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Abstract

India is one of the severely affected countries by the Covid-19 pandemic at present. Within
the stochastic framework of the SEQIR model, we studied publicly available data of the
Covid-19 patients in India and analysed possible impacts of quarantine and social distan-
cing as controlling strategies for the pandemic. Our stochastic simulation results clearly
show that proper quarantine and social distancing should be maintained right from the
start of the pandemic and continued until its end for effective control. This calls for a
more disciplined social lifestyle in the future. However, only social distancing and quaran-
tine of the exposed population are found not sufficient enough to end the pandemic in
India. Therefore, implementation of other stringent policies like complete lockdown as
well as increased testing of susceptible populations is necessary. The demographic stochas-
ticity, which is quite visible in the system dynamics, has a critical role in regulating and con-
trolling the pandemic.

Introduction

The novel coronavirus disease 2019 (Covid-19) is a highly infectious disease caused by the
SARS-CoV-2 virus, which can lead to severe complications such as Covid-19 pneumonia
[1]. On 11 March 2020, the World Health Organization (WHO) declared the Covid-19 out-
break as a pandemic of special health attention [2]. As of 2 June 2020 (10:06 am CEST),
the total number of confirmed cases globally is 6 140 934 with 373 548 deaths [2]. India
is now one of the countries severely affected by the Covid-19 pandemic. As of 2 June
2020 (7:45 pm IST), the total number of Covid-19 confirmed cases in India is 201 341
with 99 135 active cases and 5632 deaths [3]. The present situation of the pandemic is
alarming since there is no vaccine/drug developed to cure this disease. So far, the Indian
Government, both at the central and state levels, has taken up special measures such as
quarantine, social distancing and lockdown to prevent/intervene in the spread of
Covid-19 across the country.

Mathematical modelling of epidemics plays important roles to study and predict disease
dynamics as well as to suggest necessary intervention strategies for controlling disease out-
breaks. Classic compartmental models such as SI, SIS, SIR [4], SEIR and their derived/
extended models [5] have long been successfully used to study various disease transmission
dynamics for different viruses such as the H1N1 virus [6], the Ebola virus [7], SARS-CoV
[8], MERS-CoV [9], etc. With special reference to the ongoing Covid-19 pandemic, there
have been many attempts using statistical methods, deterministic compartmental model-
ling, large-scale simulation to study Covid-19 disease dynamics and to propose policies
to intervene in the disease outbreak in several countries. Likewise, there have been many
studies on the Covid-19 pandemic in India using various mathematical models. However,
most of these studies adopt deterministic methods [10–21]. On the other hand, to capture
the qualitative as well as quantitative real dynamic situations to intervene in disease out-
breaks, a stochastic approach needs to be employed. With the increasing capacity of modern
computers, stochastic methods are gaining popularity because they are powerful methods to
study and predict any dynamic complex system that has inherently various environmental
fluctuations/noise. A stochastic approach towards disease transmission models becomes
especially important in situations such as the beginning or the end of a disease outbreak
when there are less infective individuals. In such situations, stochasticity is non-negligible
and may play an important role in system dynamics. The objective of this paper is to study
the Covid-19 disease dynamics in India and some of its states using the SEQIR model from
a stochastic approach. Using stochastic numerical simulations, we illustrate important
impacts of social distancing and quarantine on the Covid-19 transmission in India and
its five states, namely Uttar Pradesh, Delhi, Kerala, Maharashtra and West Bengal. We
also highlight the importance of demographic stochasticity in Covid-19 spreading
dynamics.
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Methods

