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POLYNOMIALS WITH COEFFICIENTS FROM A 
DIVISION RING 

UNA BRAY AND GEORGE WHAPLES 

1. Introduction. Let R be any division ring and let 

(1) f(X) = a0 + axX + a2X
2 + . . . + a„Xn, (a1 e R9 1 ^ i ^ n) 

be a polynomial, in the indeterminate X, with coefficients in R. Note that 
the powers of X are always to the right of the coefficients. We denote the 
set of all such polynomials by R[X]. 

B. Beck [3] proved the following theorem for the generalized quaternion 
division algebra; i.e., any division ring of dimension 4 over its center: 

THEOREM 1. Iff(X) is of degree n then f(X) has either infinitely many or 
at most n zeros in R. 

Under a reasonable definition of multiplicity Beck also proved: 

THEOREM 2. Let (c\9 C2, . . . , cn) be a set of pairwise non-conjugate 
elements of R, and (m\, . . . , mN)positive integers such that ^Jml = n = deg 
f{x). 

(A) If the mt are all equal to 1, there is a unique f(X) of degree n and 
leading coefficient 1 with c\, . . . , cn as its only zeros. 

(B) If one of the mt is greater than 1, then there are infinitely manyf(X) of 
degree 2 /= i #?/, leading coefficient 1, cta zero of multiplicity mt and no other 
zeros. 

In this paper we present elementary proofs that Theorems 1 and 2A 
hold for every division ring R and Theorem 2B holds for every division 
algebra. 

2. Polynomials. Let R denote any division ring and k its center. We 
make R[X] into a ring by defining addition in the usual way and 
multiplication, which we shall denote by "o" , also in the usual way: 

n 

(2) f(X) o g(X) = h(X)= 2 avg(X)X>. 
v=0 
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Obviously this product does not in general correspond to the product of 
polynomial functions but we do have: 

PROPOSITION 1. Letf(X) and g(X) be in R[X]. (a) Every zero of g(X) is 
also a zero off(X) o g(X). (b) Every zero off(X) O g(X) which is not a zero 
ofg(X) is a conjugate of a zero off(X). (c)Ifc G R then c is a zero ofg(X) 
*=> g(X) = q(X) O (X-c)for some q(X) G R[X]. 

Proof To prove (a) let c be a zero of g(X) and substitute c for X in (2). 
For (b), let h(X) = f(X) o g(X) and suppose g(c) ^ 0; then by (2) we 
have 

He) =f(g(c)cg(cyl)g(c) 
which cannot be zero unless c is a conjugate of a zero off(X). 

To prove (c) note that by the ordinary division algorithm (taking care to 
keep products of coefficients in the correct order) we can find an 
identity 

g(X) = q(X) O (JC - c) + b with b G R. 

By (a), g(c) = b. 

PROPOSITION 2. Let f(X) be given by (1), let c G R, and let S denote the 
set of all y e R withf(ycy~l) = 0. Then S equals the set of all nonzero y G 
R with 

n 

(3) 2 avycv = 0. 

Proof The left side of (3) equals f(ycy~x) o y. 

Now the left side of (3) defines a /:-linear homogeneous function 

y -» l(y) = 2 avycv 

V 

of R —» R where k is the center of R. This is an analytic linear function 
R—^Roi the type studied in [2]. The set of solutions of (3) forms a vector 
space over k. If R should be finite dimensional over k then the set of 
solutions of (3) can be computed by solving a system of linear equations 
over k. Hence, when R is a division algebra, we can by a programmable com­
putation find for each c e R the set of all y e R with/fjycy-1) = 0. 

PROPOSITION 3. Iff(X) G R[X] andf(X) has two different conjugates of 
an element c G R as zeros then f(X) has infinitely many conjugates of c as 
zeros. 
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Proof. We may assume that/l(JQ is given by (1), that/^c) = 0, and that 
(3) has a solution b\ with b\cb\~l ¥= c. 

Let R(c) denote the set of all z G R which commute with c. It is a 
sub-division-ring of R which contains the commutative sub field k(c). If 
l(y) = 2 Û^C" then 

/(yz) = /(y).z for every z G jR<c\ 

Note that / is a right R^c^-linear map from R to R. The set of solutions of 
l(y) = 0 is a right vector space over R^c\ 

Let Z>0, . . . , Z?w be a family of solutions of (3) which are linearly 
independent as elements of the right vector space over R^c\ Under the 
assumption of the first paragraph 1 and b\ are linearly independent 
because bx £ R{c). (The case n = 1 suffices for this proof, but we shall 
need the more general case later.) Let Y be the set of all 

n 

2 bvzv * 0, zv G RM, 

and S y the set of all ycy~l withjy G Y. Then S y is a subset of the set of all 
conjugates of c which are zeros of f(X). 

