sided and a one-sided intertwining argument.)

_eorem 4.1 _e functorB∶AF→ BD is a full functor in the sense that ifA1 ,A2 ∈ AF
and f ∶B(A1) → B(A2) is a morphism in BD, then there is a morphism ϕ∶A1 → A2
in AF such that B(ϕ) = f .

Proof Let A1 ,A2 ∈ AF and f ∶B(A1) → B(A2) be amorphism in BD. Write A1 =
(A, (An)∞n=1 , (ϕn)∞n=1) , A2 = (B, (Bn)∞n=1 , (ψn)∞n=1) , B(A1) = ((Vn)∞n=1 , (En)∞n=1) ,
andB(A2) = ((Wn)∞n=1 , (Sn)∞n=1) . Suppose that f is the equivalence class of the pre-
morphism ((Fn)∞n=1 , ( fn)∞n=1) , according to Deûnition 2.3. _us, each Fn is amulti-
plicity matrix from Vn to Wfn and the following diagram commutes:

V1
E1 //

F1

��

V2
E2 //

F2
��

V3
E3 //

F3}}

⋅ ⋅ ⋅

W1 S1

// W2 S2
// W3 S3

// ⋅ ⋅ ⋅ .

By _eorem 2.1, there is a ∗-homomorphism gn ∶An → B fn with multiplicity ma-
trix Fn , i.e., Rgn = Fn , n ≥ 1, and we have the following (a priori non-commutative)
diagram:

A1
� � //

g1

��

A2
� � //

g2
��

A3
� � //

g3~~

⋅ ⋅ ⋅

B1
� � // B2

� � // B3
� � // ⋅ ⋅ ⋅ .

UsingCorollary 3.6,we can replace g2 with (Adu2)g2, for some unitary u2 ∈ B2, such
that the ûrst le� square is commutative. Since unitaries do not change multiplicity
matrices (Lemma 3.5), one can continue this procedure to obtain unitaries (un)n≥2
such that the above diagram is commutative when each gn is replaced by (Adun)gn
(n ≥ 2). _erefore there is a ∗-homomorphism ϕ∶A → B such that ϕ ↾A1= g1 and
ϕ ↾An= (Adun)gn , for each n ≥ 2. Using Lemma 3.5, we have R(Ad un)gn = Fn , n ≥ 2.
_erefore,B(ϕ) = f .

Proposition 4.2 Let B = ((Vn)∞n=1 , (En)∞n=1) be a Bratteli diagram. _en there is an
A ∈ AF such that B(A) = B.

Proof By Deûnition 2.2, each En is an embedding matrix. Set A′n = C∗(Vn) and
hn = h(En), for each n ≥ 1. (See the remark following Lemma 3.4 for the nota-
tions C∗(Vn) and h(En).) By _eorem 2.1, hn ∶A′n → A′n+1 is injective. Now set
A = limÐ→(A′n , hn) and let αn ∶A′n → A denote the ∗-homomorphism that comes from
the construction of the direct limit, n ≥ 1. Set An = αn(A′n) and denote by ϕn ∶An →
A′n the inverse of αn ∶A′n → An (which exists, since each hn is injective). Now A =
(A, (An)∞n=1 , (ϕn)∞n=1) ∈ AF andB(A) = B.

Let AF1 be the subcategory of AF whose objects are unital AF algebras and whose
morphisms are unital homomorphisms; more precisely, (A, (An)∞n=1 , (ϕn)∞n=1) ∈ AF
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is an object of AF1 if A is unital and each An contains the unit of A. _e next propo-
sition follows from part (2) of_eorem 2.1.

Proposition 4.3 Let A ∈ AF and B(A) = (V , E). _en A is in AF1 if and only if
EnVn = Vn+1, for each n ∈ N.

Next we give a criterion to check if the functor B sends two AF algebras to the
same diagram. _e proof is straightforward.

Proposition 4.4 LetA1 andA2 be inAFwithA1 = (A, (An)∞n=1 , (ϕn)∞n=1) andA2 =
(B, (Bn)∞n=1 , (ψn)∞n=1) . _en B(A1) = B(A2) if and only if there is a ∗-isomorphism
ϕ∶A → B such that ϕ(An) = Bn , and the multiplicity matrix of ϕ ↾An ∶An → Bn is the
identity, for each n ≥ 1.

_e following theorem (essentially due to Bratteli) gives a combinatorial criterion
for isomorphism of Bratteli diagrams.

_eorem 4.5 Let B = (V , E) and C = (W , S) be two Bratteli diagrams. _en B ≅ C
inBD if and only if there is a third Bratteli diagram D = (Z , T) that is constructed from
two subsequences of B and C as follows. _ere are positive integers (rk)∞k=1 and (tk)∞k=1
with r1 < t1 < r2 < t2 < ⋅ ⋅ ⋅ such that Z2k−1 = Vrk , Z2k = Wtk , T2k−1,2k+1 = Erk rk+1 , and
T2k ,2k+2 = Stk tk+1 , for each k ≥ 1, i.e., the following diagram is commutative:

Vr1
T1 //

Er1 r2

  
Wt1

S t1 t2

==
T2 // Vr2

Er2 r3

  T3 // Wt2

S t2 t3

==
T4 // Vr3

T5 // Wt3
// ⋅ ⋅ ⋅ .