SEQIR model

Most of the states in India adopt home quarantine and insti-
tutional quarantine policies to reduce the transmission of
Covid-19. The classic SEIR (Susceptible, Exposed, Infected and
Recovered) epidemic model [5] is therefore extended with another
compartment called Quarantine (Q) to study the Covid-19 disease
dynamics in India. The extended model is known as the SEQIR
model [17], its schematic diagram shown in Figure 1. In this
model (Fig. 1), the total population is sub-divided into five sub-
populations (compartments) such as Susceptible (S); Exposed
and infected but undetected by testing (E); Quarantined (Q);
confirmed/reported/hospitalised Infected population (I); and
Covid-19 recovered patients as well as individuals living in
secured zones unaffected by the Covid-19 outbreak (R). In
Figure 1, α is the rate of Covid-19 transmission per individual;
β1 is the rate of transition from Susceptible to the Quarantined
class; σ1 is the transition rate from Susceptible to the secured
zone (unaffected by Covid-19) or recovered class; β2 is the quar-
antine rate of the Exposed individuals who are infected but
undetected by testing; r1 represents the rate of progression from
the Exposed and infected but undetected by testing class to the
hospitalised Infected class; σ2 is the rate of transition from
Quarantined to the secured zone class, or the natural recovery
rate of some infected Quarantined individuals; r2 is the transition
rate of some infected Quarantined individuals to hospitalised
Infected class; σ3 denotes the recovery rate of the hospitalised
Infected class; d2 indicates the Covid-19 induced death rate; Λ
is the rate of inflow in the Indian population due to new child-
births or immigration to the country; and d1 denotes the natural
death rate of each class. We assume uniform mixing or homogen-
eity in the large population. Consider the total population at any
instant of time is N(t) = S(t) + E(t) +Q(t) + I(t) + R(t).

Stochastic modelling

Change in population occurs in discrete integer amounts and is a
stochastic process. Hence, the time evolution of each variable
(sub-population) in the model should be considered in a discrete
and stochastic fashion rather than in a deterministic manner [22].
In the stochastic formalism of the SEQIR model of Figure 1, the
population state vector at any instant of time can be represented
by, X = [S, E, Q, I, R]−1. We assume the set of sub-populations
{Xi} = {S, E, Q, I, R} to be a set of molecular species. For the
SEQIR model of Figure 1, the state vector X undergoes M = 15
reaction channels defined by,

∑5
i=1 aiXi �

kj ∑5
i=1 biXi, where kj

represents the classical rate constants. Here, sets {ai} and {bi}
are the sets of reactant and product molecules, respectively.
Further, the classical rate constant, kj relates to the stochastic
rate constant, cj as per relation, cj = kjV

1−ν, where ν denotes the
stoichiometric ratio and V is the system size [22, 23]. This relation
incorporates the idea of correlating fluctuations in the dynamics
of the system [22–24]. Now, the reaction channels translated
from Figure 1 are as follows,

S+ E�a 2E; S�b1
Q; S�s1

R; E�r1 I; E�b2
Q; Q�s2

R; Q�r2 I;

I�s3
R; I�d2 F; F�L S; S�d1 F; E�d1 F; Q�d1 F; I�d1 F; R�d1 F

(1)

If the system is subjected to a certain temperature T, then any
variable in X undergoes a set of random molecular events, given
by the set of reactions (1). Thus, the trajectory of the variable in X
follows the well-known Brownian motion [22–24]. Further, each
time anyone of the reactions in the reaction channels (1) is
encountered, the creation and annihilation of the molecular spe-
cies will occur and hence, the state vector X will change as a func-
tion of time. Now, consider the state vector X changes to another
state X’ during the time interval [t, t + Δt]. Then, the time evolu-
tion of the configurational probability of state change P (X; t) is
given by the following Master equation, constructed from the
detailed-balance equation [25–27],

∂P(S, E, Q, I, R; t)
∂t

=a(S+ 1)(E − 1)P(S+ 1, E − 1, Q, I, R; t)

+ b1(S+ 1)P(S+ 1, E, Q− 1, I, R; t)

+ s1(S+ 1)P(S+ 1, E, Q, I, R− 1; t)

+ r1(E + 1)P(S, E + 1, Q, I − 1, R; t)

+ b2(E + 1)P(S, E + 1, Q− 1, I, R; t)

+ s2(Q+ 1)P(S, E, Q+ 1, I, R− 1; t)

+ r2(Q+ 1)P(S, E, Q+ 1, I − 1, R; t)

+ s3(I + 1)P(S, E, Q, I + 1, R− 1; t)

+ d2(I + 1)P(S, E, Q, I + 1, R; t)

+ LP(S− 1, E, Q, I, R; t)

+ d1(S+ 1)P(S+ 1, E, Q, I, R; t)

+ d1(E + 1)P(S, E + 1, Q, I, R; t)

+ d1(Q+ 1)P(S, E, Q+ 1, I, R; t)

+ d1(I + 1)P(S, E, Q, I + 1, R; t)

+ d1(R+ 1)P(S, E, Q, I, R+ 1; t)

− [aS.E.+ b1S+ s1S+ r1E

+ b2E + s2Q+ r2Q+ s3I + d2I

+ L+ d1S+ d1E + d1Q

+ d1I + d1R]P(S, E, Q, I, R; t)
(2)

