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Abstract

Given a finite group G, the generating graph 0(G) of G has as vertices the (nontrivial) elements of
G and two vertices are adjacent if and only if they are distinct and generate G as group elements.
In this paper we investigate properties about the degrees of the vertices of 0(G) when G is an
alternating group or a symmetric group of degree n. In particular, we determine the vertices of
0(G) having even degree and show that 0(G) is Eulerian if and only if n > 3 and n and n − 1 are
not equal to a prime number congruent to 3 modulo 4.

2010 Mathematics Subject Classification: 20B35 (primary); 05C45, 20B10, 05C07 (secondary)

1. Introduction

Given a finite group G, the generating graph 0(G) of G has as vertices the
(nontrivial) elements of G and two vertices are adjacent if and only if they are
distinct and generate G as group elements.

When G is simple and |G| > 2 many deep results on generation of G in the
literature can be translated to results about 0(G). For example, the property that G
can be generated by two elements [1, 18, 21] amounts to saying that 0(G) has at
least one edge. The fact due to Guralnick and Kantor in [11] that every nontrivial
element of G belongs to a generating pair of elements of G is equivalent to saying
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that 0(G) has no isolated vertices. More recently, Breuer et al. proved in [4] that
G has spread at least 2, or in other words 0(G) has diameter at most 2.

More generally, one can try to characterize finite groups G for which a given
graph-theoretical property holds in 0(G). As an illustration, recall that a graph
0 is Hamiltonian (respectively, Eulerian) if it contains a cycle going through
every vertex (respectively, edge) of 0 exactly once. In [5], Breuer et al. and the
first author have investigated the finite groups G for which 0(G) is Hamiltonian.
For example they showed that every finite simple group of large enough order
has a Hamiltonian generating graph and proposed (in correspondence with [4,
Conjecture 1.8]) an interesting conjecture characterizing the finite groups having
a Hamiltonian generating graph.

It is natural to investigate the finite groups G for which 0(G) is Eulerian. A
famous result going back to Euler states that a connected graph 0 is Eulerian if
and only if every vertex of 0 is of even degree.

In this paper we study properties of finite groups G relative to the degrees of
the vertices of 0(G). Given an element g ∈ G, we let |g| be the order of g in
G, and furthermore if g 6= 1 we let δ(g) be the degree of g in 0(G). Also Gab

denotes the abelianization of G, that is, Gab
= G/G ′ where G ′ = [G,G] is the

commutator subgroup of G.
Given a finite group G, our first result is a criterion for a vertex of 0(G) to be

of even degree.

PROPOSITION 1. Let G be a finite group and 1 6= g ∈ G. Let ε ∈ {1, 2} be such
that ε = 1 if and only if Gab is of odd order. If 2ε divides |NG(〈g〉)| then δ(g) is
even.

For an integer n > 3, let Altn and Symn denote the alternating and the
symmetric group on n letters, respectively. The rest of the paper concentrates
on G = Altn or G = Symn . As 0(Alt3) and 0(Alt4) have diameters 1 and 2
respectively, these graphs are both connected. Thus the result of [4] mentioned
above yields that 0(Altn) is connected for every n.

Binder showed in [3] that 0(Symn) is connected and has diameter 2 for n > 4.
In fact 0(Sym3) has diameter 2 and is therefore connected but 0(Sym4) is not
connected as any even involution of Sym4 is an isolated vertex of 0(Sym4). In
particular 0(Symn) is connected for every n 6= 4.

Also note that Symab
n
∼= C2 for n > 3, Altab

n
∼= C3 for n ∈ {3, 4} and Altab

n
is trivial for n > 5. (For a positive integer m, Cm denotes the cyclic group of
order m.)

We characterize the integers n such that |NAltn (〈g〉)| is even for every
g ∈ Altn , as well as the integers n such that |NSymn

(〈g〉)| is divisible by 4
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for every g ∈ Symn . This gives our first examples of alternating and symmetric
groups having an Eulerian generating graph.

PROPOSITION 2. Let G = Altn or G = Symn where n > 3 is an integer. Let
0(G) be the generating graph of G and let 1 6= g ∈ G. Let e ∈ {2, 4} be such that
e = 2 if G = Altn , otherwise e = 4. The following assertions hold.

(i) If G = Sym3 then |NG(〈g〉)| ≡ 2 mod 4.

(ii) Suppose G 6= Sym3. Then |NG(〈g〉)| 6≡ 0 mod e if and only if there exists a
prime number p congruent to 3 modulo 4 and a positive integer k such that
|g| = pk and n can be decomposed into a sum

n =
k∑

i=0

ai pi , (1)

where ak = 1, ai ∈ {0, 1} for 0 6 i < k and, only when G = Altn , the number
of nonzero integers ai with i odd is odd. Moreover, if |NG(〈g〉)| 6≡ 0 mod e
then the set of cycle lengths (in a decomposition of g into disjoint cycles) is
given by {pi

: ai 6= 0}.

(iii) If |g| 6= pk where p is a prime number congruent to 3 modulo 4 and k ∈ N,
or n cannot be decomposed into a sum as in (1), then δ(g) is even.

(iv) If n cannot be decomposed into a sum as in (1) where p is a prime number
congruent to 3 modulo 4 and k ∈ N, then 0(G) is Eulerian.

Given G, an alternating or a symmetric group, our main result determines the
vertices of 0(G) of odd degree as well as whether or not 0(G) is Eulerian.

THEOREM 3. Let G = Altn or G = Symn where n > 3 is an integer. Let 1 6=
g ∈ G. Then δ(g) is odd if and only if there exists a prime number p congruent to
3 modulo 4 such that p ∈ {n, n−1} and |g| = p. In particular, 0(G) is Eulerian if
and only if n and n− 1 are not equal to a prime number congruent to 3 modulo 4.

COROLLARY 4. Let G = Altn or G = Symn where n > 3 is an integer. Suppose
0(G) is not Eulerian, that is, there exists a prime number p congruent to 3 modulo
4 such that p ∈ {n, n−1}. Let P be the probability that a randomly chosen element
in 0(G) has odd degree. Then

P = |Out(G)|
p(1− |Out(G)|/n!)

.

In particular, P → 0 as n→∞.
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Note that Corollary 4 follows immediately from Theorem 3. Indeed, since0(G)
is not Eulerian, an element g of 0(G) has odd degree if and only if g is a p-cycle.
The total number of p-cycles in G is n!/p and the total number of vertices in
0(G) is −1+ n!/|Out(G)|. Hence

P = n!
p
·
|Out(G)|

n! − |Out(G)|

and the result follows.
We fix some notation that will be used throughout the paper. We remind the

reader that for a finite group G and an element g ∈ G, we denote by |g| the order
of g, set 0(G) to be the generating graph of G and, if g 6= 1, we let δ(g) be the
degree of g in 0(G). Given a positive integer m, we let (Z/mZ)∗ be the group
of units of Z/mZ and set φ(m) = |(Z/mZ)∗|. In particular, φ : N → N is the
Euler’s totient function.

Given two positive integers a and b, we let (a, b) denote their greatest common
divisor.

We also use some standard group-theoretical notation as set in [6, Ch. 5,
Section 2].

The paper is organized as follows. In Section 2, given a finite group G
and 1 6= g ∈ G, we give some preliminary results on δ(g), inclusively a
formula determining δ(g) via the Möbius function of G. In Section 3, we prove
Proposition 1. In Section 4, we prove Proposition 2. In Section 5, we prove that
if G = Altn or G = Symn and g ∈ G does not lie in a maximal primitive
subgroup of G other than Altn then δ(g) is even. This latter result is an important
ingredient required in the proof of Theorem 3. In Section 6, we prove Theorem 3
for G = Symn . Finally, in Section 7, we prove Theorem 3 for G = Altn .

2. Preliminaries

Let G be a finite group and let 0(G) be its generating graph. Given an element
g ∈ G, we let |g| be the order of g in G and if g 6= 1 we let δ(g) denote the degree
of g in 0(G). In this section, we collect some preliminary results on δ(g). Some
of the results rely on the Möbius function µG of G. Recall that µG is the function
defined inductively on the lattice of subgroups H of G by∑

K>H

µG(K ) = δH,G,

where δG,G = 1 and δH,G = 0 if H 6= G. We give below two general properties
of µG .
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PROPOSITION 2.1. Let G be a finite group. The following assertions hold:

(i) The Möbius function µG is invariant under conjugation, that is, if H1 and H2

are conjugate in G then µG(H1) = µG(H2).