Proof ChooseA1 andA2 in AF such that B(A1) = B andB(A2) = C, as in Propo-
sition 4.2. We have B ≅ C if and only ifA1 ≅ A2, byCorollary 3.12. Now the statement
follows fromLemma 3.9, on observing that in the proof of this lemma, themultiplicity
matrices Rk and Tk are indeed embedding matrices.

Proposition 4.6 Assume ϕ∶A1 → A2 is a morphism in AF and ((Fn)∞n=1 , ( fn)∞n=1)
is an arbitrary premorphism whose equivalence class is B(ϕ). Write B(A1) = (V , E)
and B(A2) = (W , S).
(i) ϕ is injective if and only if each Fn is an embedding matrix.
(ii) IfA1 ,A2 ∈ AF1, then ϕ is unital if and only if FnVn =Wfn , n ≥ 1.

Proof First suppose that f = ((Fn)∞n=1 , ( fn)∞n=1) is the premorphism associated
to ϕ, as in Deûnition 3.3. In this case, the statements (i) and (ii) follow from
the parts (i) and (ii) in _eorem 2.1. Now suppose that f = ((Fn)∞n=1 , ( fn)∞n=1)
is an arbitrary premorphism, the equivalence class of which is B(ϕ). Let g =
((Gn)∞n=1 , (gn)∞n=1) be a premorphism associated to ϕ, as inDeûnition 3.3. Applying
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Deûnition 2.9 and Proposition 2.11, we see that the statements (i) and (ii) hold for Fn
if and only if they hold for Gn , which they do as shown.

5 Relations with Abstract Classifying Categories

In this section, let us investigate the relation between the following three classifying
categories forAF algebras: the category of Bratteli diagramsBD, the abstract category
AFout, and the abstract category AFout introduced in [10]. In the next section we will
also consider the category of dimension groupsDG introduced in [9].

In particular, now and in the next section we shall show that the three categories
BD, AFout, and DG are all equivalent, and hence are classifying categories for each
other.

Let us also investigate the relation between the strong classiûcation functors
B∶AF → BD, F∶AF → AFout, and F∶AF → AFout, and in the next section, the
relation to the functor K0∶AF→ DG.

_e following lemmamay be considered as part of the literature (basically due to
Glimm, see below); we give a proof anyway (cf. Lemma 4.2 and_eorem 4.3 of [9]).

Lemma 5.1 For each ε > 0 there is a δ > 0 such that if A is a unital C∗-algebra, B is a
C∗-subalgebra of A containing the unit of A, and u is a unitary of A with d(u, B) < δ,
then there is a unitary v ∈ B such that ∥u − v∥ < ε.

Proof _e statement follows from [11, Lemma 1.9]. In fact, in the proof of [11,
Lemma 1.9], Glimm does not use the assumption of orthogonality of projections.
_us putting E1 = E2 = F1 = F2 = 1 in that lemma, the statement follows. _ere
is also a direct proof as follows. Set δ = min{ε, 1

8}. Let A be a unital C∗-algebra, B a
C∗-subalgebra of A containing the unit of A, and u a unitary of A with d(u, B) < δ.
_us there is a ∈ B such that ∥u − a∥ < δ. _us a is invertible. Set v = (aa∗)− 1

2 a;
hence vv∗ = v∗v = 1 and v is a unitary in B. We have

∥aa∗ − 1∥ ≤ ∥aa∗ − au∗∥ + ∥au∗ − uu∗∥
≤ ∥a∥ ∥a∗ − u∗∥ + ∥a − u∥
≤ (∥a∥ + 1)∥a − u∥

≤ 3∥a − u∥ < 1
2
.

_us ∥(aa∗)−1∥ < 2. Using functional calculus we have

∥(aa∗)− 1
2 − 1∥ ≤ ∥(aa∗)−1 − 1∥

≤ ∥(aa∗)−1∥ ∥aa∗ − 1∥
≤ 2∥aa∗ − 1∥
≤ 6∥a − u∥ < 1.
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_erefore we have

∥u − v∥ ≤ ∥u − (aa∗)− 1
2 u∥ + ∥(aa∗)− 1

2 u − v∥

≤ ∥1 − (aa∗)− 1
2 ∥ + ∥(aa∗)− 1

2 ∥ ∥u − a∥
≤ 6∥a − u∥ + 2∥a − u∥
≤ 8∥a − u∥ < ε.

_e following immediate consequence of Lemma 5.1 enables us to approximate the
unitaries of an AF algebra by unitaries of an increasing sequence of C∗-subalgebras
with dense union. We will use this statement in the proof of Lemma 5.3.

Corollary 5.2 Let A = ⋃n≥1 An be a unitalAF algebrawhere (An)∞n=1 is an increasing
sequence of ûnite-dimensional C∗-subalgebras of A each containing the unit of A. _en
u ∈ A is a unitary if and only if there are unitaries (un)∞n=1 such that un ∈ An , n ≥ 1,
and un Ð→ u.

We shall need the following technical lemma in the proof of Lemma 5.4 andCorol-
lary 5.7.