Except for simple systems like linear systems, it is usually
difficult to analytically solve a multivariate Master equation
such as equation (2). However, the multivariate Master equation
(2) can be solved numerically using the Stochastic Simulation
Algorithm (SSA), briefly discussed here. The SSA is generally
known as the Doob–Gillespie algorithm. It is formulated by
Gillespie [22, 24] on the basis of the theoretical foundations
given by Doob [28, 29] and originally proposed by Kendall
[30]. It is a Monte-Carlo type of algorithm, which is a non-spatial
individual-based analogue of the Master equation that incorpo-
rates all possible interactions in the system [22]. The SSA is
built on two random processes which are statistically independ-
ent, namely firing reaction and reaction time. In SSA, these two
processes are realised by generating two statistically independent,
uniform random numbers r1 and r2. The reaction time τ is com-
puted using τ = (1/a0)ln(1/r1). Here, a0 is given by, a0 =

∑
i ai,

where ai represents the ith propensity function. The propensity
function, ai relates to the stochastic rate constant, ciaccording to
the formula ai = hici, where hi denotes the number of possible
molecular combinations of ith reaction. Further, the jth reaction
will fire, when it satisfies,

∑j
i=1 ai ≤ a0r2 ,

∑j+1
i=1 ai.
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R0 calculation using a deterministic approach

For compartmental epidemiological models with a set of
Ordinary Differential Equations (ODEs), the basic reproduction
number R0 is usually determined by the Next Generation
Matrix method, proposed by Diekmann et al. [31]. Here, we
will only give a rough calculation of R0 without going into
the details of mathematical proofs and analysis. One can see the
references [32, 33] for the detailed proofs and analysis of R0 cal-
culation. For the SEQIR model in Figure 1, the R0 can be deter-
mined as follows. Let ω = [E, Q, I, R, S ]Tbe the population state
vector representing the population in each compartment of
Figure 1. Consider the first m < n compartments have individuals
infected by the SARS-CoV-2 virus, where m = 3 (i.e., E, Q, I ) and
n = 5 (i.e., E, Q, I, R, S ) for the model system. Assume that the
Disease Free Equilibrium (DFE) ω0 exists for the model. Then,
ω0 = (0, 0, 0, 0, S0), where S0 = (Λ/β1 + σ1 + d1), which is a frac-
tion of Susceptible individuals when Covid-19 is not present.
We can rewrite the governing ODEs of the model in Figure 1
as (dωi/dt) = Γi(ω)−Θ i(ω), where i = 1, 2, 3 (or E, Q, I ). Here,
the function Γi(ω) describes the rate of new infections appearing
in the compartment i, and the function Θ i(ω) is the rate of all
possible transitions between the compartment i and any other
infected compartments [32, 33]. So, for the SEQIR model in
Figure 1, we calculated these two functions as,

G(v) =
aS.E.
0
0

⎡
⎣

⎤
⎦,

Q(v) =
(r1 + b2 + d1)E
−b1S− b2E + (r2 + s2 + d1)Q
−r1E − r2Q+ (s3 + d1 + d2)I

⎡
⎣

⎤
⎦

With the definitions F = (∂Gi(v)/∂vj)|v0
and

V = (∂Qi(v)/∂vj)|v0
for 1⩽ i, j⩽m, the Next Generation

Matrix is given by the product FV−1. The spectral radius of the
Next Generation Matrix then gives the basic reproduction number
R0, i.e. R0 = ϱ(FV−1), where ϱ represents the spectral radius [32].
The Next Generation Matrix FV−1 has the (i, j) entry equal to the

expected number of secondary infections in compartment i pro-
duced by an infected individual introduced in compartment j
[33]. For the model system in Figure 1, we calculated,

F =
[aS0 0 0

0 0 0

0 0 0

]
,

V =
(r1 + b2 + d1) 0 0

−b2 (r2 + s2 + d1) 0

−r1 −r2 (s3 + d1 + d2)

⎡
⎢⎣

⎤
⎥⎦

Then, the eigenvalues of the Next Generation Matrix FV−1 are
0, 0 and αΛ/(β1 + σ1 + d1)(r1 + β2 + d1). Thus, the basic reproduc-
tion number is calculated to be R0 = (αΛ/(β1 + σ1 + d1)(r1 + β2 +
d1)) (similarly reported in [17]). Rewriting, R0 = S0 × α × (1/r1 +
β2 + d1) = Susceptible population at DFE × transmissibility × net
duration of infectiousness, quarantining and natural death rate.

