1___

2___

3___ 4___ 5___

6___

7___ 8___ 9__

10____ 11___ 12___

13___

14___ 15___

16___ 17___

18____

19

20____

21____

22___

23

24___

25

26____

27

28

29___

30___

31_

32___

33___

34___

35___

36___

37___

38_

39_

40

41___

42___ 43___

44___

45___

46_

47___

48___

 \oplus

Canad. J. Math. Vol. **69** (6), 2017 pp. 1219–1273 http://dx.doi.org/10.4153/CJM-2016-053-6 © Canadian Mathematical Society 0000

Page 1219 Sheet 1 of 5

Anisotropic Hardy–Lorentz Spaces with Variable Exponents

Víctor Almeida, Jorge J. Betancor, and Lourdes Rodríguez-Mesa

Abstract. In this paper we introduce Hardy–Lorentz spaces with variable exponents associated with dilations in \mathbb{R}^n . We establish maximal characterizations and atomic decompositions for our variable exponent anisotropic Hardy–Lorentz spaces.

1 Introduction

Fefferman and Stein's celebrated paper [26] has been crucial in the development of the real variable theory of Hardy spaces. In [26] the tempered distributions in the Hardy spaces $H^p(\mathbb{R}^n)$ were characterized as those such that certain maximal functions are in $L^p(\mathbb{R}^n)$. Coifman [10] and Latter [38] obtained atomic decompositions of the elements of the Hardy spaces $H^p(\mathbb{R}^n)$. Here, $0 and <math>H^p(\mathbb{R}^n) = L^p(\mathbb{R}^n)$ provided that 1 .

Many authors have investigated Hardy spaces in several settings. Some generalizations substitute the underlying domain \mathbb{R}^n with other ones (see, for instance, [7, 9, 12, 44, 54, 58]). Also, Hardy spaces associated with operators have been defined (see [22, 23, 33, 34, 60], amongst others). If X is a function space, the Hardy space $H(\mathbb{R}^n, X)$ on \mathbb{R}^n modelled on X consists of all those tempered distributions f on \mathbb{R}^n such that the maximal function $\mathcal{M}(f)$ of f is in X. The definition of the maximal operator \mathcal{M} will be shown below. The classical Hardy space $H^p(\mathbb{R}^n)$ is the Hardy space on \mathbb{R}^n modelled on $L^p(\mathbb{R}^n)$. For a weight v on \mathbb{R}^n and corresponding weighted Lebesgue space $L^p(\mathbb{R}^n, v)$, the Hardy space $H(\mathbb{R}^n, L^p(\mathbb{R}^n, v))$ was investigated in [28]. The Hardy space $H(\mathbb{R}^n, L^{p,q}(\mathbb{R}^n))$, where $L^{p,q}(\mathbb{R}^n)$ represents the Lorentz space, has been studied in [1,25,27,31,32]. The Hardy space $H(\mathbb{R}^n, \Lambda^p(\phi))$ on \mathbb{R}^n modelled on a generalized Lorentz space $\Lambda^p(\phi)$ was studied by Almeida and Caetano [2]. The variable exponent Hardy space $H^{p(\cdot)}(\mathbb{R}^n)$, investigated in [15,48,52,63], is the space $H(\mathbb{R}^n, L^{p(\cdot)}(\mathbb{R}^n))$ on \mathbb{R}^n modelled on the variable exponent Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$.

By $S(\mathbb{R}^n)$, as usual, we denote the Schwartz function class on \mathbb{R}^n and by $S'(\mathbb{R}^n)$ its dual space. If $\varphi \in S(\mathbb{R}^n)$, the radial maximal function $\mathcal{M} = M_{\varphi}$ used to characterize Hardy spaces is defined by $\mathcal{M}(f) = \sup_{t>0} |f * \varphi_t|$, $f \in S'(\mathbb{R}^n)$, where $\varphi_t(x) = t^{-n}\varphi(x/t)$, $x \in \mathbb{R}^n$ and t > 0. Bownik [4] studied anisotropic Hardy spaces

- Published electronically 0, 0.
 - The authors are partially supported by MTM2013-44357-P and MTM2016-79436-P.
 - AMS subject classification: 42B30, 42B25, 42B35.

Received by the editors February 29, 2016; revised January 4, 2017.

Keywords: variable exponent Hardy space, Hardy-Lorentz space, anisotropic Hardy space, maximal function, atomic decomposition.

1____ 2___

3___

4____

5____ 6____ 7___

8___ 9___ 10___ 11___

12___

13___

14___

15___

16____

17___

18____

19___

20____

21____

22___

23

24___

25___

26____

27

28

29___

30___ 31___ 32___

33___ 34___ 35___ 36___

37___

38____

39_

40

41____

42____

43___

44___

45___

46___

47___

48___

 \oplus

Page 1220 Sheet 2 of

1220

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

on \mathbb{R}^n associated with dilations in \mathbb{R}^n . If *A* is an expansive dilation matrix in \mathbb{R}^n , that is, a $n \times n$ real matrix such that $\min_{\lambda \in \sigma(A)} |\lambda| > 1$ where $\sigma(A)$ represents the set of eigenvalues of *A*, for every $k \in \mathbb{Z}$, we define

$$\varphi_{A,k}(x) = |\det A|^{-k} \varphi(A^{-k}x), \quad x \in \mathbb{R}^n,$$

and the maximal function $\mathcal{M}_A = M_{A,\varphi}$ associated with A is given by

$$\mathcal{M}_A(f) = \sup_{k\in\mathbb{Z}} |f * \varphi_{A,k}|, \quad f \in S'(\mathbb{R}^n).$$

Bownik [4] characterizes anisotropic Hardy spaces by maximal functions like \mathcal{M}_A . Recently, Liu, Yang, and Yuan [40] extended Bownik's results by studying anisotropic Hardy spaces on \mathbb{R}^n modelled on Lorentz spaces $L^{p,q}(\mathbb{R}^n)$.

Ephremidze, Kokilashvili, and Samko [24] introduced variable exponent Lorentz spaces $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$. In this paper we define anisotropic Hardy spaces on \mathbb{R}^n associated with a dilation A modelled on $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$. These Hardy spaces are represented by $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and they are called variable exponent anisotropic Hardy–Lorentz spaces on \mathbb{R}^n . We characterize the tempered distributions in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ by using anisotropic maximal function \mathcal{M}_A . Also, we obtain atomic decompositions for the elements of $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. Our results extend those ones in [40] to variable exponent setting.

Before establishing the results of this paper, we recall the definitions and properties about anisotropy and variable exponent Lebesgue and Lorentz spaces we will need.

An exhaustive and systematic study about variable exponent Lebesgue spaces $L^{p(\cdot)}(\Omega)$, where $\Omega \subset \mathbb{R}^n$, can be found in the monograph [17] and in [20]. Here, $p: \Omega \to (0, \infty)$ is a measurable function. We assume that $0 < p_-(\Omega) \le p_+(\Omega) < \infty$, where $p_-(\Omega) = \operatorname{ess\,inf}_{x\in\Omega} p(x)$ and $p_+(\Omega) = \operatorname{ess\,sup}_{x\in\Omega} p(x)$. The space $L^{p(\cdot)}(\Omega)$ is the collection of all measurable functions f such that, for some $\lambda > 0$, $\rho(f/\lambda) < \infty$, where

$$\rho(f) = \rho_{p(\cdot)}(f) = \int_{\Omega} |f(x)|^{p(x)} dx.$$

We define $\|\cdot\|_{p(\cdot)}$ as follows:

$$||f||_{p(\cdot)} = \inf\left\{\lambda > 0: \int_{\Omega} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx \le 1\right\}, \quad f \in L^{p(\cdot)}(\Omega).$$

If $p_{-}(\Omega) \ge 1$, then $\|\cdot\|_{p(\cdot)}$ is a norm and $(L^{p(\cdot)}(\Omega), \|\cdot\|_{p(\cdot)})$ is a Banach space. However, if $p_{-}(\Omega) < 1$, then $\|\cdot\|_{p(\cdot)}$ is a quasinorm and $(L^{p(\cdot)}(\Omega), \|\cdot\|_{p(\cdot)})$ is a quasi Banach space.