Lemma 5.3 Let B = ⋃n≥1 Bn be an AF algebra where (Bn)∞n=1 is an increasing
sequence of ûnite-dimensional C∗-subalgebras of B. Let A be a ûnite-dimensional
C∗-algebra and let ϕ,ψ∶A → B be ∗-homomorphisms such that ∥ϕ − ψ∥ < 1.
Let u, v be unitaries in B∼ such that there are positive integers n and m such that
uϕ(A)u∗ ⊆ Bn and vψ(A)v∗ ⊆ Bm . _en there is a positive integer k ≥ n,m such that
the ∗-homomorphisms (Adu)ϕ, (Ad v)ψ∶A→ Bk have the samemultiplicitymatrices,
i.e., R(Ad u)ϕ = R(Ad v)ψ .

Proof Let 1 denote the unit of B∼. Set B∼n = Bn + C1, so that B∼ = ⋃n≥1 B∼n . By
Corollary 5.2, there is a positive integer k ≥ n,m and a unitary w ∈ B∼k such that
∥uv∗ − w∥ < 1

2 (1 − ∥ϕ − ψ∥). We have the following (a priori non-commutative)
diagram:

A

(Ad u)ϕ
��

(Ad v)ψ// Bm

Adw
��

Bn
� � // Bk .

Consider the two ∗-homomorphisms (Adw)(Ad v)ψ, (Adu)ϕ∶A→ Bk . We have

∥(Adw)(Ad v)ψ − (Adu)ϕ∥ = ∥(Adwv)ψ − (Adu)ϕ∥ ≤ 2∥wv − u∥ + ∥ϕ − ψ∥ < 1.

Hence by Lemma 3.7, R(Adw)(Ad v)ψ = R(Ad u)ϕ . Now deûne η∶Bk → Bk with η(x) =
(Adw)(x), x ∈ Bk . _en there is a unitary w′ ∈ Bk such that η = Adw′. In fact,
w ∈ B∼k and thusw = a+ λ1, for some a ∈ Bk and λ ∈ C. Setw′ = a+ λ1Bk . Sincew is a
unitary, so is w′, and we have (Adw)(x) = (Adw′)(x), x ∈ Bk . _us η = Adw′ and
hence Rη is the identitymatrix, by_eorem 2.1. On the other hand, (Adw)(Ad v)ψ =
η ○ (Ad v)ψ, and so R(Adw)(Ad v)ψ = Rη○(Ad v)ψ = RηR(Ad v)ψ = R(Ad v)ψ . _erefore
we have R(Ad u)ϕ = R(Ad v)ψ .
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_e functor B∶AF → BD is of course not faithful (we follow [12, 15] for categori-
cal deûnitions). _e following gives useful criteria to check whether the images un-
derB of two morphisms ofAF are equal in BD. _is enables us to make connections
between morphisms of BD and morphisms of the categories AFout and AFout (see
_eorems 5.8 and 5.9 below).

Lemma 5.4 Let A1 ,A2 ∈ AF where A1 = (A, (An)∞n=1 , (ϕn)∞n=1) and A2 =
(B, (Bn)∞n=1 , (ψn)∞n=1) . Let ϕ,ψ∶A1 → A2 be morphisms in AF. _e following state-
ments are equivalent:
(i) B(ϕ) = B(ψ);
(ii) there is a sequence of unitaries (un)∞n=1 in B∼ such that ϕ = (Adun)ψ on An , for

n ≥ 1;
(iii) there is a sequence of unitaries (un)∞n=1 in B∼ such that

ϕ(a) = lim
n→∞

(Adun)ψ(a),

for a ∈ A.

Proof Choose a sequence of unitaries (vn)∞n=1 in B∼, and a sequence of positive in-
tegers ( fn)∞n=1, as in Deûnition 3.3, giving rise to a premorphism ((Fn)∞n=1 , ( fn)∞n=1)
with equivalence class B(ϕ). Similarly, choose a sequence of unitaries (wn)∞n=1
in B∼, and a sequence of positive integers (gn)∞n=1, giving rise to a premorphism
((Gn)∞n=1 , (gn)∞n=1) for B(ψ).

(i)⇒ (ii): Suppose that B(ϕ) = B(ψ). Hence ((Fn)∞n=1 , ( fn)∞n=1) is equivalent to
((Gn)∞n=1 , (gn)∞n=1) . Fix n ≥ 1. By Proposition 2.11, there is an m ≥ fn , gn such that
S fnmFn = SgnmGn ,where S fnm and Sgnm are themultiplicitymatrices of the injections
j1∶B fn ↪ Bm and j2∶Bgn ↪ Bm , respectively. On the other hand, Fn and Gn are the
multiplicity matrices of (Ad vn)ϕ∶An → B fn and (Adwn)ψ∶An → Bgn , respectively,
by Deûnition 3.3. _us R j1(Ad vn)ϕ = S fnmFn = SgnmGn = R j2(Adwn)ψ . By Lemma 3.5,
there is a unitary u ∈ Bm such that j1(Ad vn)ϕ = (Adu) j2(Adwn)ψ on An . Set
w = u − 1Bm + 1, where 1 is the unit of B∼. One can easily see that w is a unitary
in B∼ and again we have j1(Ad vn)ϕ = (Adw) j2(Adwn)ψ on An . Set un = v∗nwwn .
_erefore ϕ = (Adun)ψ on An .