(ii) Given a subgroup H of G, µG(H) = 0 except possibly if H is an intersection
of maximal subgroups of G or H = G.

Proof. Part (i) is clear and part (ii) is [12, Theorem 2.3].

Given 1 6= g ∈ G, we can relate the degree δ(g) of g in 0(G) to µG in the
following way:

PROPOSITION 2.2. Let G be a finite group and 1 6= g ∈ G. Then

δ(g) =
∑
H3g

µG(H)|H |.

Proof. This follows from [17, (1.1)].

We now record a result of Hawkes, Isaacs and Özaydin from 1989. In the
statement below, the square-free part of a positive integer n denotes the product
of the distinct prime divisors of n.

PROPOSITION 2.3 [13, Theorem 4.5]. Let G be a finite group, H be a subgroup
of G and set m(H) to be the square-free part of |G : G ′H |. Then |NG(H) : H |
divides m(H)µG(H).

We finally record two general results on the degree of a vertex g in 0(G).

PROPOSITION 2.4. Let G be a noncyclic finite group and 1 6= g ∈ G. Then δ(g)
is even if and only if the number of involutions in G adjacent to g is even.

Proof. Let X be the set of vertices of 0(G) adjacent to g and let N be the number
of involutions of G adjacent to g. If X = ∅ then δ(g) = 0 and the result is
immediate. We therefore suppose that X 6= ∅. Let x be any element of X . For
any i ∈ (Z/|x |Z)∗, we have 〈x〉 = 〈x i

〉 and so G = 〈g, x〉 = 〈g, x i
〉. As G is not

cyclic, x i
6= g and so x i

∈ X .
We define a relation ∼ on X as follows: given x1, x2 ∈ X we say x1 ∼ x2 if

and only if x2 = x i
1 for some i ∈ (Z/|x1|Z)∗. One easily checks that ∼ is an

equivalence relation on X .
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Given x ∈ X , we let [x] be the equivalence class of X containing x and note
that |[x]| = φ(|x |). Since 1 6∈ X , X is the disjoint union of the distinct equivalence
classes and φ(m) is odd if and only if m 6 2, we deduce that |X | ≡ N mod 2. In
other words δ(g) ≡ N mod 2, as required.

PROPOSITION 2.5. Let G be a finite group and 1 6= g ∈ G. Set

C := CAut(G)(g) = {ψ ∈ Aut(G) : ψ(g) = g}.

Then |C | divides δ(g).

Proof. Let X be the set of vertices of 0(G) adjacent to g. If X = ∅ then
δ(g) = 0 and the result is immediate. We therefore suppose that X 6= ∅. Then
C = CAut(G)(g) acts on X . The action is semiregular. Indeed, suppose that ψ ∈ C
is such that ψ(x) = x for some x ∈ X . Since ψ(g) = g and 〈g, x〉 = G, we get
ψ = 1.

As the action of C on X is semiregular, it follows from the orbit-stabilizer
theorem that the size of every orbit of X under C is equal to |C |. Hence |C |
divides |X | = δ(g), as required.

3. Criterion for even degree

In this section we prove Proposition 1.

Proof of Proposition 1. Set K = NG(〈g〉). Let

S = {H : H 6 G, g ∈ H, |H | ≡ 1 mod 2, µG(H) ≡ 1 mod 2}.

If S = ∅ then Propositions 2.2 gives δ(g) ≡ 0 mod 2.
We therefore suppose that S 6= ∅. Given a positive integer n, we let n2 be the

2-part of n. Given H ∈ S , let m(H) be the square-free part of |G : G ′H |. Note
that for every H ∈ S we have m(H)2 = ε.

By Proposition 2.2,

δ(g) ≡
∑
H∈S

µG(H)|H | mod 2. (2)

One easily checks that K acts on S by conjugation. Let Si (1 6 i 6 r ) be
the distinct orbits of S under the action of K , and for 1 6 i 6 r , let Hi be a
representative of Si , so that Si = Orb(Hi). Then

S =
r⊔

i=1

Orb(Hi)
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and ∑
H∈S

µG(H)|H | =
r∑

i=1

|Orb(Hi)|µG(Hi)|Hi |. (3)

Let 1 6 i 6 r . We have StabK (Hi) = K ∩NG(Hi). By the orbit-stabilizer theorem
|Orb(Hi)| = |K : StabK (Hi)| and so |Orb(Hi)| = |K : K ∩ NG(Hi)|. Since |Hi |

and µG(Hi) are both odd, Proposition 2.3 yields that |NG(Hi)|2 divides m(Hi)2 =

ε. Since |NG(Hi)|2 ∈ {1, ε} and 2ε divides |K |2, we deduce that |Orb(Hi)| is even.
Equations (2) and (3) now give δ(g) ≡ 0 mod 2.

4. Normalizers of cyclic subgroups

In this section we prove Proposition 2. We let G = Altn or G = Symn where
n > 3 is an integer. We first study the cases where n ∈ {3, 4}.

PROPOSITION 4.1. Let G = Altn or G = Symn where n ∈ {3, 4} and let g ∈ G.
The following assertions hold:

(i) Suppose G = Alt3. The vertices of 0(G) correspond to the two elements of
G of order 3. Moreover, 0(G) is the complete graph K2 on two vertices and
is not Eulerian. Finally, NG(〈g〉) = G.

(ii) Suppose G = Alt4. The graph 0(G) has eleven vertices, eight of which
correspond to the elements of G of order 3, the others to the involutions of G.
If |g| = 2 then g is only adjacent to every element of G of order 3, whereas if
|g| = 3 then g is adjacent to the nine elements in G \ 〈g〉. Moreover, 0(G) is
connected, has diameter 2 but is not Eulerian. Finally, |NG(〈g〉)| ≡ 0 mod 2
if and only if |g| 6= 3.

(iii) Suppose G = Sym3. The graph 0(G) has five vertices, two of which
correspond to the elements of G of order 3, the others to the involutions of G.
If |g| = 2 then g is adjacent to the four elements in G\〈g〉, whereas if |g| = 3
then g is only adjacent to the three involutions of G. Moreover, 0(G) is
connected, has diameter 2 but is not Eulerian. Finally, |NG(〈g〉)| ≡ 0 mod 2.

(iv) Suppose G = Sym4. The graph 0(G) has three isolated vertices
corresponding to the even involutions of G. In particular, 0(G) is not
Eulerian. Finally, |NG(〈g〉)| ≡ 0 mod 4 if and only if |g| 6= 3.

Proof. The various statements about the order of NG(g) can be easily checked.
Also part (i) is clear.
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We now consider part (ii). Every nontrivial element of G is either an involution
or an element of order 3. More precisely G has three involutions and eight
elements of order 3. By Propositions 2.2 or 2.5, if |g| = 2 then δ(g) is even.
Alternatively, two involutions of G generate the Klein four-subgroup of G and so
Proposition 2.4 yields that if |g| = 2 then δ(g) is even. In fact if |g| = 2 then g
is adjacent to every element of G of order 3. Also, by Proposition 2.4 if g ∈ G is
such that |g| = 3 then δ(g) is odd. Indeed any element of G of order 3 with any
of the three involutions of G generate G. In fact, if |g| = 3 then g is adjacent to
the nine elements in G \ 〈g〉.

We consider part (iii). Every nontrivial element of G is either an involution or
an element of order 3. Also G has three involutions and two elements of order
3. If |g| = 2 then Propositions 2.2 or 2.5 yields that δ(g) is even. Alternatively,
by Proposition 2.4, if g is an involution then δ(g) is even, since g is adjacent to
the two involutions in G \ 〈g〉. In fact, if |g| = 2 then g is adjacent to the four
elements in G \ 〈g〉. Also by Proposition 2.4, if g ∈ G is such that |g| = 3 then
δ(g) is odd. Indeed any element of G of order 3 with any of the three involutions
of G generate G.

Finally part (iv) consists of an easy check.

The proof of Proposition 2 requires several lemmas.