Results and discussion

With a deterministic approach, we calculated the basic reproduc-
tion number R0 = (Λα/(β1 + σ1 + d1 )(r1 + β2 + d1 )). We then
made rough estimates of R0 values for India and its five states,
namely Uttar Pradesh, Delhi, Kerala, Maharashtra and West
Bengal using the values of transition rates given in Table 1 (the
primary sources of data are [2, 34, 35]). As of 21 March 2020,
the R0 values of India, Uttar Pradesh, Delhi, Kerala, Maharashtra
and West Bengal are, respectively, 0.1747, 21.81, 0.4862, 0.2329,
0.3556 and 0.5774. This mentioned date particularly falls during
an early stage of the Covid-19 outbreak in all the five states and
also for India, when there are initially less infected individuals
(see Table 2). The infected population is less than 100 in all the
five states and is less than 300 for India. So, we imposed a stochas-
tic approach to the SEQIR model of Figure 1, which takes into
account the stochasticity that is present in the system dynamics.

We performed numerical simulations of the SEQIR model
in Figure 1 using the SSA to study the time evolution of the
Covid-19-infected population I(t) for India and the above

Fig. 1. The schematic diagram of the SEQIR model (adapted from the reference [17]).
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mentioned five Indian states with respect to parameters such as
transmission rate (α), quarantine rate (β2) and system size (V ).
We considered the mentioned five Indian states because we
wanted to study the Covid-19 disease dynamics in these densely
populated states as compared to other Indian states. In population
dynamics, one can express the system size parameter V as, V =
N/(N/V ) =N/D; where N is the total population in the geograph-
ical area, and D is the population density. Taking N as constant,
we can correlate the change in V as a change in D by the relation,
V ∝ (1/D). The rate constant values and initial values for the SSA
simulation are taken from the reference [17] (see Tables 1 and 2)
after verifying the data from 21 March 2020 to 2 June 2020 [3].
The SSA simulation results of I(t) vs. time, t (in days) for India,
Uttar Pradesh, Delhi, Kerala, Maharashtra and West Bengal are
shown in Figures 2(a–g), 3(a–f), 4(a–f). We analysed the simula-
tion results and provided possible predictions of the Covid-19 pan-
demic in India and the five states, as presented below.

Scenario 1 (India): We numerically simulated the time-
evolution of the Covid-19-infected population I(t) in India
using SSA under different conditions. From the simulation
results of the dynamics of I(t) for various values of the system
size V, we observed that at values of V < 1.7 (or D >N/1.7), the
I(t) increases exponentially, indicating a monotonic rise in
infection (Malthusian law [36] ). The I(t) curves start flattening
(Gompertz-Winsor nature [35]) for V≥ 1.7 (or D ≤N/1.7),
which is the signature of an endemic (Fig. 2 (b)). Therefore, the
infected Indian population I(t) is greatly influenced by the popu-
lation density D (Fig. 2(a) and (b)), and is not homogeneously
distributed over India. Fluctuations arising in the system dynam-
ics due to population density D play an important role to inter-
vene in Covid-19 spreading. Hence, these simulation results
(Fig. 2(a) and (b)) predict that controlling the population density
can lead to an endemic of the Covid-19 outbreak in India. The
strategy to decrease population density D could be policies such
as social distancing, closure of socially active places such as
academic institutions, offices, tourist spots, places of worship
like temples, churches, mosques, etc.

In Figure 2(c), the sensitivity of the SEQIR model in Figure 1 is
studied with regard to the parameter α, which is the Covid-19
transmission rate, at a particular system size value V = 0.7. As
the value of α increases, the infected population I(t) increases

sharply. This corresponds to the fact that, as the transmission
rate increases due to homogeneous mixing of the population in
a certain demographic region, more susceptible S population
gets exposed and infected with Covid-19. Further, in Figure 2
(d), we studied the impact of the quarantine rate, β2 on the
infected population I(t). One can interpret the quarantine rate,
β2∼ (1/delay in quarantine). In Figure 2(d), we observed that as
the quarantine rate increases (or the delay in quarantine
decreases), the I(t) starts decreasing sharply. When there is
no quarantine or β2 = 0.0, then I(t)∼O(104). However, when
β2 = 0.2 (quarantine in 5 days), then I(t) starts flattening around
∼O(103). This result illustrates the important effects of quarantine
on the Covid-19-infected population I(t) in India. It indicates that
quarantining of exposed population E needs to be done as quickly
as possible and this should be imposed throughout the pandemic
to mitigate the Covid-19 spreading in the country. We know that
flattening the curve can prevent the burden in hospitals and
health care facilities which in turn will keep the pandemic
under control. Thus, our SSA simulation results suggest that
interventions such as social distancing and quarantine need to
be strongly imposed to control the Covid-19 pandemic in a coun-
try with a relatively higher population like India.