A crucial problem concerning to variable exponent Lebesgue spaces is to describe the exponents p for which the Hardy–Littlewood maximal function is bounded in $L^{p(\cdot)}(\mathbb{R}^n)$ (see [13,19,49,51], amongst others). As shown in [14,16,29], the boundedness of the Hardy–Littlewood maximal function, together with extensions of Rubio de Francia's extrapolation theorem, lead to the boundedness of a wide class of operators and vector-valued inequalities on $L^{p(\cdot)}(\mathbb{R}^n)$ and the weighted $L^{p(\cdot)}(\nu)$. These ideas also work in the variable exponent Lorentz spaces, introduced by Ephremidze, Kokilashvili, and Samko [24], and they will play a fundamental role in the proof of some of our main results. 3___

4____

5____

6____ 7___

8____

9____

10____

11

12___ 13___

14___

15___

16___ 17___

18___

19

20____

21____

22___

23

24___

25

26____

27

28

29___

30___

31___ 32___

33___ 34___

35___ 36___ 37___ 38___ 39___ 40

41____

42

43___ 44___ 45___ 46___

47___ 48___

 \oplus

Anisotropic Hardy–Lorentz Spaces with Variable Exponents

$\mu_f(s) = |\{x \in \mathbb{R}^n : |f(x)| > s\}|, \quad s \in [0, \infty).$ Here, |E| denotes the Lebesgue measure of E, for every Lebesgue measurable set E. The non-increasing equimeasurable rearrangement $f^* : [0, \infty) \to [0, \infty]$ of f is defined by $f^*(t) = \inf\{s \ge 0 : \mu_f(s) \le t\}, \quad t \in [0, \infty).$ If $0 < p, q < \infty$, the measurable function f is in the Lorentz space $L^{p,q}(\mathbb{R}^n)$ provided that $\|f\|_{L^{p,q}(\mathbb{R}^n)} = \left(\int_0^\infty t^{\frac{q}{p}-1}(f^*(t))^q dt\right)^{1/q} < \infty.$ Then $L^{p,q}(\mathbb{R}^n)$ is complete and it is normable; that is, there exists a norm equivalent with the quasinorm $\|\cdot\|_{L^{p,q}(\mathbb{R}^n)}$ (see [8, p. 66]) for $1 and <math>1 \le q < \infty$. Variable exponent Lorentz spaces have been defined in two different ways: one by Ephremidze, Kokilashvili, and Samko [24] and the other by Kempka and Vybíral [36]. In this paper we consider the space defined in [24]. This election is motivated by

 $\mu_f: [0, \infty) \to [0, \infty]$ associated with f by

In this paper we consider the space defined in [24]. This election is motivated by the following fact. We need to use a vectorial inequality for the anisotropic Hardy–Littlewood maximal function (see Proposition 1.4). In order to prove this property, we use an extrapolation argument requiring us to know the associated Köthe dual space of the Lorentz space. The dual space of the variable exponent Lorentz space in [24] is known ([24, Lemma 2.7]). However, characterizations of the dual space of the variable exponent Lorentz space in [36] have not been established (see Remark 1.5).

The Lorentz spaces were introduced in [41] and [42] as a generalization of clas-

sical Lebesgue spaces. The theory of Lorentz spaces can be encountered in [3] and

[8]. Assume that f is a measurable function. We define the distribution function

For every $a \ge 0$ we denote by \mathfrak{P}_a the set of measurable functions $p:(0,\infty) \to (0,\infty)$ such that $a < p_-((0,\infty)) \le p_+((0,\infty)) < \infty$. By \mathbb{P} we represent the class of bounded measurable functions $p:(0,\infty) \to (0,\infty)$ such that there exist the limits

$$p(0) =: \lim_{t \to 0^+} p(t)$$
 and $p(\infty) =: \lim_{t \to +\infty} p(t)$,

and the following log-Hölder continuity conditions are satisfied:

$$\begin{aligned} |p(t) - p(0)| &\leq \frac{C}{|\ln t|} & \text{for } 0 < t \le 1/2, \\ p(t) - p(\infty)| &\leq \frac{C}{\ln(e+t)} & \text{for } t \in (0, \infty) \end{aligned}$$

We also write $\mathbb{P}_a = \mathbb{P} \cap \mathfrak{P}_a$, for every $a \ge 0$.

Let $p, q \in \mathfrak{P}_0$. We represent by $(p(\cdot), q(\cdot))$ -Lorentz space $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ the space of all those measurable functions f on \mathbb{R}^n such that

$$t^{\frac{1}{p(t)}-\frac{1}{q(t)}}f^{*}(t) \in L^{q(\cdot)}(0,\infty).$$

We define

$$\|f\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})} = \|t^{\frac{1}{p(t)}-\frac{1}{q(t)}}f^{*}(t)\|_{L^{q(\cdot)}(0,\infty)}, \quad f \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n}).$$

https://doi.org/10.4153 - 2016-053-6 Published online by Cambridge University Press

Page 1222 Sheet 4 of

1222

1____ 2___

3___ 4___ 5___ 6___

7___ 8___ 9___

10___ 11___

12___ 13___ 14___

15___

16___ 17___ 18___

19___

20____

21___ 22___

23___

24___

25____

26____

27___

28___

29___

30___

31___

32____

33___

34___ 35___ 36___ 37___

38___ 39___

40___

41____

42___ 43___

44___ 45___

46___ 47___

48___

 \oplus

We also consider the average f^{**} of f^* given by

$$f^{**}(t) = \frac{1}{t} \int_0^t f^*(s) ds, \quad t \in (0, \infty),$$

and define

$$\|f\|_{\mathcal{L}^{p(\cdot)},q(\cdot)(\mathbb{R}^{n})}^{(1)} = \|t^{\frac{1}{p(t)}-\frac{1}{q(t)}}f^{**}(t)\|_{L^{q(\cdot)}(0,\infty)}, \quad f \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n}).$$

We note that $\|\cdot\|_{\mathcal{L}^{p(\cdot)},q(\cdot)(\mathbb{R}^n)}^{(1)}$ satisfies the triangular inequality provided that $q_{-}((0,\infty)) \ge 1$. It is clear that

$$\|f\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})} \leq \|f\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})}^{(1)}$$

According to [24, Theorem 2.4], if $p \in \mathbb{P}_0$, $q \in \mathbb{P}_1$, p(0) > 1, and $p(\infty) > 1$, there exists C > 0 for which

$$\|f\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})}^{(1)} \leq C\|f\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})}, \quad f \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n}).$$

If $p, q \in \mathbb{P}_1$, then $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ is a Banach function space (in the sense of [3]) and the dual space $(\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n))'$ coincides with $\mathcal{L}^{p'(\cdot),q'(\cdot)}(\mathbb{R}^n)$ [24, Lemma 2.7 and Theorem 2.8]. Here, as usual, if $r: (0, \infty) \to (1, \infty)$, $r' = \frac{r}{r-1}$. The behaviour of the anisotropic Hardy–Littlewood maximal function on $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ will be very useful in the sequel. According to [24, Theorem 3.12], the classical Hardy–Littlewood maximal operator is bounded from $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ into itself provided that $p, q \in \mathbb{P}_1$.

The main definitions and properties of the anisotropic setting we will use in this paper can be found in [4].

Suppose that *A* is an expansive dilation matrix in \mathbb{R}^n . We say that a measurable function $\rho: \mathbb{R}^n \to [0, \infty)$ is a homogeneous quasinorm associated with *A* when the following properties hold:

(a) $\rho(x) = 0$ if and only if x = 0;

(b) $\rho(Ax) = |\det A|\rho(x), \quad x \in \mathbb{R}^n;$

(c) $\rho(x+y) \le H(\rho(x) + \rho(y)), \quad x, y \in \mathbb{R}^n$, for certain $H \ge 1$.