LEMMA 4.2. Let S = Symn where n > 3 is an integer. Let g be an element
of S. Set m = |g| and let Dg be a decomposition of g into disjoint cycles. Let
ψ : NS(〈g〉)→ (Z/mZ)∗ be defined as follows: for an element s of NS(〈g〉), let
ψ(s) be the unique element is in (Z/mZ)∗ such that s−1gs = gis . The following
assertions hold.

(i) The map ψ is an epimorphism, ker(ψ) = CS(g) and NS(〈g〉)/CS(g) ∼=
(Z/mZ)∗.

(ii) The group NS(〈g〉) is of even order.

(iii) If n > 3 or m > 2 then |NS(〈g〉)| ≡ 0 mod 4 except possibly if m = pk for
some prime number p congruent to 3 modulo 4 and some k ∈ N.

(iv) Suppose n > 3 and m = pk for some prime number p congruent to 3 modulo
4 and some k ∈ N. If |NS(〈g〉)| 6≡ 0 mod 4 then any two cycles in Dg have
distinct lengths.

Proof. We first consider part (i). One easily checks that ψ : NS(〈g〉)→ (Z/mZ)∗
is a surjective homomorphism and ker(ψ) = CS(g). The result follows from the
first isomorphism theorem. In particular, |NS(〈g〉)/CS(g)| = φ(m).
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We now consider parts (ii) and (iii). Note that if m = 1 then g = 1 and
NS(〈g〉) = S is of even order. Moreover, S has order divisible by 4 for n > 3.
Also if m = 2 then NS(〈g〉) = CS(g) contains an involution, namely g, and so
NS(〈g〉) is of even order. In fact, if m = 2 then NS(〈g〉) = CS(g) is of order
divisible by 4 for n > 3. Suppose that m > 2 is even. Then |CS(g)| ≡ 0 mod 2
and, as φ(m) ≡ 0 mod 2, part (i) now yields |NS(〈g〉)| ≡ 0 mod 4.

Suppose finally that m > 2 is odd. Then φ(m) is even. Also φ(m) 6≡ 0 mod 4 if
and only if m = pk for some prime number p congruent to 3 modulo 4 and some
positive integer k. The result now follows from part (i).

We now consider part (iv). Since φ(m) is even, it follows from parts (i) and (ii)
that if |NS(〈g〉)| 6≡ 0 mod 4 then CS(g) is of odd order. The result follows.

LEMMA 4.3. Let A = Altn where n > 3 is an integer. Let g ∈ A be an element of
order m. Then NA(〈g〉) is of even order except possibly if m = pk for some prime
number p congruent to 3 modulo 4 and some k ∈ N.

Proof. If m = 1 or m is even then NA(〈g〉) contains an involution and so NA(〈g〉)
is of even order. We can therefore assume that m > 1 is odd. Set S = Symn . It is
easy to check that

|NA(〈g〉)/CA(g)| = |NS(〈g〉)/CS(g)|/`

where ` ∈ {1, 2}. It now follows from Lemma 4.2 that if φ(m) ≡ 0 mod 4 then
NA(〈g〉) is of even order. Since m > 1 is odd, φ(m) ≡ 0 mod 4 if and only if m is
not a power of a prime number congruent to 3 modulo 4. The result follows.

LEMMA 4.4. Let A = Altn and S = Symn where n = pa for some prime number
p congruent to 3 modulo 4 and some a ∈ N. Let g ∈ A be an n-cycle. Let h be
any element of NS(〈g〉), say h conjugates g to gi for some i ∈ (Z/nZ)∗. Let ci be
the order of i in (Z/nZ)∗. The following assertions hold.

(i) CS(g) = 〈g〉.

(ii) The element h is of even order if and only if ci ≡ 0 mod 2.

(iii) Suppose h is of even order. Then h belongs to A if and only if a is even.

Proof. Part (i) is clear. Indeed g is an n-cycle in S = Symn , so |CS(g)| = n and
CS(g) = 〈g〉.
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Since |g| = n, let ψ : NS(〈g〉) → (Z/nZ)∗ be the map defined as in Lemma
4.2. We have

NS(〈g〉)
〈g〉

∼= Im(ψ) ∼= Cφ(n)

where the latter isomorphism follows from the fact that n is a power of a prime
number. As |g| is odd, |h| is even if and only if |ψ(h)| is even. This yields part
(ii).

We now consider part (iii). Since n = pa where p is a prime number congruent
to 3 modulo 4, φ(n) = 2m where m is an odd positive integer. Hence, as |g| is
odd, every Sylow 2-subgroup of NS(〈g〉) has order 2. In particular, h belongs to
A if and only if the involution h|h|/2 belongs to A. Also, an involution of NS(〈g〉)
belongs to A if and only if every involution of NS(〈g〉) belongs to A. Hence h
belongs to A if and only if the involution of NS(〈g〉) sending g to g−1 belongs to
A. The latter happens if and only if a is even. The result follows.

We can now prove Proposition 2.

Proof of Proposition 2. The case where n ∈ {3, 4} follows directly from
Proposition 4.1 (together with Proposition 1 when G = Sym4). We therefore
assume that n > 4. Note that part (iv) is an immediate consequence of part (iii).
We consider parts (ii) and (iii). Let Dg be a decomposition of g into disjoint
cycles. We first suppose that G = Altn .

Suppose that NG(〈g〉) is of odd order. By Lemma 4.3, |g| = pk for some prime
number p congruent to 3 modulo 4 and some k ∈ N. Since |g| = pk , it follows
that, in Dg, a cycle has length pi for some integer 0 6 i 6 k. For 0 6 i 6 k, let ai

be the number of cycles in Dg of length pi . Since NG(〈g〉) is of odd order we must
have ai ∈ {0, 1} for 0 6 i 6 k. Moreover, as |g| = pk , ak = 1. Finally, suppose
for a contradiction, that the number N of nonzero integers ai with i odd is even.
Using Lemma 4.4 one easily checks that there exists an involution in NG(〈g〉)
conjugating g to g−1, contradicting NG(〈g〉) being of odd order. Hence N is odd.

Suppose now that there exist a prime number p congruent to 3 modulo 4, k ∈
N and integers ai (0 6 i 6 k) such that: |g| = pk , ai ∈ {0, 1}, ak = 1 and
n =

∑k
i=0 ai pi where the number N of nonzero integers ai with i odd is odd. In

particular, in Dg, there are ai cycles of length pi for 0 6 i 6 k. Since N is odd, it
follows from Lemma 4.4 that NG(〈g〉) is of odd order.

This establishes part (ii). Part (iii) now follows from Proposition 1.
The proof for G = Symn is similar using Lemma 4.2.
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5. A deterministic result for alternating and symmetric groups

In this section, we provide an important ingredient needed for the proof of
Theorem 3.

THEOREM 5.1. Let G = Altn or G = Symn where n > 4 is an integer. Let
1 6= g ∈ G. If g does not belong to a maximal primitive subgroup of G not equal
to Altn then δ(g) is even. In particular, if n is such that Symn and Altn are the
only primitive groups of degree n, then every vertex in 0(G) has even degree and
so G is Eulerian.

Proof. Suppose for a contradiction that δ(g) is odd. By Proposition 2 we deduce
that |g| = pk for some prime number p congruent to 3 modulo 4 and some positive
integer k. In particular, g belongs to Altn . Moreover, in a decomposition Dg of g
into disjoint cycles, all cycles have odd length and any two cycles have distinct
lengths. Hence, without loss of generality, we can suppose that

g =
r∏

i=1

σi

where r ∈ N and, for 1 6 i 6 r , |σi | = pai , where the sequence (ai)
r
i=1

of nonnegative integers is strictly decreasing and a1 = k. Moreover, we can
assume that σ1 = (1, 2, 3, . . . , pa1). The assumption on g implies that a maximal
subgroup of G containing g is either the alternating group Altn (if G = Symn), or
an intransitive group, or an imprimitive group.

By Proposition 2.1(ii), a subgroup H of G containing g and such that µG(H) 6=
0 is either G, Altn (if G = Symn), a maximal intransitive group, a maximal
imprimitive group, or the intersection of at least two maximal subgroups of G
of the kind just described.

Note that if r = 1 then g = σ1, n = pa1 and no intransitive subgroup of G
contains g. Also if r > 1 the intersection of all maximal intransitive subgroups of
Symn containing g is the group

H1 =

r∏
i=1

Sympai .

Since n > 4 the group H1 is of order divisible by 4.
Now suppose that g belongs to a maximal imprimitive subgroup K of Symn .

