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Abstract

Varieties of the form G × Sreg, where G is a complex semisimple group and Sreg is a regular Slodowy
slice in the Lie algebra of G, arise naturally in hyperkähler geometry, theoretical physics and the theory
of abstract integrable systems. Crooks and Rayan [‘Abstract integrable systems on hyperkähler manifolds
arising from Slodowy slices’, Math. Res. Let., to appear] use a Hamiltonian G-action to endow G × Sreg
with a canonical abstract integrable system. To understand examples of abstract integrable systems
arising from Hamiltonian G-actions, we consider a holomorphic symplectic variety X carrying an abstract
integrable system induced by a Hamiltonian G-action. Under certain hypotheses, we show that there must
exist a G-equivariant variety isomorphism X � G × Sreg.
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1. Introduction

1.1. Some preliminaries. We will work exclusively over C, understanding it as
implicitly present whenever a base field is needed. Let G be a connected, simply
connected semisimple linear algebraic group having rank equal to rk(G), Lie algebra
denoted g and adjoint representation denoted Ad : G→ GL(g). Note that Ad induces
the adjoint action of G on g, whose orbits are called the adjoint orbits of G. We shall
let O(x) ⊆ g denote the adjoint orbit containing x ∈ g, that is,

O(x) := {Adg(x) : g ∈ G}.

The Killing form is Ad-invariant and nondegenerate, and therefore induces an
isomorphism g � g∗ between the adjoint and coadjoint representations of G. We will
often deal with moment maps for Hamiltonian G-actions, which by virtue of our
isomorphism g � g∗ shall always be regarded as taking values in g.

Let ad : g→ gl(g) be the adjoint representation of g. An element x ∈ g is called
regular when the dimension of ker(adx) coincides with rk(G), and we shall let greg ⊆ g
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denote the open dense subvariety of all regular elements. This subvariety is invariant
under the adjoint action, and as such is a union of certain adjoint orbits called the
regular adjoint orbits. Equivalently, an adjoint orbit is regular if and only if its
dimension is dim(G) − rk(G).

Recall that (ξ, h, η) ∈ g⊕3 is called an sl2(C)-triple if the relations

[ξ, η] = h, [h, ξ] = 2ξ, [h, η] = −2η

hold in g, and is called a regular sl2(C)-triple when we also have ξ, η ∈ greg. Take
a regular sl2(C)-triple (ξ, h, η), fixed for the duration of this paper, and consider its
associated Slodowy slice

Sreg := ξ + ker(adη) := {ξ + x : x ∈ ker(adη)} ⊆ g.

This slice is a rk(G)-dimensional affine-linear subspace of g enjoying the following
properties: Sreg ⊆ greg and each regular adjoint orbit meets Sreg in a unique point (see [6,
Theorem 8]). Taken together, these two properties imply that

ϕ : Sreg → greg/G, x 7→ O(x) (1.1)

defines an isomorphism of algebraic varieties.

1.2. The main motivating example. The affine variety G × Sreg has received
some attention in the research literature. Among other things, it is known to
carry a distinguished hyperkähler manifold structure (see [2]), and it arises as an
important object in Moore and Tachikawa’s discussion of certain two-dimensional
topological quantum field theories (see [8]). This variety and its properties will feature
prominently in our paper. To elaborate on this, let us use the term holomorphic
symplectic variety for a smooth algebraic variety X endowed with a holomorphic
symplectic form ω. A left action of G on X shall then be called Hamiltonian if the
action is algebraic, ω is G-invariant and there exists a moment map, that is, a G-
equivariant smooth algebraic variety morphism µ : X → g satisfying

d(〈 µ, θ〉) = ιθXω

for all θ ∈ g. Here, G-equivariance is with respect to the adjoint action of G on g, 〈·, ·〉
is the Killing form on g and θX denotes the fundamental vector field on X associated
to θ ∈ g.

It turns out that G × Sreg is canonically a holomorphic symplectic variety, a
consequence of its hyperkähler structure. Moreover, G acts freely on G × Sreg via

g · (h, x) := (hg−1, x), g ∈ G, (h, x) ∈ G × Sreg. (1.2)

This action is Hamiltonian with moment map

µreg : G × Sreg → g, (g, x) 7→ −Adg−1 (x) (1.3)

(see [3, Proposition 5]) known to be a submersion (see [3, Proposition 6]). The
connected components of the fibres of µreg are therefore the leaves of a holomorphic
foliation Freg of G × Sreg, and it is easily seen that these leaves are rk(G)-dimensional.
The pair (G × Sreg,Freg) is actually an example of an abstract integrable system of rank
equal to rk(G) (see [3, Theorem 13]), for which we have the following definition.
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Definition 1.1. Let X be a holomorphic symplectic variety and F a holomorphic
foliation of X with r-dimensional leaves. Then (X,F ) is an abstract integrable system
of rank r if each x ∈ X has an open neighbourhood U, together with leaf-wise constant
holomorphic functions on U whose Hamiltonian vector fields span TF ⊆ T X on U.