If *P* is a nondegenerate $n \times n$ matrix, the set Δ defined by

$$\Delta = \left\{ x \in \mathbb{R}^n : |Px| < 1 \right\}$$

is called the ellipsoid generated by *P*. According to [4, Lemma 2.2, p. 5], there exists an ellipsoid Δ with Lebesgue measure 1 and such that, for certain $r_0 > 1$, $\Delta \subseteq r_0 \Delta \subseteq A \Delta$.

From now on, the ellipsoid Δ satisfying the above properties is fixed. For every $k \in \mathbb{Z}$, we define $B_k = A^k \Delta$, as the equivalent of the Euclidean balls in our anisotropic context, and we denote by ω the smallest integer such that $2B_0 \subset B_{\omega}$. We have that, for every $k \in \mathbb{Z}$, $|B_k| = b^k$, where $b = |\det A|$, and $B_k \subset r_0 B_k \subset B_{k+1}$.

The *step quasinorm* ρ_A on \mathbb{R}^n is defined by

$$\rho_A(x) = \begin{cases} b^k, & x \in B_{k+1} \setminus B_k, & k \in \mathbb{Z}, \\ 0, & x = 0. \end{cases}$$

Thus, ρ_A is a homogeneous quasinorm associated with A.

 \bigoplus

 \oplus

 \oplus

 \oplus

1	Anisotropic Hardy–Lorentz Spaces with Variable Exponents	1223
2 3 4	By [4, Lemma 2.4, p. 6] if ρ is any quasinorm associated with <i>A</i> , then ρ_A and ρ_A equivalent; that is, for a certain $C > 0$,) are
5	$ ho(x)/C \leq ho_A(x) \leq C ho(x), x \in \mathbb{R}^n.$	
6 7 8 9 10	The triplet $(\mathbb{R}^n, \rho_A, \cdot)$, where $ \cdot $ denotes the Lebesgue measure in \mathbb{R}^n , is a space homogeneous type in the sense of Coifman and Weiss [11]. We now define maximal functions in our anisotropic setting. Suppose that $S(\mathbb{R}^n)$ and $f \in S'(\mathbb{R}^n)$. The <i>radial maximal function</i> $M^0_{\varphi}(f)$ of f with respect to defined by	$\varphi \in$
11 12	$M^0_{\varphi}(f)(x) = \sup_{k \in \mathbb{Z}} (f * \varphi_k)(x) ,$	
13 14 15 16	where $\varphi_k(x) = b^{-k}\varphi(A^{-k}x), k \in \mathbb{Z}$ and $x \in \mathbb{R}^n$. Since the matrix A is fixed, we do refer to it in the notation of maximal functions. The nontangential maximal function $M_{\varphi}(f)$ with respect to φ is given by) not
17 18	$M_{\varphi}(f)(x) = \sup_{k \in \mathbb{Z}, y \in x+B_k} (f * \varphi_k)(y) , x \in \mathbb{R}^n.$	
19 20	If $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, we write $ \alpha = \alpha_1 + \cdots + \alpha_n$. Let $N \in \mathbb{N}$. We consider set	the
20 21 22	Set $S_N = \left\{ \varphi \in S(\mathbb{R}^n) : \sup_{x \in \mathbb{R}^n} (1 + \rho_A(x))^N D^{\alpha} \varphi(x) \le 1, \alpha \in \mathbb{N}^n \text{ and } \alpha \le N \right\}.$	
23	Here,	
24	$D^{\alpha} = \frac{\partial^{ \alpha }}{\partial x^{\alpha_1} \partial x^{\alpha_n}},$	
25 26	$o_{n_1} \dots o_{n_n}$	
27 28	when $\alpha = (\alpha_1,, \alpha_n) \in \mathbb{N}^n$. The radial grandmaximal function $M_N^0(f)$ of f of order N is defined by	
29 30	$M_N^0(f) = \sup_{\varphi \in S_N} M_{\varphi}^0(f).$	
31	The nontangential grandmaximal function $M_N(f)$ of f of order N is given by	у
32 33	$M_N(f) = \sup_{\varphi \in S_N} M_\varphi(f).$	
34 35 36 37 38	We now define variable exponent anisotropic Hardy–Lorentz spaces. Let N and $p, q \in \mathfrak{P}_0$. The $(p(\cdot), q(\cdot))$ -anisotropic Hardy–Lorentz space $H_N^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ associated with A is the set of all those $f \in S'(\mathbb{R}^n)$ such that $M_N(f) \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ On $H_N^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$, we consider the quasinorm $\ \cdot\ _{H_N^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)}$ defined by	$^{n}, A)$ \mathbb{R}^{n}).
39 40	$\ f\ _{H_N^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)} = \ M_N(f)\ _{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)}, f \in H_N^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A).$	
41 42 43 44	Our first result shows that the space $H_N^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ does not actually dep on N provided that N is large enough. Furthermore, we prove that $H_N^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ can be characterized also by using the maximal functions $M_{\varphi}^0, M_{\varphi}$, and M_N^0 .	pend (A)
45 46	Theorem 1.1 Let $f \in S'(\mathbb{R}^n)$ and $\varphi \in S(\mathbb{R}^n)$ such that $\int \varphi \neq 0$. Assume $p, q \in \mathbb{P}_0$. Then the following assertions are equivalent.	that
47 48	(i) There exists $N_0 \in \mathbb{N}$ such that, for every $N \ge N_0$, $f \in H_N^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$.	

https://doi.org/10.4153

1224 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa 1___ 2___ (ii) $M_{\varphi}(f) \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n}).$ (iii) $M_{\varphi}^{0}(f) \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n}).$ 3___ 4___ 5___ *Moreover, for every* $g \in S'(\mathbb{R}^n)$ *the quantities* 6___ $\|M_N(g)\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)}, \quad N \ge N_0,$ 7___ 8____ $\|M^0_{\varphi}(g)\|_{\mathcal{L}^{p}(\cdot),q(\cdot)(\mathbb{R}^n)},$ 9___ $\|M_{\varphi}(g)\|_{\mathcal{L}^{p}(\cdot),q(\cdot)(\mathbb{R}^{n})}$ 10____ 11___ *are equivalent.* 12___ 13___ According to Theorem 1.1 we let $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ denote $H^{p(\cdot),q(\cdot)}_N(\mathbb{R}^n, A)$, for 14___ every $N \ge N_0$. 15___ In order to prove this theorem, we follow the ideas developed by Bownik [4, §7] 16____ (see also [40, §4]) but we need to make some modifications due to that decreasing 17___ rearrangement and variable exponents appear. 18___ Let $1 < r \le \infty$, $s \in \mathbb{N}$ and $p, q \in \mathfrak{P}_0$. We say that a measurable function *a* on \mathbb{R}^n is 19___ a $(p(\cdot), q(\cdot), r, s)$ -atom associated with $x_0 \in \mathbb{R}^n$ and $k \in \mathbb{Z}$ when a satisfies 20____ (a) supp $a \subseteq x_0 + B_k$; 21___ (a) $\sup_{R} y = \chi_0 + D_k$; (b) $\|a\|_r \le b^{k/r} \|\chi_{x_0+B_k}\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)}^{-1}$ (note that $(\chi_{x_0+B_k})^* = \chi_{(0,b^k)}$); (c) $\int_{\mathbb{R}^n} a(x) x^{\alpha} dx = 0$, for every $\alpha \in \mathbb{N}^n$ such that $|\alpha| \le s$. 22___ 23 24___ Here, if $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}$ and $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, then $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$. 25___ 26____ **Remark 1.2** From now on, any time we write a is a $(p(\cdot), q(\cdot), r, s)$ -atom associ-27 ated with $x_0 \in \mathbb{R}^n$ and $k \in \mathbb{Z}$, it is understood that (a), (b), and (c) hold. 28___ In the next result we characterize the distributions in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ by atomic 29___ 30___ decompositions. 31___ **Theorem 1.3** Let $p, q \in \mathbb{P}_0$. 32____ (i) There exist $s_0 \in \mathbb{N}$ and C > 0 such that if, for every $j \in \mathbb{N}$, $\lambda_j \ge 0$ and a_j 33___ is a $(p(\cdot), q(\cdot), \infty, s_0)$ -atom associated with $x_j \in \mathbb{R}^n$ and $\ell_j \in \mathbb{Z}$, satisfying that 34___ $\sum_{j\in\mathbb{N}}\lambda_{j}\|\chi_{x_{j}+B_{\ell_{j}}}\|_{\mathcal{L}^{p}(\cdot),q(\cdot)(\mathbb{R}^{n})}^{-1}\chi_{x_{j}+B_{\ell_{j}}}\in\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n}).$ Then 35___ 36___ $f = \sum_{i \in \mathbb{N}} \lambda_j a_j \in H^{p(\,\cdot\,),q(\,\cdot\,)}(\mathbb{R}^n,A),$ 37___ 38___ 39___ and 40___ $\|f\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)} \leq C \left\|\sum_{i\in\mathbb{N}}\lambda_j\|\chi_{x_j+B_{\ell_j}}\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)}^{-1}\chi_{x_j+B_{\ell_j}}\right\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)}.$ 41___ 42____ 43___ If also p(0) < q(0), then there exists $r_0 > 1$ such that for every $r_0 < r < \infty$ the above 44___ assertion is true when $(p(\cdot), q(\cdot), \infty, s_0)$ -atoms are replaced by $(p(\cdot), q(\cdot), r, s_0)$ -45___ atoms. 46___ (ii) There exists $s_0 \in \mathbb{N}$ such that for every $s \in \mathbb{N}$, $s \ge s_0$, and $1 < r \le \infty$, we can find 47___ C > 0 such that, for every $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$, there exist, for each $j \in \mathbb{N}, \lambda_j > 0$ 48___