Note that a1 > 2, as otherwise a1 = 1, g is a p-cycle and n ∈ {p, p + 1},
but there is no imprimitive subgroup of Symn containing a p-cycle. Let Ω =
{1, . . . , pa1} be the support of σ1 and let B1, . . . , Bt be the blocks of K having
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nonempty intersection with Ω . The integer t is the smallest positive integer such
that gt(B1) = B1. In particular, t 6 pa1 and t divides pa1 . Hence t = pβ for some
integer 0 6 β 6 a1. Without loss of generality, i ∈ Bi for 1 6 i 6 t .

Note that

n − pa1 =

r∑
i=2

pai

6
a2∑

i=0

pi

=
pa2+1

− 1
p − 1

< pa1 .

We claim that t 6= 1. Indeed, suppose t = 1. Then a block B of K has size at least
pa1 . Since n − pa1 < pa1 , it follows that K has a single block contradicting the
imprimitivity of K . We claim also that t 6= pa1 . Indeed, suppose t = pa1 . Then
n − t < t , a contradiction.

It follows that 1 6 β 6 a1 − 1. Since β 6 a1 − 1, we have

01 = {i · pa1−1
+ 1 : 0 6 i 6 p − 1} ⊆ B1, (4)

02 = {i · pa1−1
+ 2 : 0 6 i 6 p − 1} ⊆ B2, (5)

and Sym(01)× Sym(02) ∼= Symp × Symp is a subgroup of K of order divisible
by 4.

Let H be any proper subgroup of G containing g and such that µG(H) 6= 0.
If r = a1 = 1 then G = Symn , H = Altn and, as n > 3, H is of even order.

If r = 1 and a1 > 2 then H contains (Sym(01) × Sym(02)) ∩ Altn which is of
even order. If r > 1 and a1 = 1 then H contains H1 ∩Altn which is of even order.
Finally if r > 1 and a1 > 1 then H contains H1∩Altn ∩ (Sym(01)×Sym(02)) =

Altn ∩ (Sym(01)×Sym(02)) which is again of even order. We deduce that H has
even order and by Proposition 2.2 it follows that δ(g) is even, contradicting our
supposition that δ(g) is odd. Arguing by contradiction, we have showed that δ(g)
is even for every g ∈ 0(G), as required.

The final part of the theorem now follows at once.

6. More on symmetric groups

In this section, we prove Theorem 3 for symmetric groups. We will need a few
lemmas.
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LEMMA 6.1. Let S = Symn where n = pa for some odd prime number p and
some positive integer a. Assume n > 5. Suppose H is an almost simple primitive
subgroup of S with soc(H) = PSLd(q) where d > 2 and q = r f for some prime
number r and some positive integer f . If the action of H is on the set of points
of the projective space PGd−1(q) then d is prime, (d, q − 1) = 1, PSLd(q) =
PGLd(q) and H 6 Altn .

Proof. Note that H 6 P0Ld(q), as if d > 2 the graph automorphism of H does
not act on the set of points of the projective space PGd−1(q). Also since n is
odd, if d = 2 then q = n − 1 is even and so (d, q − 1) = 1. In fact, since
n = (qd

−1)/(q−1) is a power of a prime, if d > 3 then, by [7, Proposition 1], d
is prime and (d, q − 1) = 1. Therefore, under the assumptions of the lemma, d is
prime, (d, q−1) = 1 and PGLd(q) = PSLd(q). It remains to show that H 6 Altn .

Suppose first that d = 2. Then n = q + 1. As n is odd, r = 2. Also f 6= 2 as
n > 5. By [2, Table 3C] H 6 Altn .

Suppose now that d > 2. If f is odd then by [2, Table 3C] H 6 Altn . Finally,
we claim that f is not even. Suppose otherwise and write f = 2` for some ` > 1.
Since d > 3 is prime and (qd

−1)/(q−1) is a power of a prime, one easily checks
that (r, f, d) 6∈ {(2, 2, 3), (2, 2, 6), (2, 4, 3)}. By Zsigmondy’s theorem there is a
prime divisor u1 of r f d

− 1 not dividing r s
− 1 for every 1 6 s < f d . Clearly

u1 = p. Again, applying Zsigmondy’s theorem, there is a prime divisor u2 of
r `d − 1 not dividing r s

− 1 for every 1 6 s < `d . Clearly u2 6= p. Now

pa(r 2`
− 1) = r 2`d

− 1 = (r `d − 1)(r `d + 1)

and so u2 divides r 2`
− 1, a contradiction, as 2` < `d (since d > 3).

LEMMA 6.2. Let S = Symp+1 where p is an odd prime number and let g be
a nontrivial p-element of S. Then there is a unique transitive subgroup of S
isomorphic to PGL2(p) containing g.

Proof. The group PSL2(p) acts 2-transitively and faithfully on the set of points
of the projective space PG1(p) of cardinality p + 1. In particular PSL2(p)
is a transitive subgroup of Symp+1. Moreover, PGL2(p) is a subgroup of the
normalizer of PSL2(p) in Symp+1. By [2, Proposition 3.9.2], there is a unique
conjugacy class of transitive subgroups of S isomorphic to PSL2(p). In particular
there is a single conjugacy class of transitive subgroups of S isomorphic to
PGL2(p). Since PGL2(p) contains a nontrivial p-element and all nontrivial p-
elements are conjugate in Symp+1, we deduce that there is a subgroup H of
Symp+1 isomorphic to PGL2(p) containing g. From the cycle shape of g, we have
CSymp+1

(g) = C p and following Lemma 4.2, NSymp+1
(〈g〉) has order p(p − 1).
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It follows that NSymp+1
(〈g〉) is the unique parabolic subgroup P of H containing

g. We claim that P is not a subgroup of any other subgroup H0 of Symp+1
conjugate to H . Suppose otherwise. Then there exists k ∈ Symp+1 such that
H k
= H0, H0 6= H , P 6 H and P 6 H0. Let P0 = Pk and note that P0 is

a parabolic subgroup of H0. Since all parabolic subgroups of H0 are conjugate,
there exists a ∈ H0 such that P0 = Pa . We obtain that ka−1

∈ NSymp+1
(P). Since

P = NSymp+1
(〈g〉) and 〈g〉 is a p-Sylow subgroup of Symp+1, we in fact have

NSymp+1
(P) = P . In particular, ka−1

∈ P . Since a ∈ H0, we obtain k ∈ H0, and
H = H0, a contradiction. It follows that H is the unique transitive subgroup of
Symp+1 isomorphic to PGL2(p) and containing g.

LEMMA 6.3. Let S = Symn where n > 3 is an integer. Let p 6 n be a prime
number and g be a p-element of S having no two cycles of same length. Then
|g| > n/2.

Proof. Say g has order |g| = pa for some a ∈ N. Clearly

n 6
a∑

i=0

pi

= pa
+

a−1∑
i=0

pi

= pa
+

pa
− 1

p − 1
< 2pa

= 2|g|.

LEMMA 6.4. Let S = Symn where n > 3 is an integer. Let p 6 n be a prime
number and g be a p-element of S having no two cycles of same length. Suppose
that g belongs to a primitive subgroup H of S. Then either H is almost simple or
H is of affine type.

Proof. By Lemma 6.3, |g| > n/2.
By [19, Theorem 1], the finite quasiprimitive permutation groups split into

eight families: AS, HA, SD, HS, HC, CD, TW and PA. The latter subdivision
is described in [20, Section 5] where the eight types of quasiprimitive groups
are defined (depending on the structure and on the action of the socle), namely
HA (Holomorphic Abelian), AS (Almost Simple), SD (Simple Diagonal),
CD (Compound Diagonal), HS (Holomorphic Simple), HC (Holomorphic
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Compound), TW (Twisted Wreath) and PA (Product Action), and it follows from
the O’Nan–Scott theorem (see [16] or [8, Ch. 4]) that every primitive group is of
exactly one of these types.

To establish that H is almost simple or of affine type amounts to showing that
H is of AS or HA type. By [10, Theorem 5.9] if a primitive group of degree n
of type SD contains an element h of order |h| > n/4 then n = 60 and |h| = 15.
As |g| > n/2, it follows that the group H is not of type SD. Also as a primitive
group of type HS is contained in a primitive group of type SD, H cannot be of
type HS. If H is of type HC, CD, TW then by [10, Section 5.3] H does not contain
any element of order greater than n/4, contradicting |g| > n/2.