A few brief comments are in order. Definition 1.1 is just a holomorphic counterpart
of [4, Definition 2.6], in which Fernandes et al. introduced the notion of an abstract
noncommutative integrable system in the smooth category. Note that Definition 1.1
suppresses the term ‘noncommutative’, which is in keeping with [3, Definition 2]. Very
roughly speaking, this notion aims to describe certain integrable systems in purely
foliation-theoretic terms. We refer the reader to [4] for further details.

Let us return to the main discussion. Note that Freg is a foliation whose leaves
are the connected components of the fibres of a moment map. It is therefore natural
to seek conditions under which a moment map will, analogously to µreg in the case
of (G × Sreg,Freg), induce an abstract integrable system. To this end, we have the
following result.

Theorem 1.2 [3, Theorem 14]. Let X be a holomorphic symplectic variety equipped
with a locally free Hamiltonian G-action admitting µ : X → g as a moment map. Let
Fµ denote the holomorphic foliation of X whose leaves are the connected components
of the fibres of µ.1 Then the pair (X,Fµ) is an abstract integrable system if and only
if dim(X) = dim(G) + rk(G) and µ(X) ⊆ greg, in which case rk(G) is the rank of the
system.

1.3. Description of the main result. This paper is an attempt to (at least partially)
understand the class of abstract integrable systems (X,Fµ) that arise by satisfying the
hypotheses of Theorem 1.2. More precisely, let X be a holomorphic symplectic variety
endowed with a Hamiltonian action of G and moment map µ : X → g. We would like
to better understand those cases in which all of the following conditions are satisfied:

(a) the G-action is locally free;
(b) dim(X) = dim(G) + rk(G); and
(c) µ(X) ⊆ greg.

Our main result, Theorem 1.3, imposes some slightly more restrictive conditions, and
then completely classifies X up to a G-equivariant variety isomorphism.

Theorem 1.3. Let X be a holomorphic symplectic variety endowed with a Hamiltonian
G-action and admitting µ : X → g as a moment map. If:

(i) X is affine;
(ii) the G-action is free;
(iii) dim(X) = dim(G) + rk(G);

1Since the G-action is locally free, µ is a submersion (see [1, Proposition III.2.3]) and all fibres have
the same dimension.
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(iv) µ(X) = greg; and
(v) µ−1(O) is an irreducible subvariety of X for all adjoint orbits O ⊆ g,

then there exists a G-equivariant variety isomorphism X � G × S reg.

We shall devote Section 2 to the proof of this theorem. In the interim, let us make a
few remarks about the hypotheses appearing in Theorem 1.3.

Remark 1.4. As one might expect, X = G × Sreg, the Hamiltonian action (1.2) and the
moment map µ = µreg satisfy Conditions (i)–(v). The first three of these conditions
are immediately seen to hold, while the fourth is satisfied by virtue of [3, Proposition
6]. To verify Condition (v), let O ⊆ g be an adjoint orbit. Since µ(X) = greg, we must
have µ−1(O) = ∅ whenever O is not regular. If O is regular, then the isomorphism (1.1)
implies that −O := {−x : x ∈ O} meets Sreg in a unique point y, and one can use (1.3) to
check that

µ−1(O) = G × {y} ⊆ G × Sreg.

We thus see that µ−1(O) is irreducible for all adjoint orbits O ⊆ g.

Remark 1.5. We require X to be affine in order to use [7, Section III, Corollary 1] in
the proof of Theorem 1.3. This result considers a reductive linear algebraic group H
acting algebraically on an affine variety Y and is formulated as follows: the canonical
morphism Y → Y/H is a principal H-bundle if and only if H acts freely on Y .1 For
a more situation-specific version of this result, assume that Y is also irreducible.
Additionally, let Z be a normal variety and f : Y → Z a surjective morphism with
the property that each fibre is a single H-orbit. One can then show that there exists a
variety isomorphism Y/H

�
−→ Z making the diagram

Y

Y/H Z

f

�

commute (see [11, Corollary 25.3.4 and Proposition 25.3.5]), so that [7, Section III,
Corollary 1] takes the following form: f is a principal H-bundle if and only if H acts
freely on Y . We will later apply this rephrased version of [7, Section III, Corollary 1]
to argue that a particular map X → Sreg is a principal G-bundle, for which we must
assume that X (like Y above) is affine.