Æ

1225 Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1___ 2____ and a $(p(\cdot), q(\cdot), r, s)$ -atom a_i associated with $x_i \in \mathbb{R}^n$ and $\ell_i \in \mathbb{Z}$, satisfying that 3___ $\sum_{i\in\mathbb{N}}\lambda_{j}\|\chi_{x_{j}+B_{\ell_{j}}}\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})}^{-1}\chi_{x_{j}+B_{\ell_{j}}}\in\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n}),$ 4___ 5___ $f=\sum_{i\in\mathbb{N}}\lambda_ja_j\ in\ S'(\mathbb{R}^n),$ 6___ 7___ 8___ and $\left\|\sum_{i\in\mathbb{N}}\lambda_{j}\|\chi_{x_{j}+B_{\ell_{j}}}\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})}^{-1}\chi_{x_{j}+B_{\ell_{j}}}\right\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})}\leq C\|f\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}.$ 9___ 10____ 11 12____ Let $1 < r \le \infty$, $s \in \mathbb{N}$ and $p, q \in \mathfrak{P}_0$. We define the anisotropic variable expo-13___ nent atomic Hardy-Lorentz space $H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n,A)$ as follows. A distribution 14___ $f \in S'(\mathbb{R}^n)$ is in $H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n, A)$ when, for every $j \in \mathbb{N}$ there exist $\lambda_j \ge 0$ and a 15___ $(p(\cdot), q(\cdot), r, s)$ -atom a_j associated with $x_j \in \mathbb{R}^n$ and $\ell_j \in \mathbb{Z}$ such that $f = \sum_{j \in \mathbb{N}} \lambda_j a_j$, 16____ where the series converges in $S'(\mathbb{R}^n)$, and 17___ $\sum_{i\in\mathbb{N}}\lambda_{j}\|\chi_{x_{j}+B_{\ell_{j}}}\|_{\mathcal{L}^{p}(\cdot),q(\cdot)(\mathbb{R}^{n})}^{-1}\chi_{x_{j}+B_{\ell_{j}}}\in\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n}).$ 18___ 19___ For every $f \in H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n, A)$ we define 20____ 21____ $\|f\|_{H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n,A)} = \inf \left\| \sum_{i\in\mathbb{N}} \lambda_i \|\chi_{x_j+B_{\ell_j}}\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)}^{-1} \chi_{x_j+B_{\ell_j}} \right\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)},$ 22___ 23___ where the infimum is taken over all the sequences $(\lambda_j)_{j \in \mathbb{N}} \subset [0, \infty)$ and $(a_j)_{j \in \mathbb{N}}$ of 24___ $(p(\cdot), q(\cdot), r, s)$ -atoms satisfying that $f = \sum_{i \in \mathbb{N}} \lambda_i a_i$ in $S'(\mathbb{R}^n)$ and 25____ 26____ $\sum_{i\in\mathbb{N}}\lambda_{j}\|\chi_{x_{j}+B_{\ell_{j}}}\|_{\mathcal{L}^{p}(\cdot),q(\cdot)(\mathbb{R}^{n})}^{-1}\chi_{x_{j}+B_{\ell_{j}}}\in\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n}),$ 27____ 28___ being a_i associated with $x_i \in \mathbb{R}^n$ and $\ell_i \in \mathbb{Z}$, for every $j \in \mathbb{N}$. 29___ In Theorem 1.3 we state some conditions so that the inclusions $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A) \subset$ 30___ $H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n,A)$ and $H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n,A) \subset H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)$ hold continu-31___ ously. 32____ In our proof of Theorem 1.3 a vector valued inequality, involving the Hardy-Lit-33___ tlewood maximal function in our anisotropic setting, plays an important role. The 34 mentioned maximal function is defined by 35___ 36___ $M_{HL}(f)(x) = \sup_{k \in \mathbb{Z}, y \in x+B_k} \frac{1}{b^k} \int_{y+B_k} |f(z)| dz, \quad x \in \mathbb{R}^n.$ 37___ 38____ After proving a version of [24, Theorem 3.12] for M_{HL} , by using an extension of Ru-39___ bio de Francia extrapolation theorem (see [14, 16, 29]), we can establish the following 40___ result. 41____ 42____ **Proposition 1.4** Assume that $p, q \in \mathbb{P}_1$. For every $r \in (1, \infty)$, there exists C > 0 such 43___ that 44___ $\left\|\left(\sum_{i\in\mathbb{N}}M_{HL}(f_j)^r\right)^{1/r}\right\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)} \leq C \left\|\left(\sum_{i\in\mathbb{N}}|f_j|^r\right)^{1/r}\right\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)},$ 45___ 46___ 47___ for each sequence $(f_j)_{j \in \mathbb{N}}$ of functions in $L^1_{loc}(\mathbb{R}^n)$. 48___

1226

1___ 2____

3___

4____

5___

6___

7____

8____ 9____

10____

11___

12_

13___

14___

15___

16____

17____

18____

19___

20____

21____

22___

23

24___

25____

26____ 27 28___ 29___

30___

31_

32___

33___

34___

35___

36___

37___

38____

39_

40

41___

42____

43___

44___

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Remark 1.5 We do not know if the last vectorial inequality holds when the Lorentz space $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ is replaced by the variable exponent Lorentz space $L_{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ introduced by Kempka and Vybíral [36]. In order to apply extrapolation technique, it is necessary to know the associated Köthe dual space (see [39, p. 25]) $(L_{p(\cdot),q(\cdot)}(\mathbb{R}^n))^*$ of $L_{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, but its characterization is, as far we know, an open question.

Also, in order to prove Theorem 1.3, we need to establish that $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A) \cap$ $L^1_{loc}(\mathbb{R}^n)$ is a dense subspace of $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)$. At this point a careful study of Calderón–Zygmund decomposition of the distributions in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)$ must be done.