We claim finally that if H is of type PA then H is in fact almost simple. Suppose
indeed that H is of type PA. Then soc(H) = T ` for some nonabelian finite simple
group T and for some ` ∈ N. Moreover, H 6 Xwr Sym` where soc(X) = T and
X 6 Syma for some a ∈ N such that n = a`. We show that ` = 1, establishing that
H is indeed almost simple. Since g ∈ H 6 Xwr Sym`, there exist x1, . . . , x` in X
and σ in Sym` such that g = (x1, . . . , x`)σ . As g is a p-element, σ is a p-element
of Sym` of order at most `. In particular, there exists k ∈ N with k 6 ` such that
gk
∈ X `. Now gk is a p-element of (Syma)

` and has order at most a. In particular,
there exists j ∈ N with j 6 a such that gk j

= 1. It follows that |g| 6 k j 6 a`.
Since |g| > n/2 = a`/2, we deduce that a` > a`/2. That is 2` > a`−1. Since X
is almost simple, a > 5 and so ` = 1. In particular H is almost simple. The result
follows.

LEMMA 6.5. Let S = Symn where n > 3 is an integer. Let p 6 n be a prime
number and g be a p-element of S having no two cycles of same length. Suppose
that g belongs to an almost simple primitive subgroup H of S with soc(H) = Altm

for some m ∈ N. If 1< k < m−1 then the action of H is not on the set of k-subsets
from {1, . . . ,m}.

Proof. Note that m > 5. Suppose that H acts on the set of k-subsets from
{1, . . . ,m}. Then n =

(m
k

)
. The assumption on k gives that

(m
k

)
> 2m, that is

n > 2m. Now g ∈ Altm being a p-element has order at most m and so |g| 6 n/2
contradicting Lemma 6.3.

LEMMA 6.6. Let S = Symn where n > 3 is an integer. Let p 6 n be a prime
number congruent to 3 modulo 4 and let g be a p-element of S having no two
cycles of same length. Suppose that g belongs to an almost simple primitive
subgroup H of S with soc(H) = PSLd(q) for some 2 6 d ∈ N and some prime
power q = r f . If the action of H is on the set of points of the projective space
PGd−1(q) then one of the following holds:
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(i) d = 2, q = r = p, n = p + 1 and |g| = p;

(ii) |g| = n = (qd
− 1)/(q − 1) and r 6= p.

Proof. Note that from the existence of the subgroup H of G, we must have n > 5.
Say |g| = pa for some a ∈ N. By assumption,

n = (qd
− 1)/(q − 1) = (r f d

− 1)/(r f
− 1).

Also by Lemma 6.3, |g| > n/2. Since g has odd order and a graph automorphism
of PSLd(q) is an involution, g ∈ PGLd(q) o 〈ψ〉 where ψ is a generator of
the group of field automorphisms and has order f . In particular there exist
g1∈ PGLd(q) and ψ1 ∈ 〈ψ〉 such that g = g1ψ1. Set h = |ψ1|. Note that h divides
f . Since |g| = pa , h = pb for some nonnegative integer b 6 a.

We show that g ∈ PGLd(q). Suppose not. Then h > 1 and so b > 1. By the
proof of [10, Theorem 2.16], g2 = gh belongs to PGLd(q1/h). In particular, g has
order dividing h|g2|. Moreover, by [10, Corollary 2.7],

|g2| 6
r ( f/h)d

− 1
r f/h − 1

.

Since h > 3, one can check that

2h
r ( f/h)d

− 1
r f/h − 1

6
r f d
− 1

r f − 1

unless d = 2, r = 2, and h = f = 3 or h = f = 4. The latter does not hold as p
is odd. It follows that |g| 6 n/2 except possibly if d = 2, r = 2 and h = f = 3.
Suppose d = 2, r = 2 and h = f = 3. Then soc(H) = PSL2(23), n = 9 and |g|
has order dividing 9. However PGL2(23)o 〈ψ〉 has no element of order 9 and so
|g| = 3. In particular |g| 6 n/2 in all cases, a contradiction. Hence g ∈ PGLd(q)
as claimed.

Suppose first that r = p. Then g is a unipotent element of PGLn(q). Note that
d 6= 3. Indeed, otherwise, |g| = p and n = q2

+ q + 1, and so |g| 6 n/2, a
contradiction.

We show that d = 2. Suppose not. Then d > 4. By [10, Proposition 2.6], |g| 6
pdln(d)/ ln(p)e. Since p > 3, |g| < pln(d)+1. But pln(d)+1 6 (qd

− 1)/2(q − 1) for
p > 3 and d > 4, and so |g| 6 n/2, a contradiction.

Hence d = 2. Therefore |g| = p and n = q + 1. Moreover, if f > 1 then
|g| 6 n/2, a contradiction. So f = 1 and q = p.
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Suppose now that r 6= p so that g is a semisimple element of PGLn(q). Since
g has no two cycles of same length, the proof of [10, Corollary 2.7] yields that |g|
divides n = (qd

− 1)/(q − 1) or |g| divides qd−1
− 1.

We first show that |g| does not divide qd−1
− 1. Suppose otherwise. Note that if

|g| is not equal to qd−1
− 1 then |g| 6 n/2, a contradiction. Hence |g| = qd−1

− 1.
Since |g| is odd, we must have r = 2. Moreover, as |g| is a power of an odd prime,
Zsigmondy’s theorem yields that d = 2. So n = q + 1 and |g| = q − 1. Hence g
must have two fixed points, a contradiction. Therefore |g| does not divide qd−1

−1,
as claimed.

Suppose that |g| divides n. Note that if |g| 6= n then |g| 6 n/2, a contradiction.
Hence |g| = n. The result follows.

LEMMA 6.7. Let S = Symn where n > 3 is a positive integer. Let p 6 n be an
odd prime number and g be a p-element of S having no two cycles of same length.
Suppose that g belongs to an almost simple primitive subgroup H of S. Assume
that if soc(H) = PSLd(q) then the action of H is not on the set of points of the
projective space PGd−1(q). Moreover assume that soc(H) 6= Altn . Then one of
the following holds:

(i) soc(H) = M11, |g| = 11 and n ∈ {11, 12};

(ii) soc(H) = M12, |g| = 11 and n = 12;

(iii) soc(H) = M23, |g| = 23 and n = 23;

(iv) soc(H) = M24, |g| = 23 and n = 24;

(v) soc(H) = PSL2(7), |g| = 7 and n = 7;

(vi) soc(H) = PSL2(11), |g| = 11 and n = 11.

Moreover H 6 Altn .

Proof. Suppose first that soc(H) = Altm for some m ∈ N. Since m 6= n we
can assume from Lemma 6.5 and [10, Theorem 1.3] that soc(H) = Altm where
m ∈ {5, 6, 7, 8, 9}. From the possible cycle shapes of g and using [10, Table 6]
which gives the possible degrees of the corresponding action of H , we deduce
that m = n, a contradiction.

Suppose now that soc(H) is of classical type. Recall that if soc(H) = PSLd(q)
then the action of H is not on the set of points of the projective space PGd−1(q).
From the possible cycle shapes of g and using [10, Table 6] which gives the
possible degrees of the corresponding action of H we deduce that soc(H) =
PSL2(q) where q ∈ {7, 11}. Moreover n = |g| = q .
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If soc(H) is not an alternating group nor a classical group then by [10, Theorem
1.3], soc(H) = Mr where r ∈ {11, 12, 22, 23, 24}. Considering the possible
cycle shapes of g and [10, Table 6] which gives the possible degrees of the
corresponding action of H we deduce that one of the cases (i)–(iv) in the statement
of the lemma holds.

We finally check that H 6 Altn . Clearly soc(H) 6 Altn . We show that if H is
as in (i)–(vi) then H = soc(H) and so H 6 Altn .

As Out(H) is trivial for H ∈ {M11,M23,M24}, if H is as in (i), (iii) or (iv) then
H = soc(H).

Suppose that soc(H) = PSL2(q) where q ∈ {7, 11}, so that n = q . As

Aut(PSL2(q)) = PGL2(q) = PSL2(q).2

and PGL2(q) is not a subgroup of Symn , we deduce that H = PSL2(q) and so
H = soc(H).