If 
n n 

y = 2 ovzv and y' = 2 ^ ' P 

then 

ycy~x = j ' c y - " 1 <=»y = yz for some z G JR^); 

and from this we can see that the elements of Sy are in one-one 
correspondence with the set of equivalence classes of n -f 1 tuplets 
(z0, zj, . . . , zn) ¥* 0 of elements of R^ where we define (z0, . . . , zn) and 
(z'o, . . . , z'n) to be equivalent if and only if there is a z in R(c) with 

(z0', . . . , z'„) = (z0z, zxz, . . . , z„z). 

So we may say: The elements of SY are in one-one correspondence with 
the elements of an «-dimensional right projective space over R^ [1]. 

If R^ has infinitely many elements and n ^ 1 then such a projective 
space has infinitely many elements. Now the proof of Proposition 3 is 
reduced to proving: 

PROPOSITION 4.I/R is any noncommutative division ring and c G R then 
R^ has infinitely many elements. 
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Proof. We use the following notation: \î A and B are division rings with 
B c A then (A:B) denotes the dimension of A as a left vector space over 
B. If A D B D C, then (yl:C) = (A:B)(B:C) if (/!:£) and (£:C) are 
finite. 

Suppose R{c) is a finite set. Then k must be a finite field and (R{c):k) 
finite; since k(c) is a commutative field with /c(c) c R^\ then (k(c)\k) is 
also finite. By Theorem 13, part 4, of [2], taking A = /c(c), we get 

(jR:/*(c)) = (k(c):k). 

Therefore, (#:A:) = (R:R(c))(R^c\k) is finite, hence R has only finitely 
many elements and, by a theorem of Wedderburn, [7], R is commuta­
tive. 

PROPOSITION 5. Let q , q , . . . , cn he a set of pairwise non-conjugate 
elements of R. Then there is a unique monic f(X) e R[X] of degree n such 
that: 

(a) c\, c2, . . . , cn are zeros off(X). 
(b) Every zero off(X) is a conjugate of one of the cv 

(c) If h(X) has all the cl as zeros then h(X) = q(X) O f(X) for a 
q(X) G R[X]. 

Proof This is true for n = 1 by Proposition 1. We use induction, 
assuming n > 1 and that the proposition is true for all sets of fewer than n 
pairwise non-conjugate elements. In particular there is a unique monic 
g(X) satisfying our conditions for the set ch c2, . . . , cn-\. Consider the 
polynomial 

AX) = (x - u) o g(X) 

where u is an undetermined element of R. For each c e R, 

f(c) = g(c)c - ug(c) 

so/(c) = 0 if and only if g(c) = 0 or u = g(c)cg(c)~x. If we take 

u = g(cn)cng(cn)~\ 

ihen f(X) has properties (a) and (b): Namely, i f / (c r) = 0 then either 
g(cr) = 0 so that c' is a conjugate of one of the q, . . . , cn-\ by our 
induction assumption, or cf = g(c')_1wg(c') is a conjugate of c„. 

Now, let/(X) denote any monic polynomial of degree n with ch . . . , cn 

as zeros. (We have proven there is at least one such polynomial.) Let h(X) 
G R[X]\ then 

h(X) = ? (* ) o / ( X ) 4- r(X) where r(X) = 0, 

or 
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r(X) = cr'(X) with c * 0 

and r'(X) is either = 1 or is a monic polynomial of degree m < n. If h(X) 
has each of cu . . . , cn as zeros then so does r'(X). Hence, r'(X) cannot be 
a nonzero constant. If it has degree m it follows from our induction 
assumption that, for each subset of m elements contained in 
{c\, C2, . . . , cn}, r'(X) must be the degree m polynomial associated with 
that subset by our proposition. However, condition (b) leads to a 
contradiction because there is more than one such subset. Therefore, r*(X) 
= 0 and our f(X) satisfies condition (c). From this uniqueness follows. 

3. Proof of theorem 1. Let h(X) have a finite number, w, of zeros. By 
Proposition 3 this set of zeros is pairwise non-conjugate. By Proposition 5, 
h(X) = q(X) o f(X) for a certain f(X) of degree n. This means degree 
h(X) ^ n. 

PROPOSITION 6. Suppose f(X) has zeros in n distinct conjugacy classes and 
has two (hence, by Proposition 3>, infinitely many) zeros in one of these 
classes. Then degree f(X) > n. 