To establish boundedness of operators on Hardy spaces, atomic characterizations (as in Theorem 1.3) play an important role. Meyer [46] (see also [47, p. 513]) gave a function $f \in H^1(\mathbb{R}^n)$ whose norm is not achieved by finite atomic decomposition. More recently, Bownik [5] adapted that example to get, for every 0 , an atomin $H^p(\mathbb{R}^n)$ with the same property. Also, in [5, Theorem 2] it was proved that there exists a linear functional \mathfrak{l} defined on the space $H^{1,\infty}_{fin}(\mathbb{R}^n)$, consisting in finite linear combinations of $(1, \infty)$ -atoms, such that, for a certain C > 0, $|\mathfrak{l}(a)| \leq C$, for every $(1, \infty)$ -atom *a*, and I cannot be extended to a bounded functional on the whole $H^1(\mathbb{R}^n).$

Bownik's results have motivated some investigations of operators on Hardy spaces via atomic decompositions. Meda, Sjögren and Vallarino [45] proved that if $1 < q < \infty$ and T is a linear operator defined on $H_{\text{fin}}^{1,q}(\mathbb{R}^n)$, the space of finite linear combinations of (1, q)-atoms, into a quasi Banach space Y such that

$$\sup\{||Ta||_Y : a \text{ is a } (1,q) \text{-atom}\} < \infty$$

then T can be extended to $H^1(\mathbb{R}^n)$ as a bounded operator from $H^1(\mathbb{R}^n)$ into Y. Also, it is proved that the same is true when (1, q)-atoms are replaced by continuous $(1, \infty)$ atoms, in contrast with the Bownik's result. Yang and Zhou [61] established the result when 0 and <math>(p, 2)-atoms are considered. Ricci and Verdera [50] proved that, for $0 , when <math>H_{\text{fin}}^{p,\infty}(\mathbb{R}^n)$ is endowed with the natural topology, the dual spaces of $H_{\text{fin}}^{p,\infty}(\mathbb{R}^n)$ and $H^p(\mathbb{R}^n)$ coincide.

Also, this type of results have been recently established for Hardy spaces in more general settings (see, for instance, [6, 15, 40, 62]).

In order to study boundedness of some singular integrals on our anisotropic Hardy-Lorentz spaces with variable exponents we consider finite atomic Hardy-Lorentz spaces in our settings.

Let $1 < r < \infty$, $s \in \mathbb{N}$ and $p, q \in \mathfrak{P}_0$. The space $H_{\text{fin}}^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n, A)$ consists of all those $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ such that there exist $k \in \mathbb{N}$ and, for every $j \in \mathbb{N}$, $1 \le j \le k, \lambda_j > 0$ and a $(p(\cdot), q(\cdot), r, s)$ -atom a_j such that $f = \sum_{j=1}^k \lambda_j a_j$. For every $f \in H^{p(\cdot),q(\cdot),r,s}_{\text{fin}}(\mathbb{R}^n, A)$, we define

48___

 \oplus

 $\|f\|_{H^{p(\cdot),q(\cdot),r,s}_{\mathrm{fin}}(\mathbb{R}^{n},A)} = \inf \left\| \sum_{i=1}^{k} \lambda_{j} \|\chi_{x_{j}+B_{\ell_{j}}}\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})}^{-1} \chi_{x_{j}+B_{\ell_{j}}} \right\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})},$

https://doi.org/10.4153 (H)-2016-053-6 Published online by Cambridge University Press

 \oplus

 \oplus

1	Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1227
2	where the infimum is taken over all the finite sequences (1) $k = (0, \infty)$ and $(a)^k$
3	where the infimum is taken over all the finite sequences $(\lambda_j)_{j=1}^k \subset (0, \infty)$ and $(a_j)_{j=1}^k$
4	of $(p(\cdot), q(\cdot), r, s)$ -atoms such that $f = \sum_{j=1}^{k} \lambda_j a_j$ and being, for every $j \in \mathbb{N}$, $j \le k$,
5	a_j associated with $x_j \in \mathbb{R}^n$ and $\ell_j \in \mathbb{Z}$.
6	a_j associated with $x_j \in \mathbb{R}^n$ and $\ell_j \in \mathbb{Z}$. The space $H_{\text{fin,con}}^{p(\cdot),q(\cdot),\infty,s}(\mathbb{R}^n, A)$ and the quasinorm $\ \cdot\ _{H_{\text{fin,con}}^{p(\cdot),q(\cdot),\infty,s}(\mathbb{R}^n, A)}$ are de-
7	fined in a similar way by considering continuous $(p(\cdot), q(\cdot), \infty, s)$ -atoms.
8	fined in a similar way by considering continuous $(p(\cdot), q(\cdot), \infty, s)$ -atoms. In Theorem 1.6 we establish some conditions that imply that $H_{\text{fin}}^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n, A)$
9	is dense in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)$.
10	
11	Theorem 1.6 Let $p, q \in \mathbb{P}_0$.
12	(i) Assume that $p(0) < q(0)$. Then there exist $s_0 \in \mathbb{N}$ and $r_0 \in (1, \infty)$ such that for
13 14	every $s \in \mathbb{N}$, $s \ge s_0$, and $r \in (r_0, \infty)$,
14	$\ \cdot\ _{H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n,A)}$ and $\ \cdot\ _{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)}$
16	
17	are equivalent quasinorms in $H^{p(\cdot),q(\cdot),r,s}_{fin}(\mathbb{R}^n,A)$.
18	(ii) There exists $s_0 \in \mathbb{N}$ such that for every $s \ge s_0$,
19	$\ \cdot\ _{H^{p(\cdot),q(\cdot),\infty,s}_{\text{fin con}}(\mathbb{R}^n,A)}$ and $\ \cdot\ _{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)}$
20	$\ \ H^{p(\cdot),q(\cdot),\infty,s}(\mathbb{R}^n,A) \ \ H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)$
21	are equivalent quasinorms in $H^{p(\cdot),q(\cdot),\infty,s}_{\text{fin.con}}(\mathbb{R}^n,A)$.
22	
23	As an application of Theorem 1.6, we prove that convolutional type Calderón-Zyg-
24	mund singular integrals are bounded in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)$. A precise definition of
25	the singular integral that we consider can be found in Section 6.
26	
27	Theorem 1.7 Let $p, q \in \mathbb{P}_0$. Assume that $p(0) < q(0)$. If T is a convolutional type
28	Calderón–Zygmund singular integral of order $m \in \mathbb{N}$, $m \ge s_0$ where s_0 is as in Theo-
29	rem 1.6(i), then
30	(i) T is bounded from $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ into $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$;
31	(ii) <i>T</i> is bounded from $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ into itself.
32	
33	Our results, as far as we know, are new even in the isotropic case, that is, for the
34	Hardy–Lorentz $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ of variable exponents, extending results in [1].
35	The paper is organized as follows. A proof of Theorem 1.1 is presented in Section 2
36	where we prove the main properties of variable exponent anisotropic Hardy–Lorentz
37	spaces. Next, in Section 3, Calderón–Zygmund decompositions in our setting are
38	investigated. The proof of Theorem 1.3, which is presented distinguishing the cases $r = \infty$ and $r < \infty$, is included in Section 4. Finite atomic decompositions are considered
39	in Section 5 where Theorem 1.6 is proved. In Section 6, we define the singular integral
40	that we consider and prove Theorem 1.7 after showing some auxiliary results.
41 42	Throughout this paper, C always denotes a positive constant that can change its
42	value from a line to another one.
43 <u></u> 44 <u></u>	
	2 Maximal Characterizations (Proof of Theorem 1.1)
46 <u></u>	
-	

From now on, for simplicity, we will write $\|\cdot\|_{p(\cdot),q(\cdot)}$ and $\|\cdot\|_{q(\cdot)}$ instead of $\|\cdot\|_{\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)}$ and $\|\cdot\|_{L^{q(\cdot)}(0,\infty)}$, respectively.

47___ 48___

 \oplus

227

 \oplus

1228

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

First, we establish very useful boundedness results for the anisotropic maximal function M_{HL} on variable exponent Lorentz spaces.