Scenario 2 (Uttar Pradesh): Uttar Pradesh is the fourth largest
Indian state. In Figure 2(e), at around t = 20 days, I(t)∼O(105)
(when V = 5 or D =N/5); I(t)∼O(104) (when V = 7 or D =N/7);
I(t)∼O(103) (when V = 10 or D =N/10). This decline in infected
population I(t) with an increase in system size V (or correspond-
ingly a decrease in population density D) can be attributed to
policy such as social distancing, as mentioned before. When
V≈ 100 (or D≈N/100), the curve of I(t) starts flattening,
which indicates a well-intervention in the Covid-19 pandemic
in the state. Thus, the demographic stochasticity as measured by
1/V1/2 ∝ D1/2 can control the time evolution of the infected popu-
lation I(t). In Figure 2(f) and (g), we studied the effect of quaran-
tine (β2) on I(t) evolution at two fixed values of the system size
parameter, i.e. V = 1.0 (or D =N ) and V = 100 (or D =N/100).
In Figure 2(f), at V = 1.0, when there is no quarantine (β2 = 0.0),
the peak of I(t)∼O(106) and if the quarantine rate β2≥ 5.0,
there are roughly 50 infected population in our simulation
result. This implies that quick quarantining of the exposed popu-
lation E (in hours) is necessary to control the fast transmission of

Table 1. Rate constant values taken from [17]

Rate constants (per day) India Maharashtra Kerala Delhi Uttar Pradesh West Bengal

α 0.00000000025 0.0000000025 0.0000000164 0.000000021 0.00000002 0.0000000047

β1 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004

σ1 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

r1 0.01 0.04 0.05 0.05 0.02 0.05

β2 0.1 0.005 0.005 0.005 0.005 0.005

σ2 0.05 0.1 0.1 0.1 0.1 0.1

r2 0.001 0.002 0.001 0.00093 0.0012 0.0005

σ3 0.006 0.005 0.012 0.0016 0.0038 0.0078

d2 0.00197 0.0032 0.00029 0.00067 0.0049 0.0024

Λ 40 000 3300 405 650 14 200 3490

d1 0.00002 0.000015 0.000018 0.00001 0.00002 0.000016
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Covid-19 in a large state with a dense population like Uttar
Pradesh. Again, in Figure 2(g), at V = 100, when quarantine rate
β2 = 0.0, the peak of I(t)∼ 350 and if β2≥ 0.1, then our simulation
results show approximately 50 infected population. Thus, for
Uttar Pradesh, if the exposed population E is quarantined in 10
days, then the Covid-19 outbreak is relatively controlled, provided
a policy for less population density like social distancing is already
strongly imposed. These simulation results thus highlight that the
policies such as social distancing and quarantine should be strictly
imposed in Uttar Pradesh, otherwise, the Covid-19 outbreak in
the state can worsen in a short amount of time, as predicted by
Uttar Pradesh’s high R0 value of 21.81.

Scenario 3 (Delhi): The SSA simulation results for Delhi show
that the peak value of the Covid-19-infected population I(t) varies
drastically with a change in the values of the system size V. In
Figure 3(a), when V = 1 (or D =N ), the peak of I(t)∼O(106),
but when V≈ 5 (or D ≈N/5), the peak of I(t)∼O(102).
Flattening of the I(t) curve with less peak value is achieved if
the values of V are increased. The number density D of the popu-
lation decreases when V is increased since the total population N
is fixed. Thus, the simulation results imply the significance of
decreasing population density. These results clearly suggest that
social distancing plays a crucial role in the early times of the pan-
demic for proper intervention. In Figure 3(b) and (c), the dynam-
ics of I(t) is studied for different quarantine rates at two system
size values of V = 1 and V = 5. In Figure 3(b), at V = 1, when
there is no quarantine (β2 = 0.0), the peak of I(t)∼O(107), and
when the quarantine rate β2≥ 0.5, about 50 infected population
is present in our simulation results. In Figure 3(c), at V = 5,
when quarantine rate β2 = 0.0, the peak of I(t)∼ 500, and if
β2 = 0.5, there are approximately 10 infected population in our
simulation result. Thus, in Figure 3(b) and (c), the peak values
of I(t) decrease as the quarantine rate β2 increases. For both
system size values, if the quarantine process of the exposed
population E is carried out as early as in 2 days, the Covid-19
transmission in Delhi is greatly controlled. Again, our stochastic
simulation results highlight the importance of quick implementa-
tion of quarantine and social distancing to control the pandemic
in a densely populated, small state like Delhi. The simulation
results based on the available data indicate that the Covid-19
spreading in Delhi is not yet under control and that the impos-
ition of strict intervention policies such as proper quarantine
and social distancing must continue in the state.