(ii)⇒ (iii): _is holds as (An)∞n=1 is increasing with union dense in A.
(iii) ⇒ (i): Suppose that there is a sequence of unitaries (un)∞n=1 in B∼ such

that ϕ is the pointwise limit of the sequence ((Adun)ψ)
∞

n=1 on A. Fix n ≥ 1. Since
((Adum)ψ)∞m=1 converges ϕ on compact subsets of A and the unit ball of An is com-
pact, ∥(Adum)ψ − ϕ∥An Ð→ 0, as m tends to inûnity. _us there is an n′ ≥ 1 such
that ∥(Adun′)ψ − ϕ∥An < 1. Set u = vn and v = wnu∗n′ . Hence uϕ(An)u∗ ⊆ B fn and
v(Adun′)ψ(An)v∗ = wnψ(An)w∗

n ⊆ Bgn . Applying Lemma 5.3, there is anm ≥ fn , gn

such that (Adu)ϕ, (Ad v) ○ ((Adun′)ψ) ∶An → Bm have the same multiplicity ma-
trices; that is, (Ad vn)ϕ, (Adwn)ψ∶An → Bm have the samemultiplicitymatrices. By
Proposition 2.11, the premorphisms ((Fn)∞n=1 , ( fn)∞n=1) and ((Gn)∞n=1 , (gn)∞n=1) are
equivalent and thereforeB(ϕ) = B(ψ).
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Remark Lemma 5.4 remains valid if we replace B∼ with B+. Since, if B is non-
unital, we have B∼ = B+, and if B is unital, according to our convention, B∼ = B; thus
by the techniques applied in the proof of Lemma 5.3 and Lemma 5.4 for interchanging
the unitaries of B and B+, the statement is also true for B+ instead of B∼.

In general, the sequence of unitaries in Lemma 5.4 cannot be replaced by a single
unitary. In other words, in the setting of that lemma, the condition B(ϕ) = B(ψ)
does not necessarily imply that there is a unitary u ∈ B∼ with ϕ = (Adu)ψ. (See the
following example.)

Example 5.5 Consider the C∗-algebra A = K(l 2) and let (en)∞n=1 be an orthonor-
mal basis for l 2. Consider the C∗-subalgebra An generated by the rank one operators
{e i ⊗ e∗j ∣ 1 ≤ i , j ≤ n} for n ≥ 1. _en A1 ⊆ A2 ⊆ ⋅ ⋅ ⋅, and A = ⋃n≥1 An . De-
ûne ϕ,ψ∶A → A as follows. Set ψ = idA. For each n ∈ N, let un denote the unitary
in A∼ = K(l 2) ⊕ I deûned by un(ek) = ek+1, for 1 ≤ k ≤ n, un(en+1) = e1, and
un(ek) = ek , for k ≥ n + 2. _en Adun and Adum agree on An when n ≤ m. Set
ϕ = Adun on An , n ≥ 1. _en ϕ∶A → A is a ∗-homomorphism and ϕ = (Adun)ψ
on An , n ≥ 1. Suppose that there were a unitary u ∈ A∼ such that ϕ = Adu. _en
u(en) ⊗ u(en)∗ = ϕ(en ⊗ e∗n) = en+1 ⊗ e∗n+1, n ≥ 1. _us, u(en) = λnen+1 for some
complex number λn with absolute value one. Set fn = λ1λ2 ⋅ ⋅ ⋅ λn−1en , n ≥ 1. _en
( fn)∞n=1 is an orthonormal basis for l 2 and u( fn) = fn+1, n ≥ 1; in other words, u is
the unilateral shi�, which is not a unitary.

Corollary 5.6 Let A1 ,A2 ∈ AF and ϕ,ψ∶A1 → A2 be morphisms in AF such that
ϕ = (Adu)ψ for some unitary u in A∼

2 . _en B(ϕ) = B(ψ).

Corollary 5.7 Let ϕ,ψ∶A1 → A2 morphisms in AF with ∥ϕ − ψ∥ < 1. _en we have
B(ϕ) = B(ψ).

Proof Following the notation of Lemma 5.4 and the ûrst paragraph of its proof, we
have vnϕ(An)v∗n ⊆ B fn and wnψ(An)w∗

n ⊆ Bgn , n ≥ 1, by Deûnition 3.3. Fix n ≥ 1. By
Lemma 5.3, the ∗-homomorphisms (Ad vn)ϕ, (Adwn)ψ∶An → Bkn have the same
multiplicity matrices, for some positive integer kn ≥ fn , gn . By Lemma 3.5, there is a
unitary u ∈ Bkn such that (Ad vn)ϕ = (Adu)(Adwn)ψ on An . Set w = u − 1Bkn

+ 1,
where 1 is the unit of B∼. _en w is a unitary in B∼ and again we have (Ad vn)ϕ =
(Adw)(Adwn)ψ on An . Setting un = v∗nwwn , we have ϕ = (Adun)ψ on An , and so
B(ϕ) = B(ψ) by Lemma 5.4.