To conclude, since Out(M12) is of order 2 and Sym12 has no subgroup of order
2|M12|, we deduce that if soc(H) = M12 then H = soc(H).

LEMMA 6.8. Let S = Symn where n > 3 is an integer. Let p 6 n be a prime
number congruent to 3 modulo 4 and let g be a p-element of S having no two
cycles of same length. Suppose that g belongs to a primitive subgroup H of S of
affine type. Say H 6 AGLd(q) for some 1 6 d ∈ N and some prime number q.
Then |g| = p. Moreover one of the following assertions holds.

(i) q = p, d = 1, n = p;

(ii) q = 2, n = p + 1 = 2d .

Proof. Note that n = qd . Suppose that q = p. Then |g| 6 pt where t is the order
of some unipotent element of GLd(q). By [9, Lemma 2.2] we have

t 6 pdln(d)/ ln(p)e

6 pln(d)/(ln(p))+1

6 dp.

It follows that |g| 6 dp2. Now by Lemma 6.3, |g| > n/2 and so |g| > pd/2.
It follows that dp2 > pd/2 and so 2d > pd−2. Since p ≡ 3 mod 4, the latter
inequality does not hold if d > 4, or d > 3 and p 6= 3. Thus d 6 2 or d = p = 3.

Suppose that d = 3 and p = 3. Then t 6 p and so |g| 6 32. But |g| > 33/2, and
so |g| > 32, a contradiction. Thus d 6 2. We claim that d 6= 2. Suppose otherwise.

https://doi.org/10.1017/fms.2017.25 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.25


Finite groups with Eulerian generating graph 19

Then n = p2, g is a p2-cycle and |g| = p2. But AGL2(p) has exponent p, and so
|g| 6= p2 and d 6= 2. Hence d = 1, n = p and so g is a p-cycle.

Suppose now that q 6= p. Since g is a p-element and q 6= p, we must have
g ∈ GLd(q). In particular |g| divides qa

− 1 for some positive integer a satisfying
1 6 a 6 d . Since, by Lemma 6.3, |g| > n/2, we must have |g| = qd

−1 = n−1.
Hence there exists a positive integer u such that pu

= qd
− 1. As p is odd, q = 2

and pu
+ 1 = 2d . We show that u = 1. Suppose otherwise. Then u > 1 and by

Zsigmondy’s theorem, there is a prime number dividing p2u
− 1 but not pu

− 1.
So pu

+ 1 is divisible by an odd prime, a contradiction. Therefore u = 1, |g| = p
and n = p + 1 = 2d .

We can now prove Theorem 3 for symmetric groups.

Proof of Theorem 3 for symmetric groups. If n ∈ {3, 4} then Theorem 3 follows
from Proposition 4.1 (together with Proposition 1 when G = Sym4). We therefore
assume that n > 4. By Propositions 1 and 2 if |g| is not a power of a prime
number congruent to 3 modulo 4 or if there are two cycles of same length in
a decomposition Dg of g into disjoint cycles, then δ(g) is even. We therefore
assume that n is such that there exists an element h ∈ Symn such that

• |h| = pa for some prime number p congruent to 3 modulo 4 and some a ∈ N

• in Dh no two cycles have the same length.

Without loss of generality we assume that g is an element of Symn having the two
defining properties of h above, as otherwise δ(g) is even. In particular, |g| = pa ,
and by Lemma 6.3, |g| > n/2.

Suppose first that n and n − 1 are not equal to a prime congruent to 3 modulo
4. By [10, Theorem 1.3] and Lemmas 6.4–6.7, a proper primitive subgroup H of
Symn , with H 6= Altn and g ∈ H , satisfies soc(H) = PSLd(q) for some positive
integer d > 2 and some prime power q . Moreover |g| = n = (qd

− 1)/(q − 1).
Since n is a power of a prime, by Lemma 6.1, we in fact have H 6 Altn .
In particular the only maximal primitive subgroup of Symn containing g is
Altn and Theorem 5.1 yields that δ(g) is even. It follows that 0(Symn) is
Eulerian.

Suppose now that n is equal to a prime number congruent to 3 modulo 4. Then
n > 7. Note that if g belongs to a primitive group H with soc(H) = PSLd(q),
then, by [10, Theorem 1.3] and Lemma 6.1, H 6 Altn . By [10, Theorem 1.3] and
Lemmas 6.4–6.8, a proper primitive subgroup H of Symn containing g satisfies
H 6 Altn or n = |g| = p and H is a subgroup of the unique subgroup of Symn
containing g and isomorphic to AGL1(p) = p : (p−1). If g 6∈ AGL1(p) then the
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only maximal primitive subgroup of Symn containing g is Altn and Theorem 5.1
yields that δ(g) is even. We therefore suppose that n = |g| = p. In particular g is
a p-cycle and the only maximal subgroups of Symp containing g are H1 = Altp

and H2 = AGL1(p). These two subgroups intersect in a subgroup H3 of odd order
p(p−1)/2 and of index 2 in H2. In particular the lattice of subgroups H of Symp
containing g and with nonzero Möbius function µSymp

(H) is as follows:

Symp

AGL1(p)Altp

p : (p − 1)/2

Since µSymp
(H1) = µSymp

(H2) = −1 and µSymp
(H3) = 1, it follows from

Proposition 2.2 that

δ(g) = µSymp
(Symp) · |Symp| + µSymp

(H1) · |H1|

+µSymp
(H2) · |H2| + µSymp

(H3) · |H3|

= |Symp| − |H1| − |H2| + |H3|

= p! − p!/2− p(p − 1)+ p(p − 1)/2
= p!/2− p(p − 1)/2

=
p(p − 1)

2
· ((p − 2)! − 1) .

Since p > 7 and p ≡ 3 mod 4, δ(g) is odd.
Suppose now that n − 1 is equal to a prime congruent to 3 modulo 4. Note that

n > 8. Also if g belongs to a primitive subgroup H of affine type contained
in AGLd(2), then, as GLd(2) = SLd(2) is perfect, AGLd(2) is perfect and
so H 6 AGLd(2) 6 Altn . By [10, Theorem 1.3], Lemmas 6.2 and 6.4–6.8,
a proper primitive subgroup H of Symn containing g satisfies H 6 Altn or
n−1 = |g| = p and H is a subgroup of a transitive subgroup of Symn containing
g and isomorphic to PGL2(p). By Lemma 6.2, the latter subgroup of Symn is
the unique transitive subgroup of Symn containing g and isomorphic to PGL2(p).
Note that PGL2(p) ∩ Altp+1

∼= PSL2(p). If g 6∈ PGL2(p) then the only maximal
primitive subgroup of Symn containing g is Altn and Theorem 5.1 yields that δ(g)
is even. We therefore suppose that n − 1 = |g| = p. In particular g is a p-cycle
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and the only maximal subgroups of Symp+1 containing g are Altp+1, PGL2(p)
and the intransitive subgroup of Symp+1 isomorphic to Symp and containing g.
The lattice of subgroups H of Symp+1 containing g and with nonzero Möbius
function µSymp+1

(H) is as follows:

Symp+1

SpAltp+1 PGL2(p)

PSL2(p) Altp AGL1(p)

p : (p − 1)/2

Using Proposition 2.2 and the fact that p ≡ 3 mod 4 and p > 7, we obtain that

δ(g) =
p!
2
· p −

p2(p − 1)
2

is odd.

7. More on alternating groups

PROPOSITION 7.1. Let G = Altn where n ∈ {7, 11, 12, 23, 24}. Let 1 6= g ∈ G.
Then δ(g) is even if and only if n ≡ 3 mod 4 and |g| 6= n, or n ≡ 0 mod 4 and
|g| 6= n − 1. In particular, 0(G) is not Eulerian.

Proof. Suppose first that G = Alt7. Let 1 6= g ∈ G. By Proposition 2, δ(g) is even
except possibly if |g| = 7. Without loss of generality, we assume that |g| = 7.
The lattice of subgroups H of G containing g and with nonzero Möbius function
µG(H) is as follows:
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Alt7

PSL2(7)2PSL2(7)1

7 : 3

Since µG(G) = 1, µG(PSL2(7)i) = −1 for i ∈ {1, 2} and µG(7 : 3) = 1,
Proposition 2.2 yields δ(g) ≡ 1 mod 2. In particular 0(G) is not Eulerian.