Proof Suppose/(X) has c\\ c\, c^ • . • , cn as zeros where c\ and c\ lie in 
the same conjugacy class and ch c2 , . . . , cn in different ones. We can 
construct 

g(X) = (X-u)o(X-Cl) 

with c\ and c\ as zeros; by Proposition 1, all its zeros lie in the conjugacy 
class of c\. By the division algorithm and the proof of Proposition 6, we 
get 

f(X) = q(X) O g(X) + r(X) with degree r(X) ^ 1. 

Since both c\ and c\ are zeros oîf(X) and g(X) we see r(X) = 0. The set 
of conjugacy classes of zeros oîf(X) is contained in the union of the set of 
conjugacy classes of zeros of q(X) and g(X). The former set of conjugacy 
classes contains at least n — 1 elements, which implies degree q(X) = 
n — 1 by Proposition 5, and degree f(X) ^ n 4- 1. 

4. Proof of theorem 2. Theorem 2A follows at once from Propositions 5 
and 6. 

For Theorem 2B we need a definition of multiplicity. From Theorem 5, 
page 34 of [8] it follows that if f(X) G R[X] has two factorizations into 
irreducible factors then these factors can be placed into a one-one 
correspondence so that corresponding factors are similar; from the 
definition of similarity given in [6], this implies for each c G R that the 
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number of factors (X — u) with u conjugate to c is the same for both 
factorizations. 

Definition. We say c e R is a zero off(X) of multiplicity m if / (c ) = 0 
and in every factorization of f(X) into monic irreducible factors exactly m 
of the factors are of the form (X — cr) with c' conjugate to c. 

To prove Theorem 2B we use induction. Suppose q , C2, • . . , cr is a 
pairwise non-conjugate set of elements of R. From Theorem 2B we already 
know that we can find a unique g(X) of degree r which has the c{ as its 
only zeros, each with multiplicity 1. We use induction: Assume c\ is not in 
the center and we have a polynomial of degree 

r 

m = Zu mp 

P=I 

which has each ct as a zero of multiplicity mt = 1, and has no other zeros. 
We want to construct infinitely many h(X) with degree m + 1, the same 
set of zeros, and c\ of multiplicity m\ + 1. Suppose /z(^Q = ( ^ — w) ° 
g(X). If X is any element of R with g(X) * 0, it follows from (2) that 

h(X) = (g(X)Xg(xy1 - u)g(xy 

Let X = yc.\y~x be a conjugate of c\ different from c\\ then: 

(4) h(X) = ( g ^ ^ - ^ j c u - y g ^ q j - 1 ) ) - 1 - i /)g(jc1 j-1) . 

Let g(X) = 2 Zv^; then 

gOi .}^ 1 ) = l(y)y'] where /(>>) = 2 bvycx
v\ 

and (4) becomes: 

MX) = (l{y)y-xyc,y~\l(y)y~Yx - u)g(X), 

i.e., 

(5) h(yciy-
1) = (Kj)Cl(l(y)rl - u)g(ycxy~x). 

Now we claim: If (k(c\)\k) is finite there is a conjugate w of cj which is 
not of the form l(y)c\(l(y))~] for any^ £ ^(<?i). 

To see this note first that, from Proposition 2 and our assumptions 
about zeros of g(X), it follows that l(y) = 0 if and only if y e i^'i). As in 
the proof of Proposition 3, / is an i^c,)-linear map R —> R; by Proposition 
2, 

/(j,) = 0 <=* g(ycxy~x) = 0 <^ y e # ^ . 
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Suppose now that k(c\) is of finite dimension d over the center k. Then as 
in the proof of Proposition 4, (R\R^) = d also. So / is an R^c'^-linear map 
R —> R with a kernal of dimension 1 over R^Cl\ Its image is of dimension 
d — 1 over R^c'l\ (d i? 2 because we assumed q is not in the center.) 

By the argument used in the proof of Proposition 3, the set of all 
conjugates of c\ in r is in one-one correspondence with the set of elements 
of a (d — 1) dimensional right projective space over R^ while under the 
same correspondence the conjugates of the special form 

i(y)cid(y)r] with/oo#o 
correspond to a (d — 2) dimensional space. Hence, there are infinitely 
many choices for u, conjugate to c\, such that h(X) has no zeros except 
c\, . . . , cr and the multiplicity of ct is raz -f 1. This proves Theorem 2B in 
case R is an algebra. 

We have as yet found no proof or counterexample of Theorem 2B for 
the general case. 
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