Consider the category AFout associated to AF as described in [10]; its objects are
the same as those of AF and its morphisms are as follows. An inner automorphism
for an object (A, (An)∞n=1 , (ϕn)∞n=1) ofAF is a ∗-isomorphismAdu∶A→ A, for some
unitary u ∈ A+. Two morphisms ϕ,ψ∶A1 → A2 are equivalent if ϕ = (Adu)ψ for
some inner automorphism Adu of A2. Let F(ϕ) denote the equivalence class of ϕ.
_ese equivalence classes are themorphisms of AFout. Denote by F∶AF→ AFout the
functorwhich assigns to each object ofAF itself, andmapsmorphisms as above. Now
[10,_eorem 1] states thatF∶AF→ AFout is a strong classiûcation functor. Obviously,
it is also a full functor.
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_eorem 5.8 _ere is a unique functor B̃∶AFout → BD such that B = B̃F:

AF F //

B ""

AFout

B̃

��
BD.

Moreover, it is a strong classiûcation functor and a full functor.

Proof Deûne B̃∶AFout → BD as follows. For A ∈ AF set B̃(A) = B(A). Let
ϕ∶A1 → A2 be a morphism in AF. By Lemma 5.4 (and the remark following that),
B((Adu)ϕ) = B(ϕ), for each inner automorphism Adu of A2. It therefore makes
sense to set B̃(F(ϕ)) = B(ϕ). It is immediate that B̃∶AFout → BD is a functor
and B = B̃F. Hence B̃ is full, since B is (by _eorem 4.1). Uniqueness follows from
B = B̃F and the fact that F is surjective on both objects and (since it is full) on maps.
_at B̃∶AFout → BD is a strong classiûcation functor follows from the fact that B is
(_eorem 3.11).

Note that the functor B̃∶AFout → BD is not faithful. For example, let ϕ and ψ be
the morphisms in AF deûned in Example 5.5. _en B̃(F(ϕ)) = B(ϕ) = B(ψ) =
B̃(F(ψ)) , but F(ϕ) ≠ F(ψ), by Example 5.5; cf. _eorem 5.9.

Now let us examine the classifying category AFout for AF, as described in [10]. It
is better than AFout (in some sense) for the purposes of classiûcation, because AFout

is a classifying category not only for AF, but also for AFout (and it has even fewer
automorphisms); however, BD is even better than (although, by _eorem 5.11, it is
just equivalent to) AFout, since it is a classifying category for AFout and so for all
three of these categories (by _eorem 5.9), but is in some sense more explicit. (For
one thing, it is a small category.)
Consider the categoryAFout as a subcategory of Sout which is deûned in [10, Exam-

ple 4.3], where S denotes the category of separable C∗-algebras (not necessarily uni-
tal). More precisely, the objects ofAFout are the same as ofAF and its morphisms are
as follows. For each pair of objectsA1 andA2 inAF, and for each ϕ in Hom(A1 ,A2),
denote by F(ϕ) the closure of the equivalence class F(ϕ) in Hom(A1 ,A2), in the
topology of pointwise convergence. _ese are the morphisms of AFout. By [10, _e-
orem 3] and [10, Example 4.3], AFout is a category. Now deûne the functor F∶AF →
AFout as follows. F assigns to each object of AF itself andmaps morphisms as above.
By [10, _eorem 3] and [10, Example 4.3], F∶AF → AFout is a strong classiûcation
functor. (It follows immediately that the quotient map from AFout to AFout is also a
strong classiûcation functor, but this is not of interest to us here.)
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_eorem 5.9 _ere is a unique functor B∶AFout → BD such that B = BF:

AF F //

B ""

AFout

B

��
BD.

It is a strong classiûcation functor, surjective on objects, and a full functor. Moreover,
for each pair of morphisms ϕ,ψ∶A1 → A2 in AF we have B(ϕ) = B(ψ) if and only if
F(ϕ) = F(ψ); in other words, B is a faithful functor.

Proof First let us show that for each pair of morphisms ϕ,ψ∶A1 → A2 in AF we
have B(ϕ) = B(ψ) if and only if F(ϕ) = F(ψ). Suppose that B(ϕ) = B(ψ). By
Lemma 5.4 and the remark following that, there is a sequence of unitaries (un)∞n=1
in B+ such that ϕ is the pointwise limit of the sequence ((Adun)ψ)

∞

n=1 where B is the
algebra (i.e., the ûrst component) ofA2. _us, for each unitary u ∈ B+, (Adu)ϕ is the
pointwise limit of the sequence ((Aduun)ψ)

∞

n=1. _erefore, F(ϕ) ⊆ F(ψ). Hence
F(ϕ) ⊆ F(ψ) and by symmetry F(ϕ) = F(ψ). Now suppose that F(ϕ) = F(ψ).
_en, ϕ is the pointwise limit of a sequence ((Adun)ψ)

∞

n=1, for some sequence of
unitaries (un)∞n=1 in B+. By Lemma 5.4,B(ϕ) = B(ψ).

Now deûneB∶AFout → BD as follows. ForA ∈ AF setB(A) = B(A). Let ϕ∶A1 →
A2 be a morphism in AF. Set B(F(ϕ)) = B(ϕ). By the preceding paragraph, B is
well deûned, and faithful. Also,we haveB = BF. _atB is a functor, and uniqueness
of B, follow from the fact that F is a full functor, or, rather, even surjective. Since B
is a strong classiûcation functor and a full functor, so also is B. (_at B is a strong
classiûcation functor also follows from the fact that it is full and faithful and applying
Lemma 5.10, below.)