Suppose that G = Alt11. Let 1 6= g ∈ G. By Proposition 2, δ(g) is even except
possibly if |g| = 11. Without loss of generality, we assume that |g| = 11. The
lattice of subgroups H of G containing g and with nonzero Möbius function
µG(H) is as follows:

Alt11

(M11)2(M11)1

11 : 5

Since µG(G) = 1, µG((M11)i) = −1 for i ∈ {1, 2} and µG(11 : 5) = 1,
Proposition 2.2 yields δ(g) ≡ 1 mod 2. In particular 0(G) is not Eulerian.

Suppose that G = Alt12. Let 1 6= g ∈ G. By Proposition 2, δ(g) is even except
possibly if |g| = 11. Without loss of generality, we assume that |g| = 11. The
lattice of subgroups H of G containing g and with nonzero Möbius function
µG(H) is as follows:

Alt12

(M12)1
(M12)2Alt11

PSL2(11)

11 : 5

Since µG(G) = 1, µG(Alt11) = −1, µG((M12)i) = −1 for i ∈ {1, 2},
µG(PSL2(11)) = 1 and µG(11 : 5) = 1, Proposition 2.2 yields δ(g) ≡ 1 mod 2.
In particular 0(G) is not Eulerian.
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Suppose that G = Alt23. Let 1 6= g ∈ G. By Proposition 2, δ(g) is even except
possibly if |g| = 23. Without loss of generality, we assume that |g| = 23. The
lattice of subgroups H of G containing g and with nonzero Möbius function
µG(H) is as follows:

Alt23

(M23)2(M23)1

23 : 11

Since µG(G) = 1, µG((M23)i) = −1 for i ∈ {1, 2} and µG(23 : 11) = 1,
Proposition 2.2 yields δ(g) ≡ 1 mod 2. In particular 0(G) is not Eulerian.

Suppose finally that G = Alt24. Let 1 6= g ∈ G. By Proposition 2, δ(g) is even
except possibly if |g| = 23. Without loss of generality, we assume that |g| = 23.
The lattice of subgroups H of G containing g and with nonzero Möbius function
µG(H) is as follows:

Alt24

(M24)1
(M24)2Alt23

PSL2(23)

23 : 11

Since µG(G) = 1, µG(Alt23) = −1, µG((M24)i) = −1 for i ∈ {1, 2},
µG(PSL2(23)) = 1 and µG(23 : 11) = 1, Proposition 2.2 yields δ(g) ≡ 1 mod 2.
In particular 0(G) is not Eulerian.

PROPOSITION 7.2. Let G = Altn where n = pa for some prime number p
congruent to 3 modulo 4 and some positive integer a. Let 1 6= g ∈ G. Then
δ(g) is odd if and only if a = 1 and |g| = n. In particular, 0(G) is Eulerian if
and only if a > 1.

Proof. If n = 3 then the result is obvious (see Proposition 4.1). We therefore
assume that n > 3. If g does not belong to a proper primitive subgroup of G
then Theorem 5.1 yields that δ(g) is even. Also if g is not an n-cycle or a is even
then Proposition 2 yields that δ(g) is even. We therefore assume that g belongs
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to a proper primitive subgroup of G, g is an n-cycle and a is odd. The cases
n ∈ {7, 11, 23} have been covered in Proposition 7.1, so we assume that n = 19
or n > 23. A maximal subgroup H of G containing g is clearly transitive, and
is either imprimitive or primitive. If H is primitive then by [10, Theorem 1.3]
and Lemmas 6.4–6.8 either there exist d ∈ N and a prime power q = r f (with
r prime and f ∈ N) such that n = |g| = (qd

− 1)/(q − 1), soc(H) = PSLd(q)
and H = P0Ld(q), or n = p and H is the subgroup A1 of G isomorphic to
p : (p − 1)/2 and containing g.

Moreover, in the former case, by Lemma 6.1, d must be prime, (d, q − 1) = 1
and PSLd(q) = PGLd(q). Note also that n 6= 19 (as there is no positive integer
d and prime power q such that 19 = (qd

− 1)/(q − 1)). We claim that d > 2.
Suppose otherwise so that d = 2. Then n = 1 + q and so, as n is odd, r = 2.
Moreover since n ≡ 3 mod 4, f must be odd. Now 2 f

+ 1 ≡ 0 mod 3. Following
Zsigmondy’s theorem, 2 f

+ 1 is not a power of 3, unless f ∈ {1, 3}. However if
f ∈ {1, 3} then n ∈ {3, 9}, a contradiction, and so d > 2 as claimed.

Without loss of generality we can therefore assume that n = 19 or n > 23,
moreover a is odd, g is an n-cycle and g belongs to a maximal primitive subgroup
H of G. Furthermore if soc(H)= PSLd(q), we can assume that n > 23 and d > 2.

Suppose first that n cannot be written as (qd
− 1)/(q − 1) for some prime

number d > 2 and some prime power q . Then by assumption n = p and so G has
no imprimitive subgroup containing g. In particular the only maximal subgroup of
G containing g is the subgroup A1

∼= p : (p− 1)/2 of G containing g. Therefore,
δ(g) = |G| − p(p − 1)/2 and so, as p ≡ 3 mod 4, δ(g) is odd.

Suppose now that there exist a prime power q and a prime number d > 2 such
that n = (qd

− 1)/(q − 1). Note that n > 23. Let K = NG(〈g〉). Then

|K | = nφ(n)/2 = paφ(pa)/2 = pa pa−1(p − 1)/2 = pac

where c = pa−1(p−1)/2. In particular, as p ≡ 3 mod 4, |K | is odd, and note that
K/〈g〉 is cyclic of order c. Also if a = 1 then K is the subgroup A1

∼= p : (p−1)/2
of G containing g.

For a positive integer b dividing c, let Kb be the unique subgroup of K
containing g such that Kb/〈g〉 is cyclic of order b. Note that for every subgroup L
of K containing g, there exists a positive integer b dividing c such that L = Kb.

Clearly K is a transitive subgroup of G and StabK (1) is a cyclic group of order
c, say StabK (1) = 〈h〉.

Assume a 6= 1. Then StabK (1) is not a maximal subgroup of K . Indeed we
have the following chain of pairwise distinct subgroups of K .

StabK (1) ⊂ 〈g pa−1
, h〉 ⊂ K .

In particular if a 6= 1 then K is an imprimitive group.

https://doi.org/10.1017/fms.2017.25 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.25


Finite groups with Eulerian generating graph 25

Similarly, if a 6= 1 then Kb is imprimitive for every positive integer b dividing c.
Let

Ω = {(q, d) : q is a power of a prime, d is an odd prime, n = (qd
− 1)/(q− 1)}

and for ω ∈ Ω let 4ω be the family of maximal subgroups of G containing g and
isomorphic to P0Ld(q). Let ω = (d, q) ∈ Ω . It is easy to check that K acts on
4ω by conjugation. As d > 2,4ω is the union of two orbits under the action of K .
As |K | is odd each of these two orbits has odd length and so 4ω is of even size
for every ω ∈ Ω .

Also given ω ∈ Ω and M ∈ 4ω, K ∩ M , being the normalizer in M of a
Singer cycle, is a maximal subgroup of M , see [14]. Moreover, as we are in the
situation where PSLd(q) = PGLd(q), every proper subgroup of M containing g
is a subgroup of K ∩ M .

Let M1 and M2 be the representatives of the two orbits of 4ω under the action
of K . Then, for i ∈ {1, 2}, StabK (Mi) = K ∩ Mi = NMi (〈g〉), and so StabK (Mi)

is isomorphic to the normalizer in P0Ld(q) of a Singer cycle. In particular
|StabK (M1)| = |StabK (M2)| and so |K ∩ M1| = |K ∩ M2|. Therefore if M ∈ 4ω
then M ∩ K = Kbω where bω is a positive integer dividing c and depends only on
ω. It follows that given ω ∈ Ω and a positive integer b dividing pa−1(p − 1)/2,
the number of subgroups in 4ω containing Kb is even.

Suppose a = 1. Then, since n = p is prime, G has no imprimitive subgroups.
Let b be a positive integer dividing c. We prove by induction on c/b thatµG(K ) =
−1 and µG(Kb) is even if c/b > 1. Since a = 1 and n > 23, by [15], K is a
maximal subgroup of G and so µG(K ) = −1. Suppose c/b > 1. The subgroups
of G properly containing Kb are:

(i) The group G. By definition µG(G) = 1.