Scenario 4 (Kerala): Our stochastic simulation results of Kerala
(Fig. 3(d)–(f)) are quite impressive concerning the Covid-19
disease dynamics in the state. From Figure 3(d), the dynamics
of I(t) for different values of the system size V show that the
Covid-19-infected population I(t) decreases with an increase in
V. When V = 1 (or D =N ), the peak of I(t)∼O(106) and when
V≈ 5 (or D≈N/5), the peak of I(t)∼O(102). We observed an

overall decline in I(t) for all V≥ 1 which indicates a proper inter-
vention of the Covid-19 pandemic in Kerala. We thus found that
decreasing the number density D of the population (maybe due to
policies such as social distancing as mentioned earlier) at early
times of the pandemic could be a good strategy for effectively con-
trolling the pandemic. Again, in Figure 3(e) and 3(f), we studied
the impact of quarantine (β2) on the time evolution of I(t) for two
system size values V = 1 (or D =N ) and V = 5 (or D =N/5). In
Figure 3(e), at V = 1, when there is no quarantine (β2 = 0.0), the
peak of I(t)∼O(106) and if the quarantine rate β2 = 0.5, then
I(t)∼ 100 in our simulation result. Again, in Figure 3(f), at V =
5, when quarantine rate β2 = 0.0, the peak of I(t)∼ 250, and if
β2≥ 0.5, then there are about 50 infected population in our simu-
lation result. Thus, in Fig. 3(e) and (f), the peak values of the
Covid-19-infected population I(t), at both values of V, decrease
as the quarantine rate β2 increases. In Figure 3(e), if the exposed
E population is quarantined in about 10 days, then the I(t) curve
flattens. Again, in Figure 3(e), if the quarantine process is carried
out in 2 days, then the I(t) curve shows a decreasing trend.
Further, in Figure 3(f), the Covid-19 spreading in Kerala is greatly
controlled if the exposed population E is quarantined in 2 days.
These results again point out the importance of quarantine and
social distancing as early as possible during the Covid-19 out-
break. Hence, the Covid-19 transmission in Kerala is quite con-
trolled as compared to Uttar Pradesh and Delhi as per data.

Scenario 5 (Maharashtra): Maharashtra is the third-largest
Indian state. Figure 4(a) shows the dynamics of the Covid-19-
infected population I(t) for different values of the system size V,
simulated using SSA. When V = 1 (or D =N ), the peak value
of I(t)∼O(107), indicating a Malthusian character in I(t).
However, when V≈ 5 (or D≈N/5), the I(t) curve flattens around
I(t)∼O(103). Thus, for V≥ 5 (or D≤N/5), the spread of
Covid-19 is quite controlled. We observed the effect of increasing
V or decreasing the number density D of the population in control-
ling the infected population I(t). In Figure 4(b) and (c), the time
evolution of I(t) is again studied for different quarantine rates
at two values of V = 1 (or D =N ) and V = 5 (or D =N/5). In
Figure 4(b), at V = 1, when there is no quarantine (β2 = 0.0), the
peak of I(t)∼O(107), and if the quarantine rate β2≥ 0.5, then
I(t)∼ 50 infected population in our simulation result. In Figure 4
(c), at V = 5, when quarantine rate β2 = 0.0, the peak of I(t)∼
450, and if β2≥ 0.5, roughly 50 infected population is present in
our simulation result. The simulation results show that the dynam-
ics of I(t) follow the Malthusian law for smaller values of β2 and
that the I(t) curves start flattening for significantly larger values
of β2, indicating a controlled behaviour of the pandemic. As dis-
cussed above, if the quarantine process of the exposed population
E is carried out as early as possible during the Covid-19 outbreak,
then the number of infected population I(t) can be significantly
reduced. Since the I(t) curves for Maharashtra follow a