Proposition 2.1 Assume that $p, q \in \mathbb{P}_1(0, \infty)$. Then the maximal function M_{HL} is bounded from $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ into itself.

Proof This property can be proved like [24, Theorem 3.12]. Indeed, it is clear that $||M_{HL}f||_{L^{\infty}(\mathbb{R}^n)} \leq ||f||_{L^{\infty}(\mathbb{R}^n)}$, $f \in L^{\infty}(\mathbb{R}^n)$. On the other hand, according to [4, p. 14], M_{HL} is bounded from $L^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$. Then, proceeding as in the proof of [3, Theorem 3.8, p. 122], we deduce that, for some C > 0, $(M_{HL}f)^* \leq Cf^{**}$. Since $p, q \in \mathbb{P}_1(0, \infty)$, by taking $\alpha = 1/p - 1/q$ and $\nu = 0$ in [24, Theorem 2.2], we can write

$$\|M_{HL}(f)\|_{p(\cdot),q(\cdot)} \le C \|t^{1/p(\cdot)-1/q(\cdot)}f^{**}\|_{q(\cdot)} \le C \|t^{1/p(\cdot)-1/q(\cdot)}f^{*}\|_{q(\cdot)}$$
$$= C \|f\|_{p(\cdot),q(\cdot)}.$$

Thus, the proof of this proposition is finished.

The following vectorial boundedness result for M_{HL} appears as Proposition 1.3 in the introduction.

Proposition 2.2 Assume that $p, q \in \mathbb{P}_1$. For every $r \in (1, \infty)$, there exists C > 0 such that

(2.1)
$$\left\|\left(\sum_{j\in\mathbb{N}} (M_{HL}(f_j))^r\right)^{1/r}\right\|_{p(\cdot),q(\cdot)} \le C \left\|\left(\sum_{j\in\mathbb{N}} |f_j|^r\right)^{1/r}\right\|_{p(\cdot),q(\cdot)},$$

for each sequence $(f_j)_{j \in \mathbb{N}}$ of functions in $L^1_{loc}(\mathbb{R}^n)$.

Proof According to [6, Prop. 2.6(ii)] the family of anisotropic balls $\{x + B_k\}_{x \in \mathbb{R}^n, k \in \mathbb{Z}}$ constitutes a Muckenhoupt basis in \mathbb{R}^n . For every r > 0, we define the *r*-power of the space $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n), (\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n))^r$, as follows:

$$\left(\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)\right)^r = \left\{f \text{ measurable in } \mathbb{R}^n : |f|^r \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)\right\},\$$

(see [18, p. 67]). By using [15, Lemma 2.3] we deduce that, for every *r* > 0,

$$(\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n))^r = \mathcal{L}^{rp(\cdot),rq(\cdot)}(\mathbb{R}^n).$$

We choose $\beta \in (0,1)$ such that $\beta p, \beta q \in \mathbb{P}_1$. According to [24, Lemma 2.7],

$$(\mathcal{L}^{\beta p(\cdot),\beta q(\cdot)}(\mathbb{R}^n))^* = (\mathcal{L}^{\beta p(\cdot),\beta q(\cdot)}(\mathbb{R}^n))' = \mathcal{L}^{(\beta p(\cdot))',(\beta q(\cdot))'}(\mathbb{R}^n),$$

where the first space represents the associate dual space of $\mathcal{L}^{\beta p(\cdot),\beta q(\cdot)}(\mathbb{R}^n)$ in the Köthe sense (see [39, p. 25]). Since $\beta p, \beta q \in \mathbb{P}_1$, Proposition 2.1 implies that M_{HL} is bounded from $\mathcal{L}^{(\beta p(\cdot))',(\beta q(\cdot))'}(\mathbb{R}^n)$ into itself. According to [18, Corollary 4.8 and Remark 4.9], we conclude that (2.1) holds for every $r \in (1, \infty)$.

1____ 2___

3___

4____ 5___

6___

7___ 8___

9___

10____

11___

12____

13____ 14___ 15___ 16___

17___

18___ 19___ 20___

21___

22___ 23

24___

25___ 26___ 27___ 28___

29___ 30___

42___ 43___ 44___

45___

46___

47___

48___

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

1	Anisotropic Hardy–Lorentz Spaces with Variable Exponents	1229
2	As in [4, p. 44] we consider the following maximal functions that will be	useful in
3 4	the sequel. If $K \in \mathbb{Z}$ and $N, L \in \mathbb{N}$, we define for every $f \in S'(\mathbb{R}^n)$:	
5 6	$M_{\varphi}^{0,K,L}(f)(x) = \sup_{k \in \mathbb{Z}, k \leq K} (f * \varphi_k)(x) \max(1, \rho(A^{-K}x))^{-L} (1 + b^{-k-K})^{-L},$	$x \in \mathbb{R}^n$,
7 8	$M_{\varphi}^{K,L}(f)(x) = \sup_{k \in \mathbb{Z}, k \le K} \sup_{y \in x + B_{k}} (f * \varphi_{k})(y) \max(1, \rho(A^{-K}y))^{-L} (1 + b^{-k-L}y) ^{-L} (1 + b^{-k-$	$(x^{k})^{-L}$,
9		$x \in \mathbb{R}^n$,
10	$ (f * \omega_{L})(v) = (1 + b^{-k-K})^{-L}$	
11 12	$T_{\varphi}^{N,K,L}(f)(x) = \sup_{k \in \mathbb{Z}, k \le K} \sup_{y \in \mathbb{R}^n} \frac{ (f * \varphi_k)(y) }{\max(1, \rho(A^{-k}(x - y)))^N} \frac{(1 + b^{-k - K})^{-L}}{\max(1, \rho(A^{-K}y))^L},$,
13	Kell,KSK yem(-) / (() /) /(-) / () /)	$x \in \mathbb{R}^n$,
14	$\lambda(0,K,L,\zeta)$ $\lambda(0,K,L,\zeta)$	<i>л</i> сша,
15	$M_N^{0,K,L}(f) = \sup_{\varphi \in S_N} M_{\varphi}^{0,K,L}(f),$	
16	$M_N^{K,L}(f) = \sup_{\varphi \in S_N} M_{\varphi}^{K,L}(f).$	
17 18	$ \begin{array}{c} \mu_{N}(y) & \mu_{\varphi}(y), \\ \varphi \in S_{N} \end{array} $	
19	We will now establish some properties we will need later.	
20		
21	Lemma 2.3 Let $K \in \mathbb{Z}$, $N, L \in \mathbb{N}$, $r > 0$, and $\varphi \in S(\mathbb{R}^n)$. Then there exists a	
22	$C > 0$ that does not depend neither on K, L, N, r, nor φ such that, for every f φ	$\in S'(\mathbb{R}^n),$
23	$\left(T^{N,K,L}_{\varphi}(f)(x)\right)^r \leq CM_{HL}\left(\left(M^{K,L}_{\varphi}(f)\right)^r\right)(x), x \in \mathbb{R}^n.$	
24	$(\psi, \phi, \phi, \phi) = m^2 ((\psi, \phi, \phi), \phi)$	
25 26	Proof Our proof is inspired by the ideas presented in [43, p. 10].	
27	Let $f \in S'(\mathbb{R}^n)$, $k \in \mathbb{Z}$, $k \le K$ and $x \in \mathbb{R}^n$. Since	
28	$\left(\left (f * \varphi_k)(y) \right \max(1, \rho(A^{-K}y))^{-L} (1 + b^{-k-K})^{-L} \right)^r \le \left(M_{\varphi}^{K,L}(f) \right)^r(z), y \in \mathbb{C}$	$y \in z + B_k$,
29	we can write	
30		
31 32	$\left(\left (f * \varphi_k)(y) \right \max(1, \rho(A^{-K}y))^{-L} (1 + b^{-k-K})^{-L} \right)^r$	
33	$\int \int (M^{K,L}(f)(r))^r dr$	$m \in \mathbb{D}^n$
34	$\leq rac{1}{\left y+B_{k} ight }\int_{y+B_{k}}\left(M_{arphi}^{K,L}(f)(z) ight)^{r}dz,$ by	₽€IK.
35	Suppose that $z \in y + B_k$ and $y \in \mathbb{R}^n$. According to [4, p. 8], we have that	
36	$\rho(z-x) \le b^{\omega} \left(\rho(z-y) + \rho(y-x) \right) \le b^{\omega+k} \left(1 + b^{-k} \rho(y-x) \right),$	
37 38	$\rho(z-x) \le b \ (\rho(z-y) + \rho(y-x)) \le b \ (1+b \ \rho(y-x)),$	
39	where ω is the smallest integer so that $2B_0 \subset B_\omega$. We choose $s \in \mathbb{Z}$ such that	$b^{\omega+k}(1+$
40	$b^{-k}\rho(y-x)) \in [b^s, b^{s+1})$. Then we get	
41 42	$((f * \varphi_k)(y) \max(1, \rho(A^{-K}y))^{-L}(1 + b^{-k-K})^{-L})^r$	
43	$\leq b^{\omega} (1 + b^{-k} \rho(y - x)) \frac{1}{b^{\omega + k} (1 + b^{-k} \rho(y - x))} \int_{y + B_k} (M_{\varphi}^{K,L}(f)(z))$	$)^{r}dz$
44 45		
4 <u>5</u>	$\leq b^{\omega} (1 + b^{-k} \rho(y - x)) \frac{1}{b^{s}} \int_{x + B_{s+1}} (M_{\varphi}^{K,L}(f)(z))^{r} dz$	
47	$\leq 2b^{\omega+1} \left(1+b^{-k}\rho(y-x)\right)^{Nr} M_{HL} \left(\left(M_{\varphi}^{K,L}(f)\right)^{r}\right)(x), y \in x+B_{k}.$	
48	$\leq 20 (1+0-p(y-\lambda)) \text{MHL}((M_{\varphi}-(J)))(\lambda), y \in X+D_k.$	•