Remark 1.6. Theorem 1.3 does not hold if one relaxes Condition (ii) to require only
that the G-action be locally free. To see this, let Z(G) denote the centre of G. The
action (1.2) of G on G × Sreg restricts to a Z(G)-action, which in turn commutes
with the original G-action. In other words, G × Sreg carries a Hamiltonian action of
G × Z(G). Now note that Z(G) is a finite group, a consequence of having taken G to be

1We shall always use the algebro-geometric notion of a principal bundle (see [7, Section I]), which is
defined to be étale-locally trivial.
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semisimple. It follows that (G × Sreg)/Z(G) is the holomorphic symplectic quotient of
G × Sreg by Z(G) (see [5, Section 7.5] for details on holomorphic symplectic quotients).
This quotient carries a residual Hamiltonian G-action whose moment map is obtained
by letting µreg descend to the quotient (G × Sreg)/Z(G). An examination of (1.2) reveals
that this quotient is G-equivariantly isomorphic to (G/Z(G)) × Sreg, with G acting on
the first factor. The moment map on (G/Z(G)) × Sreg is given by

µ : (G/Z(G)) × Sreg → g, ([g], x) 7→ −Adg−1 (x).

One can now check that X = (G/Z(G)) × Sreg, its Hamiltonian G-action and the
moment map µ satisfy Conditions (i), (iii), (iv) and (v), with the verification of (v)
being almost identical to that given in Remark 1.4. However, note that Z(G) is the
G-stabiliser of each point in X. It follows that the G-action on X is locally free but
need not be free. Since G acts freely on G × Sreg, this means that X need not be G-
equivariantly isomorphic to G × Sreg.

Remark 1.7. LetO ⊆ g be an adjoint orbit. Condition (ii) implies that µ is a submersion
(see [1, Proposition III.2.3]), so that µ−1(O) is a smooth subvariety of X. In particular,
Condition (v) holds if and only if µ−1(O) is connected in the Zariski topology. This
is in turn equivalent to the connectedness of µ−1(O) in the complex analytic topology
(see [9, Theorem 6.1]), which by virtue of µ being a submersion would hold if the
fibres of µ were connected (also in the complex analytic topology). Hence, in the
presence of Condition (ii), Condition (v) is weaker than µ being fibre-connected.

Condition (v) turns out to be strictly weaker than fibre-connectedness, even when
one considers only those X and µ satisfying (i)–(iv). Indeed, recall that (i)–(v) hold for
the example considered in Remark 1.4. For the same example, it turns out that µ is not
fibre-connected (see [3, Section 3.2]).

Remark 1.8. Theorem 1.3 assumes that µ(X) = greg rather than the weaker condition
µ(X) ⊆ greg discussed earlier. Indeed, the theorem no longer holds when one replaces
the stronger condition with the weaker one. To see this, let U be any affine open
subvariety of Sreg not isomorphic to Sreg itself and set X := G × U. Note that X is
an open subvariety of G × Sreg, so that the former inherits a holomorphic symplectic
variety structure from the latter. Note also that X is invariant under the G-action (1.2),
which together with the previous sentence implies that (1.2) defines a Hamiltonian
action on X. The moment map is µreg|X .

It is not difficult to check that X, its Hamiltonian G-action and the moment map
µ = µreg|X satisfy Conditions (i)–(iii) in Theorem 1.3, and one can adapt the relevant
part of Remark 1.4 to show that Condition (v) is also satisfied. Condition (iv) does not
hold, however, as one can use (1.1), (1.3) and the fact that U is a proper subvariety
of Sreg to show that µ(X) is a proper subset of greg. The varieties X and G × Sreg are
also not G-equivariantly isomorphic, since U being nonisomorphic to Sreg precludes
the quotients X/G (� U) and (G × Sreg)/G (� Sreg) from being isomorphic.
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2. Proof of the main result

Assume that the hypotheses of Theorem 1.3 are satisfied and define µ : X → Sreg to
be the following composite map:

µ := (X
µ
−→ greg

π
−→ greg/G

ϕ−1

−−→ Sreg), (2.1)

where π is the quotient map and ϕ is the isomorphism defined in (1.1). More
concretely, µ assigns to each x ∈ X the unique point at which Sreg intersects O(µ(x)). It
follows that

µ−1(y) = µ−1(O(y)) (2.2)

for all y ∈ Sreg.
Now fix a point y ∈ Sreg. The fibre µ−1(y) is then nonempty, as Condition (iv)

implies that µ is surjective. Accordingly, we may choose a point x ∈ µ−1(y). At the
same time, we can use (2.2) and the G-equivariance property of µ to conclude that
µ−1(y) is a G-invariant subvariety of X. It follows that the G-orbit in X through x,
denoted G · x, belongs to µ−1(y).

We will establish that G · x = µ−1(y). To this end, note that (2.2) and Condition (v)
show µ−1(y) to be irreducible. Proving G · x = µ−1(y) therefore reduces to showing that
G · x is closed and has dimension equal to that of µ−1(y). Accordingly, note that the
closure of G · x is a union of the orbit itself and a (possibly empty) collection of strictly
lower-dimensional G-orbits (see [11, Proposition 21.4.5]), while Condition (ii) implies
that all G-orbits are dim(G)-dimensional. These observations imply that G · x is closed
and dim(G)-dimensional. At the same time, Condition (ii) allows us to conclude that µ
is a submersion (see [1, Proposition III.2.3]), giving rise to the following calculation:

dim(µ−1(y)) = dim(µ−1(O(y))) = dim(X) − dim(greg) + dim(O(y))
= (dim(G) + rk(G)) − dim(G) + (dim(G) − rk(G))
= dim(G),

where we have used the fact that dim(O(y)) = dim(G) − rk(G), a consequence of O(y)
being regular. Hence, G · x = µ−1(y), as desired.

We have shown that each fibre of µ is a single G-orbit, one of the hypotheses
required in order to apply the version of [7, Section III, Corollary 1] discussed at
the end of Remark 1.5. As for the other hypotheses, we know G to be reductive, X
to be affine, Sreg to be normal and G to act freely on X. Only one hypothesis remains
to be checked, namely that X is irreducible. To this end, the following lemma will be
useful.

Lemma 2.1. The map µ is a submersion.

Proof. Recall the definition of µ given in (2.1). Having noted that µ is a submersion,
it will suffice to prove that ϕ−1 ◦ π is a submersion. To this end, suppose that x ∈ greg.
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By virtue of the isomorphism (1.1), there exist elements g ∈ G and y ∈ Sreg for which
x = Adg(y). Now observe that

ψ : Sreg → greg, z 7→ Adg(z)

is a section of ϕ−1 ◦ π satisfying ψ(y) = x. It follows that dx(ϕ−1 ◦ π) ◦ dyψ must be the
identity on TySreg, where dx(ϕ−1 ◦ π) and dyψ are the differential of ϕ−1 ◦ π at x and
the differential of ψ at y, respectively. This shows dx(ϕ−1 ◦ π) to be surjective, and we
conclude that ϕ−1 ◦ π is indeed a submersion. �

Remark 2.2. An alternative and perhaps more conceptual proof can be roughly
sketched as follows. There exist rk(G) algebraically independent homogeneous
generators of C[g]G, the algebra of Ad-invariant polynomials on g. One can assemble
these polynomials into the components of a map g→ Crk(G), called the adjoint quotient,
which is known to be a submersion when restricted to greg (cf. [6, Theorem 9]). This
restricted adjoint quotient and ϕ−1 ◦ π are related by composition with an isomorphism
Crk(G) � Sreg, owing to the fact that Sreg is a section of the adjoint quotient. It follows
that ϕ−1 ◦ π is also a submersion, which, as noted in the proof above, is sufficient to
conclude that µ is a submersion.

Let us return to the proof of Theorem 1.3. We note that the fibres of µ are connected
in the complex analytic topology, as each fibre is a G-orbit. Together with Lemma 2.1,
this implies that X is itself connected in the complex analytic topology. In particular,
X is Zariski-connected. Since X is smooth, this amounts to X being irreducible.

By the discussion from the paragraph preceding Lemma 2.1, we may apply [7,
Section III, Corollary 1] and conclude that µ : X → Sreg is a principal G-bundle. This
bundle is trivial since the base Sreg is affine space (see [10, Theorem C] or [12,
Proposition 3.9]). In particular, there exists a G-equivariant variety isomorphism
X � G × Sreg.
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