Table 2. Initial values taken from [17]

Initial values India Maharashtra Kerala Delhi Uttar Pradesh West Bengal

S(0) 800 000 000 75 000 000 10 000 000 10 000 000 150 000 000 50 000 000

E(0) 1500 225 200 150 120 20

Q(0) 50 000 800 1000 800 1500 200

I(0) 284 58 40 27 24 3

R(0) 400 000 000 30 000 000 10 050 000 500 000 50 000 000 30 000 000
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Malthusian character, the Covid-19 pandemic situation in such a
large, densely populated state is alarming. Stringent strategies
such as social distancing, proper quarantining, etc., must continue
for a longer time for proper intervention.

Scenario 6 (West Bengal): In the case of SSA simulation results
of West Bengal-based data (Fig. 4(d)), when V = 1 (or D =N ), the
peak of I(t)∼O(108). However, for V≈ 5 (or D≈N/5), the I(t)
curve flattens about I(t)∼O(102), and for V > 5 (or D <N/5),
the I(t) curves decline. Further, in Figure 4(e) and (f), we studied
the effect of quarantine on I(t) evolution for two system size
values V = 1 (or D =N ) and V = 5 (or D =N/5). In Figure 4(e),
at V = 1, when there is no quarantine (β2 = 0.0), the peak of
I(t)∼O(107), and if the quarantine rate β2≥ 0.5, then I(t)∼ 50

infected population in our simulation result. Again, in Figure 4
(f), at V = 5, when the quarantine rate, β2 = 0.0, the peak of
I(t)∼ 150, and if β2≥ 0.1, there are about 10 infected population
in our simulation result. From all these results, we observed that if
proper quarantine of the exposed population E is not strictly
imposed (smaller values of β2 < 0.1), then the increase in infected
population I(t) is quite large, and flattening of the curves takes
a long time (100–200 days). However, if proper quarantine of
the E population is carried out (larger values of β2≥ 0.1), then
the dynamics of I(t) shows decreasing trends, implying the
Covid-19 pandemic is under control. The data-based simulation
indicates that the scenario of West Bengal is still alarming if
proper intervention is not taken.

Fig. 2. The upper panels (a–d) represent the simulation
results of Infected Population I(t) vs. time, t (in days) for
India using the Stochastic Simulation Algorithm (SSA). (a
and b) I(t) vs. t for India for different values of the system
size V. As V increases, I(t) decreases. (c) I(t) vs. t for India
for different values of transmission rate α at V = 0.7. I(t)
increases with increase in α. (d) I(t) vs. t for India for differ-
ent values of quarantine rate β2 at V = 1.0. I(t) decreases
with increase in β2. The lower panels (e–g) represent the
simulation results of Infected Population I(t) vs. time t (in
days) for Uttar Pradesh using the SSA. (e) I(t) vs. t for
Uttar Pradesh for different values of V. As V increases, I(t)
decreases. (f and g) I(t) vs. t for Uttar Pradesh for different
values of quarantine rates β2 at two values of system size V
= 1.0 and V = 100.0, respectively. In both (f) and (g), I(t)
decreases with increase in β2.

Fig. 3. The upper panels (a–c) show simulation results of
Infected Population I(t) vs. time t (in days) for Delhi using
the Stochastic Simulation Algorithm (SSA). (a) I(t) vs. t of
Delhi for different values of the system size V. As V
increases, I(t) decreases. (b and c) I(t) vs. t of Delhi for dif-
ferent values of quarantine rate β2 at two different volumes
V = 1.0 and V = 5.0, respectively. In both (b) and (c), I(t)
decreases with increase in β2. Again, (d–f ) show simulation
results of Infected Population I(t) vs. time t (in days) for
Kerala using SSA. (d) I(t) vs. t of Kerala for different values
of V. As V increases, I(t) decreases. (e and f) I(t) vs. t of
Kerala for different values of quarantine rate β2 at two dif-
ferent volumes V = 1.0 and V = 5.0, respectively. In both (e)
and (f), I(t) decreases with increase in β2.