As we shall see, the functor B∶AFout → BD is an equivalence of categories (see
_eorem 5.11 below). _is ismainly based on the categorical properties of this functor.
_erefore, let us ûrst state this result in a categorical setting, in Lemma 5.10. We shall
use this lemma to show that the functorB∶AFout → BD is an equivalence of categories
(_eorems 5.11).

Recall that a functor F∶C → D is called an equivalence of categories if there is a
functor G∶D → C such that FG ≅ idC and GF ≅ idD [12, 15]. If H∶D → C is another
functor with this property, then it is easy to see that H is naturally isomorphic to G.
_erefore, G is unique up to natural isomorphism. It is well known that a functor
F∶C→D is an equivalence of categories if and only if it is full, faithful, and essentially
surjective, i.e., for each d ∈D there is a c ∈ C such that d ≅ F(c) [15,_eorem IV.4.1].
In the case that F is surjective on objects, a right inverse for F can be constructed, i.e.,
a functor G∶D → C such that FG = idC and GF ≅ idD. (A remark on the use of the
axiom of choice in this context is given in the proof.)

Lemma 5.10 Let F∶C→D be a full and faithful functor. _en F is a strong classiûca-
tion functor. If F is also surjective on objects, then it is an equivalence of categories, and,
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furthermore, there is a unique (up to natural isomorphism) functor G∶D→ C such that
FG = idC and GF ≅ idD. _e functor G is full, faithful, injective on objects, essentially
surjective, and (hence) a strong classiûcation functor.

Proof _at a full and faithful functor is a strong classiûcation functor is straightfor-
ward. Since F∶C → D is surjective on objects, it has a right inverse G∶D → C (just as
amap on objects). Here we have used the “axiom of choice” for sets or classes: when
the objects of C form a set we use the axiom of choice for sets, and when the objects
of C form a proper classwe use the global axiom of choice [3] (if for each object c ofD
there is a canonical object a in C such that F(a) = c, one could avoid the axiom of
choice).

_e deûnition of G on themorphisms ofD was described in the proof of [15,_e-
orem IV.4.1], and so we have a functor G such that FG = idC and GF ≅ idD. _e rest
follows from the fact that each functor which is an equivalence of categories is full,
faithful, and essentially surjective [15,_eorem IV.4.1].

_e following theorem states that the categoriesAFout and BD are equivalent, and
this equivalence, given by the functor B∶AFout → BD, is compatible with the clas-
siûcation of AF algebras via the functors B∶AF → BD and F∶AF → AFout, i.e., the
related diagrams commute.

_eorem 5.11 _e functor B∶AFout → BD is an equivalence of categories. More
precisely, there is a unique (up to natural isomorphism) functor G∶BD → AFout such
that BG = idBD and GB ≅ idAFout . _e functor G is full, faithful, injective on objects,
essentially surjective, and a strong classiûcation functor. Moreover, for each B,C ∈ BD
and eachmorphism ϕ∶G(B)→ G(C) inAF,we have GB(ϕ) = F(ϕ), i.e., the following
diagram commutes:

AF F //

B

��

AFout

B

��
BD

id
//

G

<<

BD.

Proof By _eorem 5.9, the functor B∶AFout → BD is full, faithful, surjective on
objects, and a strong classiûcation functor. By Lemma 5.10, it is also an equivalence
of categories and the functor G∶BD → AFout with the desired properties exists. As
indicated in the proof of Lemma 5.10, here the use of the axiom of choice is justiûed
as follows. Since the collection of the objects AFout is a proper class and BD is a
small category, we can use the global axiom of choice [3]. Alternatively, one could
use the fact that each AF algebra is (isomorphic to) a C∗-subalgebra of B(l 2), and
essentially the axiom of choice for sets is enough. Finally, one can choose G(B) to be
the AF algebra constructed as in Proposition 4.2.
For the last statement, let B,C ∈ BD and ϕ∶G(B) → G(C) be a morphism in AF.

Note that the objects of AF and AFout are the same, and so G(B) and G(C) are
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also in AF. We have GB(G(B)) = GB(G(B)) = G(B) = F(G(B)) , and similarly
for C. _us, GB(ϕ) and F(ϕ) have the same domains and the same ranges. We have
B(GB(ϕ)) = B(ϕ) = B(F(ϕ)) , since B = BF. By _eorem 5.9, B is faithful, and
so GB(ϕ) = F(ϕ).

6 Relations with K-Theory

Consider the category DG of dimension groups, i.e., the set of all scaled countable
ordered groups which are unperforated and have the Riesz decomposition property,
with order and scale preserving homomorphisms (see [1,7,18]), and consider thewell-
known K0 functor K0∶AF → DG. _e following statement summarizes the main
properties of the functor K0∶AF→ DG.

_eorem 6.1 _e functor K0 ∶ AF → DG is a strong classiûcation functor and a full
functor. Moreover, it is essentially surjective on objects.

Proof _at the functor K0∶AF → DG is a strong classiûcation functor is Elliott’s
theorem [8]. _at the functor K0∶AF→ DG is full is known, and the proof is similar
to the proof that it is a strong classiûcation functor—oneuses a one-sided intertwining
argument rather than a two-sided one, just as in _eorem 4.1. In fact, one can deduce
it from _eorem 4.1 together with the factorization of K0∶AF → DG through BD by
means of the inductive limit functor described in the alternative proof of Corollary 6.5
below,which is easily seen to be full, and so K0 is expressed as the composition of two
full functors. _e last statement follows from the Eòros–Handelman–Shen theorem
[7,_eorem 2.2], and the result of Elliott, [8,_eorem 5.5] characterizing K0 groups
of AF algebras as inductive limits.