1230

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Hence, we obtain

$$\left(T_{\varphi}^{N,K,L}(f)(x)\right)^{r} \leq CM_{HL}\left(\left(M_{\varphi}^{K,L}(f)\right)^{r}\right)(x), \quad x \in \mathbb{R}^{n}$$

According to [4, p. 14], for every $1 , the Hardy–Littlewood maximal function <math>M_{HL}$ is bounded from $L^p(\mathbb{R}^n)$ into itself. So from Lemma 2.3 we deduce that, for every 1 , there exists <math>C > 0 such that

$$\|T_{\varphi}^{N,K,L}(f)\|_{L^{p}(\mathbb{R}^{n})} \leq C \|M_{\varphi}^{K,L}(f)\|_{L^{p}(\mathbb{R}^{n})}, \quad f \in S'(\mathbb{R}^{n}).$$

This property was proved in [4, Lemma 7.4] by using a different procedure.

Lemma 2.4 Let $K \in \mathbb{Z}$, $N, L \in \mathbb{N}$, and $\varphi \in S(\mathbb{R}^n)$. Assume that $p, q \in \mathbb{P}_0$. Then

$$||T_{\varphi}^{N,K,L}(f)||_{p(\cdot),q(\cdot)} \leq C ||M_{\varphi}^{K,L}(f)||_{p(\cdot),q(\cdot)}, \quad f \in S'(\mathbb{R}^{n}),$$

where C > 0 does not depend on (N, K, L, φ) .

Proof We choose r > 0 such that $rp, rq \in \mathbb{P}_1$. Let $f \in S'(\mathbb{R}^n)$. According to [15, Lemma 2.3] and a well-known property of the nondecreasing equimeasurable rearrangement, we get

$$\begin{split} \|T_{\varphi}^{N,K,L}(f)\|_{p(\cdot),q(\cdot)} &= \|t^{\frac{1}{rp(\tau)} - \frac{1}{rq(\tau)}} \left([T_{\varphi}^{N,K,L}(f)]^{*}(t) \right)^{1/r} \|_{rq(\cdot)}^{r} \\ &= \|t^{\frac{1}{rp(\tau)} - \frac{1}{rq(\tau)}} \left[\left(T_{\varphi}^{N,K,L}(f) \right)^{1/r} \right]^{*}(t) \|_{rq(\cdot)}^{r} \\ &= \| \left(T_{\varphi}^{N,K,L}(f) \right)^{1/r} \|_{rp(\cdot),rq(\cdot)}^{r}. \end{split}$$

From Lemma 2.3 and Proposition 2.1 it follows that

$$\|T_{\varphi}^{N,K,L}(f)\|_{p(\cdot),q(\cdot)} \le C \| \left(M_{\varphi}^{K,L}(f)\right)^{1/r} \|_{rp(\cdot),rq(\cdot)}^{r} = C \|M_{\varphi}^{K,L}(f)\|_{p(\cdot),q(\cdot)}.$$

The next two results were established in [4, pp. 45–47] as Lemmas 7.5 and 7.6, respectively.

Lemma 2.5 For every $N, L \in \mathbb{N}$, there exists $M_0 \in \mathbb{N}$ satisfying the following property: if $\varphi \in S(\mathbb{R}^n)$ is such that $\int \varphi(x) dx \neq 0$, then there exists C > 0 such that, for every $f \in S'(\mathbb{R}^n)$ and $K \in \mathbb{N}$,

$$M^{0,K,L}_{M_0}(f)(x) \leq CT^{N,K,L}_{\varphi}(f)(x), \quad x \in \mathbb{R}^n.$$

Lemma 2.6 Let $\varphi \in S(\mathbb{R}^n)$. Then for every $M, K \in \mathbb{N}$ and $f \in S'(\mathbb{R}^n)$ there exist $L \in \mathbb{N}$ and C > 0 such that

$$M_{\varphi}^{K,L}(f)(x) \leq C \max(1, \rho_A(x))^{-M}, \quad x \in \mathbb{R}^n.$$

Actually, L does not depend on $K \in \mathbb{N}$.

Lemma 2.7 Let $p, q \in \mathbb{P}_0$. There exists $\alpha_0 > 0$ such that the function g_α defined by

$$g_{\alpha}(x) = \left(\max(1, \rho_A(x))\right)^{-\alpha}, \quad x \in \mathbb{R}^n,$$

is in $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, for every $\alpha \geq \alpha_0$.