6 Athokpam Langlen Chanu and R. K. Brojen Singh

https://doi.org/10.1017/S0950268820001946 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268820001946


Disease spreading pattern: Using SSA, we again simulated the
dynamics of I(t) for all the five Indian states as discussed above.
We performed 30 realisations for each state. The infected popu-
lation I(t) trajectories show peaks around 50 days and start
declining (the left panel of Figure 5). However, we observed
that except for Kerala and West Bengal, the decreasing trends
in I(t) for Uttar Pradesh, Delhi and Maharashtra do not

approach I = 0 over 300 days. This implies that social distancing
and quarantine are not sufficient to bring an end to the Covid-19
pandemic. We then studied how Covid-19 spreads in the param-
eter space (α, β2, I ) for India as well as the mentioned five states,
as shown in the heat maps of Figure 5(a)–(f) (the right panel of
Fig. 5). These heat maps are generated using GNUPLOT. From
these heat maps, we observed that the Covid-19-infected

Fig. 4. The upper panels (a–c) show simulation results
of Infected Population I(t) vs. time t (in days) for
Maharashtra using Stochastic Simulation Algorithm. (a) I
(t) vs. t of Maharashtra for different values of system size
V. I(t) decreases with increase in V. (b and c) I(t) vs. t of
Maharashtra for different values of quarantine rate β2 at
two different volumes V = 1.0 and V = 5.0, respectively. In
both (b) and (c), I(t) decreases with increase in β2. Again,
(d–f) show simulation results of Infected Population I(t)
vs. time t (in days) for West Bengal using the SSA. (d) I(t)
vs. t of West Bengal for different values of V. I(t) decreases
with increase in V. (e and f) I(t) vs. t of West Bengal for dif-
ferent values of β2 at two different volumes V = 1.0 and V =
5.0, respectively. In both (e) and (f), I(t) decreases with
increase in β2.

Fig. 5. Left panel: Simulation results of I(t) vs. time t (in days) using Stochastic Simulation Algorithm for five Indian states, namely Maharashtra, Delhi, Kerala, Uttar
Pradesh and West Bengal at a fixed system size V = 1000. Right panel: Heat Maps for (a) India, (b) Uttar Pradesh, (c) Delhi, (d) Kerala, (e) Maharashtra and (f) West
Bengal to study the variation of the infected population I w.r.t the transmission rate α and quarantine rate β2. Stochastic fluctuations in I are clearly visible.
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population, I is relatively large for higher values of α and smaller
values of β2. As the value of β2 increases, the I population drops.
Hence, in order to control the Covid-19 pandemic in India and
the five states, the parameters α and β2 need to be optimised.
Moreover, we observed stochastic fluctuations in these heat
maps. These stochastic fluctuations are known as demographic sto-
chasticity which arises because of random births and deaths of
individuals in populations. Demographic stochasticity plays an
important role during the early stage as well as the ending stage
of a disease outbreak when there are less infective individuals.

Conclusion

Most of the epidemic models concerning the Covid-19 pandemic
are studied using deterministic approaches which fail to capture
the fluctuations/noise present in the system dynamics. We have
studied the SEQIR model in the context of Covid-19 disease
dynamics in India and five seriously affected states using stochas-
tic methods. At an early stage of the Covid-19 outbreak in India,
even though the basic reproduction number R0 values are calcu-
lated to be less than unity from the deterministic analysis, we can
observe with stochastic modelling that the Covid-19 spreading in
India and its five states can be disastrous if proper interventions
are not put into effect as early as possible. Our numerical simula-
tion results clearly show that policies like social distancing and
quarantine have important roles in controlling the pandemic.
We propose strict impositions of these two policies to effectively
intervene in the Covid-19 disease transmission in the country as
well as in the five states. An important consequence of employing
a stochastic method is the appearance of demographic fluctua-
tions in the simulation results to affect the disease dynamics
and to even intervene in the spread of the disease. This demo-
graphic stochasticity which is quite important in regulating any
system dynamics is generally neglected in its deterministic coun-
terpart. Hence, our stochastic simulation method could capture
the demographic stochasticity which is non-negligible. We
would like to mention that we do not intend to give quantitative
predictions here. One limitation of the model under consideration
is that, by construction, S and E populations make transitions to
the Q compartment where they are assumed to interact homoge-
neously. This may give rise to more infected populations and thus,
we fail to see the trends of I(t) converging near zero over 300 days
in our simulation results. Our study also points out that only pol-
icies such as social distancing and quarantine of the exposed
population are not sufficient enough to end the Covid-19 pan-
demic in India and its states. Other stringent policies like com-
plete lockdown as well as increased testing of susceptible
populations must be considered and also incorporated systematic-
ally in mathematical models.
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