(ii) The subgroup K . Note that µG(K ) = −1.

(iii) The subgroups in4ω containing Kb for some ω ∈ Ω . Note that given ω ∈ Ω ,
the number of subgroups in 4ω containing Kb is even and µG(M) = −1 for
every M ∈ 4ω. In particular∑

ω∈Ω

∑
M∈4ω
M⊃Kb

µG(M) ≡ 0 mod 2.

(iv) The subgroups in Sb = {Ke : b properly divides e}. By induction if H ∈ Sb

then µG(H) ≡ 0 mod 2. In particular,
∑

H∈Sb
µG(H) ≡ 0 mod 2.

It follows that if c/b > 1 then µG(Kb) ≡ 0 mod 2 as claimed.
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Therefore if H 6= K is a subgroup of G containing g then either |H | ≡ 0 mod 2
or µG(H) ≡ 0 mod 2. It follows from Proposition 2.2 that δ(g) ≡ −|K | mod 2,
and so δ(g) is odd.

Suppose finally that a > 1. We prove by induction on c/b that µG(Kb) is even.
Since a > 1, Kb is an imprimitive subgroup of G and so Kb belongs to a maximal
imprimitive subgroup of G. Let I1, . . . , Ik be the maximal imprimitive subgroups
of G containing Kb. Then, by the proof of Theorem 5.1,

⋂k
j=1 I j has even order.

In particular there is no positive integer e dividing c such that
⋂k

j=1 I j 6 Ke and
there is no ω ∈ Ω such that

⋂k
j=1 I j is a subgroup of an element of 4ω. The

subgroups of G properly containing Kb are:

(i) The subgroups in4ω containing Kb for some ω ∈ Ω . Note that given ω ∈ Ω ,
the number of subgroups in 4ω containing Kb is even and µG(M) = −1 for
every M ∈ 4ω. In particular∑

ω∈Ω

∑
M∈4ω
M⊃Kb

µG(M) ≡ 0 mod 2.

(ii) The subgroups in Sb = {Ke : b properly divides e}. By induction if H ∈ Sb

then µG(H) ≡ 0 mod 2. In particular,
∑

H∈Sb
µG(H) ≡ 0 mod 2.

(iii) The subgroups in S = {H 6 G :
⋂k

j=1 I j 6 H}. We have
∑

H∈S µG(H) = 0.

It follows that for every positive integer b dividing c, µG(Kb) ≡ 0 mod 2 as
claimed.

Now a subgroup of G containing g is either of even order or is equal to some
Kb for some positive integer b dividing c. Therefore Proposition 2.2 yields that
δ(g) ≡ 0 mod 2.

PROPOSITION 7.3. Let G = Altn where n = p + 1 for some prime number p
congruent to 3 modulo 4. Let 1 6= g ∈ G. Then δ(g) is odd if and only if |g| = p.
In particular, 0(G) is not Eulerian.

Proof. Following Proposition 4.1 we can assume without loss of generality that
n > 8. Since the cases n ∈ {12, 24} are treated in Proposition 7.1, we suppose that
n ∈ {8, 20} or n > 32.

Let Dg be a decomposition of g into disjoint cycles. We can assume that g is an
r -element for some prime number r < n with r ≡ 3 mod 4 and that in Dg there are
no two cycles of same length as otherwise, by Proposition 2, |NG(〈g〉)| ≡ 0 mod 2
and δ(g) is even. Note that Lemma 6.3 yields that |g| > n/2.

If g does not belong to a proper primitive subgroup of G then Theorem 5.1
yields that δ(g) is even. We therefore suppose that g belongs to a proper primitive
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subgroup H of G. By Lemma 6.4, H is either almost simple or H is affine.
Suppose H is almost simple. By [10, Theorem 1.3] and Lemma 6.6, soc(H) =
PSL2(p) and |g| = p. If H is of affine type then it follows from [10, Theorem
1.3] and Lemma 6.8 that there exists a positive integer d such that n = 2d ,
H 6 ASLd(2) and |g| = p. In particular |g| = p.

Suppose that there exists no positive integer d such that n = 2d . The lattice of
subgroups H of G containing g and with nonzero Möbius function µG(H) is as
follows:

Altp+1

PSL2(p)Altp

p : (p − 1)/2

Since µG(G) = 1, µG(Altp) = −1, µG(PSL2(p)) = −1 and µG(p : (p−1)/2)
= 1, Proposition 2.2 yields δ(g) ≡ 1 mod 2.

Finally, suppose that there exists a positive integer d such that n = 2d . Note that
p is a Mersenne prime and so, since n > 4, d is an odd prime and 2d−1

≡ 1 mod d .
Assume first that n = 8 so that G = Alt8. The lattice of subgroups H of G

containing g and with nonzero Möbius function µG(H) is as follows:

Alt8

(ASL3(2))2(ASL3(2))1 Alt7

(L3(2))1 (L3(2))3 (L3(2))2

7 : 3

Using Proposition 2.2, we obtain δ(g) ≡ 1 mod 2.
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Assume now that n 6= 8. In particular n > 32. Now G has a unique maximal
subgroup A1 isomorphic to Altp and containing g and a unique maximal subgroup
P1 isomorphic to PSL2(p) and containing g. Let K = NG(〈g〉). Then K = p :
(p−1)/2 and K is a subgroup of A1 and P1. Now G has also a maximal subgroup
H1
∼= ASLd(2) containing g. Let K1 = K ∩ H1 and S1 = A1 ∩ H1. Then S1 is

the unique subgroup of H1 isomorphic to SLd(2) and containing g, and K1 = p :
d = P1 ∩ H1 is a maximal irreducible subgroup of S1, namely the normalizer in
S1 of a Singer cycle of S1. In fact G has

r =
(p − 1)

2d

maximal subgroups Hi , where 1 6 i 6 r , such that Hi
∼= ASLd(2) and Hi contains

g. For 1 6 i 6 r , let Si = A1 ∩ Hi . Then Si is the unique subgroup of Hi

isomorphic to SLd(2) and containing g. Note that K1 is a maximal irreducible
subgroup of Si . Now, for 1 6 i, j 6 r , i 6= j , we have Hi∩H j = K1, P1∩Hi = K1

and A1 ∩ Hi = Si . It follows that there are only two subgroups H of G of odd
order containing g such that µG(H) is possibly nonzero, namely either H = p :
(p − 1)/2 or H = p : d . Moreover, µG(G) = µG(p : (p − 1)/2) = µG(Si) = 1
for 1 6 i 6 r and µG(A1) = µG(P1) = µG(Hi) = −1 for 1 6 i 6 r . Hence
µG(p : (p − 1)/2) = 1 and in fact µG(p : d) = 0. Therefore, by Proposition 2.2,
δ(g) is odd.

We can now prove Theorem 3 for alternating groups.

Proof of Theorem 3 for alternating groups. The cases where n is a power of a
prime congruent to 3 modulo 4 or n − 1 is a prime congruent to 3 modulo 4
have been covered (see Propositions 7.1–7.3).

Suppose now that n is not a power of a prime congruent to 3 modulo 4 or n−1 is
not a prime congruent to 3 modulo 4. We need to show that δ(g) is even. We argue
by contradiction and suppose that δ(g) is odd. By Theorem 5.1 g must belong to a
maximal primitive subgroup H of Altn . By Proposition 2 there is a prime number
p congruent to 3 modulo 4 and a positive integer k such that |g| = pk . Moreover
g has no two cycles of same length. Lemma 6.3 yields that |g| > n/2. By Lemma
6.4 H is almost simple or H is of affine type. Since n and n − 1 are not equal
to a prime number congruent to 3 modulo 4, Lemma 6.8 yields that H is almost
simple and Lemma 6.7 yields that there exist a prime power q and a positive
integer d > 2 such that soc(H) = PSLd(q) and the action of H is on the set of
points of the projective space PGd−1(q). Since n − 1 is not a prime congruent to
3 modulo 4, Lemma 6.6 yields that |g| = n. Therefore n = pk , contradicting the
fact that n is not a power of a prime number congruent to 3 modulo 4. Hence δ(g)
is even as required.
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