_e following lemma is surely part of the literature; we give a proof for the sake of
completeness. We follow [18] for K-theory notation.

Lemma 6.2 Let A1 ,A2 ∈ AF where A1 = (A, (An)∞n=1 , (ϕn)∞n=1) and A2 =
(B, (Bn)∞n=1 , (ψn)∞n=1) . Let ϕ,ψ∶A1 → A2 be morphisms in AF. _e following state-
ments are equivalent:
(i) K0(ϕ) = K0(ψ);
(ii) there is a sequence of unitaries (un)∞n=1 in B∼ such that ϕ = (Adun)ψ on An ,

n ≥ 1.

Proof Let ϕ+ ,ψ+∶A+ → B+ denote the unital extensions of ϕ,ψ∶A → B. Note that
A+ = ⋃∞n=1 A+n and B+ = ⋃∞n=1 B+n . _e proof is similar to the ûnite-dimensional case
[16,_eorem 7.2.6].

(i)⇒ (ii): _e proof really should be thought of as three separate steps—ûrst re-
ducing to the case that the domain is a single ûnite-dimensional algebra, and then to
the case that the codomain is a single ûnite-dimensional algebra (using for the second
step that K0 of the limit is the limit of the K0’s). _e third step, that both algebras are
ûnite-dimensional, follows immediately from an argument due to Bratteli. _e details
are as follows.
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Fix n ≥ 1. By Lemma 3.2, there are unitaries u, v ∈ B+ and a positive integer m such
that uϕ+(A+n)u∗ ⊆ B+m and vψ+(A+n)v∗ ⊆ B+m . Deûne ∗-homomorphisms F ,G∶A+n →
B+m with F(a) = uϕ+(a)u∗ and G(a) = vψ+(a)v∗, a ∈ A+n . Let {e li j ∶ 1 ≤ l ≤ k, 1 ≤
i , j ≤ n l} be a set of matrix units for An and set ek+1

11 = 1 − 1An (where 1 is the unit
element of A+n) and nk+1 = 1. _en {e li j ∶ 1 ≤ l ≤ k + 1, 1 ≤ i , j ≤ n l} is a set ofmatrix
units for A+n .

Set pl
i j = F(e li j) and q l

i j = G(e li j), for the above values of i , j, l . Fix 1 ≤ l ≤ k+1. Let
[pl

11] be the equivalence class of the projection pl
11 in V(B+). Since e l11 ∈ A, for 1 ≤ l ≤

k, the formal diòerence x = [e l11] − [0] is in K0(A). We have [pl
11] − [0] = [ϕ(e l11)] −

[0] = K0(ϕ)(x) = K0(ψ)(x) = [q l
11]−[0]. _us there is r ∈M∞(B+) such that [pl

11]+
[r] = [q l

11]+[r] inV(B+). For l = k+1wehave [ek+1
11 ]−[1] ∈ K0(A) and similarly there

is r ∈ M∞(B+) such that [pk+1
11 ] + [r] = [qk+1

11 ] + [r] in V(B+). Since B+ = ⋃∞n=1 B+n ,
there is m′ ≥ m such that r is equivalent to some projection in M∞(B+m′), and we
may assume that r ∈ M∞(B+m′). Hence the projections diag(pl

11 , r), diag(q l
11 , r) ∈

M∞(B+m′) are equivalent in B+. By [16, Lemma 7.2.8] (or, rather, by its proof), there
is m l ≥ m′ such that diag(pl

11 , r) and diag(q l
11 , r) are equivalent in B+m l

. Since B+m l
is

ûnite-dimensional, pl
11 is equivalent to q l

11, and so there is a partial isometryw l ∈ B+m l

such that pl
11 = w lw∗

l and q l
11 = w∗

l w l . Now set

k+1

∑
l=1

n l

∑
i=1

pl
i1w l q l

1i = w .

An easy calculation shows that w is unitary in B+ and wq l
i j = pl

i jw, for the above
values of i , j, l . _us F = (Adw)G. Set un = u∗wv. _en ϕ = (Adun)ψ on An . We
have found a sequence of unitaries (un)∞n=1 in B+ with the property stated in part (ii),
but this is equivalent to the existence of a sequence of unitaries in B∼ with the same
property, by the remark following Lemma 5.4.

(ii)⇒ (i): Suppose that (ii) holds. As stated above, we may assume that the uni-
taries (un)∞n=1 are in B+. Let p be inM∞(A+). _en there is a positive integer n and a
projection q ∈M∞(A+n) such that [p] = [q]. Since ϕ = (Adun)ψ on An , andwe have
ϕ+ = (Adun)ψ+ on A+n , hence ϕ∗([p]) = ϕ∗([q]) = ψ∗([q]) = ψ∗([p]). _erefore
K0(ϕ) = K0(ψ).

_eorem 6.3 _ere is a unique functor K0∶AFout → DG such that K0 = K0 F:

AF F //

K0 ""

AFout

K0
��

DG.

It is a strong classiûcation functor, essentially surjective on objects, and a full functor.
Moreover, for each pair ofmorphisms ϕ,ψ∶A1 → A2 in AF, we have K0(ϕ) = K0(ψ) if
and only if F(ϕ) = F(ψ); in other words, K0 is a faithful functor.
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Proof Deûne K0∶AFout → DG as follows. For A ∈ AFout set K0(A) = K0(A).
Let ϕ∶A1 → A2 be a morphism in AF. Set K0(F(ϕ)) = K0(ϕ). For each pair of
morphisms ϕ,ψ∶A1 → A2 inAFwe haveK0(ϕ) = K0(ψ) if and only if F(ϕ) = F(ψ),
by Lemma 6.2. _is proves that K0 is well deûned. _e other properties of K0 are
easy to prove, using _eorem 6.1 and the same properties of F as used in the proof of
_eorem 5.9.
Alternatively, the whole theorem follows immediately from _eorem 5.9 together

with the equivalence of the categories BD and DG, an elementary proof of which is
given below as an alternative proof of Corollary 6.5; one uses that the functor BD →
DG in question is just the inductive limit functor,which acts as anatural isomorphism
between the functors B and K0, and therefore also between B and K0.

Next let us show that the categories AFout and DG are equivalent, and this equiv-
alence, given by the functor K0∶AFout → DG, is compatible with the classiûcation
of AF algebras via the functors B∶AF → BD and F∶AF → AFout, i.e., the related
diagrams commute.

_eorem 6.4 _e functor K0∶AFout → DG is an equivalence of categories. More
precisely, there is a unique (up to natural isomorphism) functor G0∶DG → AFout such
that K0 G0 ≅ idDG and G0K0 ≅ idAFout . _e functor G0 is full, faithful, essentially
surjective, and a strong classiûcation functor. Moreover, we have K0G0K0 = K0:

AF
K0 //

K0

��

DG

DG
G0

// AFout .

K0

OO

Proof _e ûrst part of the statement follows from _eorem 6.3 and [15, _eo-
rem IV.4.1]. _e functorial properties of G0 follow from [15, _eorem IV.4.1] and
Lemma 5.10. For the proof of the last part of the statement note that we can con-
struct G0 to have the property that K0(G0(K0(A))) = K0(A), for each A ∈ AFout,
and that K0(G0(K0(ψ))) = K0(ψ), for each morphism ψ∶A1 → A2 in AFout (see
the proof of [15, _eorem IV.4.1]). _erefore, for each morphism ϕ∶A1 → A2 in AF,
setting ψ = F(ϕ) we get K0(G0(K0(ϕ))) = K0(ϕ).
Alternatively, use the remarks at the end of the proof of_eorem 6.3.

_e category AFout can be used to relate the categories BD andDG. Let us collect
all the functors in one (commutative) diagram; see Figure 1.

Corollary 6.5 _ere is a full, faithful, essentially surjective, and (hence) strong clas-
siûcation functor from BD to DG. Also there is such a functor from DG to BD.
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BD

G

		

AF F //

K0

!!

B

==

AFout

K0

��

B

GG

DG .

G0

WW

Figure 1

Proof Consider the functorsG∶BD→ AFout andK0∶AFout → DG. Both of these are
strong classiûcation functors and also full, faithful and essentially surjective, by _e-
orems 5.11 and 6.3, and so also is K0G∶BD → DG. Similarly, the functor BG0∶DG →
BD has the above properties, by _eorems 5.9 and 6.4.
Alternatively, and in a much more elementary way, the obvious inductive limit

functor BD→ DG, obtained by interpreting a Bratteli diagram as a sequence of ûnite
ordered group direct sums of copies of Z, as in [10, Section 2], is full, faithful, and es-
sentially surjective by [7,_eorem 2.2], and so by [15,_eorem IV.4.1] an equivalence
of categories.

Corollary 6.6 _e categories BD, AFout, and DG are equivalent.

Finally let us show that the three strong classiûcation functors B∶AF → BD,
F∶AF → AFout, and K0∶AF → DG for classiûcation of AF algebras are essentially
the same.

_eorem 6.7 Consider the three strong classiûcation functorsB∶AF→ BD, F∶AF→
AFout, and K0∶AF→ DG for AF algebras. For each objectsA1 ,A2 inAF, the following
are equivalent:
(i) A1 ≅ A2 in AF;
(ii) B(A1) ≅ B(A2) in BD;
(iii) F(A1) ≅ F(A2) in AFout;
(iv) K0(A1) ≅ K0(A2) in DG.
For each pair of morphisms ϕ,ψ∶A1 → A2 in AF, the following statements are equiva-
lent:
(i) B(ϕ) = B(ψ);
(ii) F(ϕ) = F(ψ);

https://doi.org/10.4153/CJM-2015-001-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-001-8


_e Category of Bratteli Diagrams 1023

(iii) K0(ϕ) = K0(ψ);
(iv) there is a sequence of unitaries (un)∞n=1 in B∼ such that ϕ = (Adun)ψ on An , for

n ≥ 1;
(v) there is a sequence of unitaries (un)∞n=1 in B∼ such that

ϕ(a) = lim
n→∞

(Adun)ψ(a),

for a ∈ A.

Proof _e ûrst part follows from the fact thatwe are considering classiûcation func-
tors. _e second part follows from Lemma 5.4,_eorem 5.9, and Lemma 6.2.
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