31___

32____

33___

34___

35___ 36___

37___ 38___

39___

40___ 41___ 42__

43___ 44___

45___ 46___ 47___

48___

 \oplus

1____ 2___

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

1	Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1231
2	Proof Let $\alpha > 0$. According to [4, Lemma 3.2] we have that
3 4	
5	$g_{\alpha}(x) \leq h_{\alpha}(x) = C \begin{cases} 1 & x \leq 1, \\ x ^{-\alpha \ln b / \ln \lambda_{+}} & x > 1, \end{cases}$
6	$(x ^{-\alpha \operatorname{III} b/\operatorname{III} x_{+}} x > 1,$
7	for certain $C > 0$. Here λ_+ is greater than max{ $ \lambda : \lambda$ is an eigenvalue of A} (for
8	instance we can take $\lambda_+ = 2 \max\{ \lambda : \lambda \text{ is an eigenvalue of } A\}$). Note that $g_{\alpha}^* \leq h_{\alpha}^*$.
9	To simplify we denote $v_n = B(0,1) $. We have that
10	$(0 \qquad s \ge C,$
11	$\mu_{h_{\alpha}}(s) = \begin{cases} 0 & s \ge C, \\ \nu_n(C/s)^{n\ln(\lambda_+)/(\alpha\ln(b))} & s \in (0,C). \end{cases}$
12 13	
14	Then
15	$h_{\alpha}^{*}(t) = C \begin{cases} 1 & t \in (0, v_n), \\ (v_n/t)^{\alpha \ln(b)/(n \ln(\lambda_+))} & t \ge v_n. \end{cases}$
16	\mathbf{C}
17	Since $q(0) > 0$ and $p(0) > 0$, we have that $\int_0^{\nu_n} t^{q(t)/p(t)-1} g_{\alpha}^*(t) ^{q(t)} dt < \infty$. Also, there exists $\alpha_0 > 0$ such that $\int_{\nu_n}^{\infty} t^{q(t)/p(t)-1} g_{\alpha_0}^*(t) ^{q(t)} dt < \infty$, because $p, q \in \mathbb{P}_0$.
18	there exists $\alpha_0 > 0$ such that $\int_{-\infty}^{\infty} t^{q(t)/p(t)-1} g_{\tau}^*(t) ^{q(t)} dt < \infty$, because $p, q \in \mathbb{P}_0$.
19	Hence, $g_{\alpha} \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})$ for every $\alpha \geq \alpha_{0}$.
20	
21 22	<i>Lemma 2.8</i> Let $p, q \in \mathfrak{P}_0$ and let D be a subset of \mathbb{R}^n . Then $\chi_D \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ if
23	and only if $ D < \infty$.
24	Depart We have that $(y_{i})^{*}$ y_{i} Since $f \in \mathcal{O}$ for every $i > 0$
25	Proof We have that $(\chi_D)^* = \chi_{[0, D)}$. Since $p, q \in \mathfrak{P}_0$, for every $\lambda > 0$,
26	$\int_{0}^{\infty} \left(\frac{(\chi_{D})^{*}(t)t^{\frac{1}{p(t)}-\frac{1}{q(t)}}}{1} \right)^{q(t)} dt = \int_{0}^{ D } \frac{t^{-1+q(t)/p(t)}}{1} dt < \infty,$
27	$\int_0 \left(\frac{1}{\lambda} \right) at = \int_0 \frac{1}{\lambda^{q(t)}} at < \infty,$
28	if and only if $ D < \infty$.
29	Proof of Theorem 1.1 We recall that we are taking $f \in S'(\mathbb{R}^n)$ and $\varphi \in S(\mathbb{R}^n)$ such
30 31	that $\int \varphi(x) dx \neq 0$. It is clear that for every $N \in \mathbb{N}$,
32	
33	$\ M_{\varphi}^{0}(f)\ _{p(\cdot),q(\cdot)} \leq \ M_{\varphi}(f)\ _{p(\cdot),q(\cdot)} \leq C\ f\ _{H_{N}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}.$
34	Hence, (i) \Rightarrow (ii) \Rightarrow (iii).
35	Now, we are going to complete the proof. Let M_0 be the value in Lemma 2.5 for
36	N = L = 0. Then for a certain $C > 0$,
37	(2.2) $\ M_M^0(g)\ _{p(\cdot),q(\cdot)} \leq C \ M_{\varphi}(g)\ _{p(\cdot),q(\cdot)}, g \in S'(\mathbb{R}^n), \text{ and } M \geq M_0.$
38	Indeed, by Lemma 2.5, there exists $C > 0$ such that
39 40	$M^{0,K,0}_{\mathcal{M}}(g)(x) \leq CT^{0,K,0}_{\varphi}(g)(x), x \in \mathbb{R}^n, g \in S'(\mathbb{R}^n), K \in \mathbb{N}, \text{and} M \geq M_0.$
41	
42	Then Lemma 2.4 leads to
43	$\ M_M^{0,K,0}(g)\ _{p(\cdot),q(\cdot)} \le C \ M_{\varphi}^{K,0}(g)\ _{p(\cdot),q(\cdot)}, g \in S'(\mathbb{R}^n), K \in \mathbb{N}, \text{ and } M \ge M_0.$
44	By using monotone convergence theorem in $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ (see [24, Definition 2.5
45	v)]) jointly with [15, Lemma 2.3] and by letting $K \to \infty$, we conclude that (2.2) holds.
46	Our next objective is to see that, for a certain $C > 0$,
47 48	(2.3) $\ M_{\varphi}(f)\ _{p(\cdot),q(\cdot)} \leq C \ M_{\varphi}^{0}(f)\ _{p(\cdot),q(\cdot)}.$
40	$\psi(y) = \psi(y) + $

1232 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa 1____ 2____ Note that by combining (2.2), (2.3), and [4, Proposition 3.10], we conclude that (iii) 3___ \Rightarrow (ii) \Rightarrow (i). 4___ In order to show (2.3), we first note that there exists $L_0 \in \mathbb{N}$ such that $M_{\varphi}^{K,L_0}(f) \in$ 5____ $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, for every $K \in \mathbb{N}$. Indeed, we denote by α_0 the constant appearing in 6___ Lemma 2.7. According to Lemma 2.6, we can find $L_0 \in \mathbb{N}$ such that, for every $K \in \mathbb{N}$, 7____ there exists C > 0 for which 8____ 9____ $M_{\omega}^{K,L_0}(f)(x) \leq C \max(1,\rho(x))^{-\alpha_0}, \quad x \in \mathbb{R}^n.$ 10____ 11 Then Lemma 2.7 leads to $M_{\varphi}^{K,L_0}(f) \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, for each $K \in \mathbb{N}$. From Lemmas 2.4 and 2.5, we infer that there exist $M_0 \in \mathbb{N}$ and $C_0 > 0$ such that 12____ 13___ $\|M_{M_{\circ}}^{0,K,L_{0}}(f)\|_{p(\cdot),q(\cdot)} \leq C_{0}\|M_{\varphi}^{K,L_{0}}(f)\|_{p(\cdot),q(\cdot)},$ (2.4)14___ 15___ for every $K \in \mathbb{N}$. 16____ Fix $K_0 \in \mathbb{N}$. We define the set Ω_0 by 17___ $\Omega_0 = \left\{ x \in \mathbb{R}^n : M_{M_0}^{0,K_0,L_0}(f)(x) \le C_2 M_{\varphi}^{K_0,L_0}(f)(x) \right\},\$ 18____ 19 where $C_2 > 0$ will be specified later. 20____ By using (2.4), [15, Lemma 2.3], and [24, Theorem 2.4] and choosing r > 1 such 21____ that $rp, rq \in \mathbb{P}_1$, we get 22___ $||M_{\omega}^{K_0,L_0}(f)||_{p(\cdot),q(\cdot)}$ 23 $= \|t^{\frac{1}{p(t)} - \frac{1}{q(t)}} (M_{a}^{K_{0}, L_{0}}(f))^{*}(t)\|_{a(\cdot, \cdot)}$ 24___ 25 $= \|t^{\frac{1}{r_{p(t)}} - \frac{1}{r_{q(t)}}} \left([M_{\varphi}^{K_{0}, L_{0}}(f)]^{*}(t) \right)^{1/r} \|_{r_{q(t)}}^{r}$ 26____ $= \|t^{\frac{1}{rp(t)} - \frac{1}{rq(t)}} \left(\left[M_{\varphi}^{K_0, L_0}(f) \right]^{1/r} \right)^*(t) \|_{rq(\cdot)}^r = \| \left[M_{\varphi}^{K_0, L_0}(f) \right]^{1/r} \|_{rp(\cdot), rq(\cdot)}^r$ 27 28 $\leq \left(\left\| \left[M_{\varphi}^{K_{0},L_{0}}(f) \right]^{1/r} \right\|_{rp(\cdot),rq(\cdot)}^{(1)} \right)^{r}$ 29___ 30___ $\leq A_1 \Big\{ \Big(\| [M_{\varphi}^{K_0,L_0}(f)\chi_{\Omega_0}]^{1/r} \|_{rp(\cdot),rq(\cdot)}^{(1)} \Big)^r + \Big(\| [M_{\varphi}^{K_0,L_0}(f)\chi_{\Omega_0^c}]^{1/r} \|_{rp(\cdot),rq(\cdot)}^{(1)} \Big)^r \Big\}$ 31___ $\leq A_1 \Big\{ \Big(\| [M_{\varphi}^{K_0,L_0}(f)\chi_{\Omega_0}]^{1/r} \|_{rp(\cdot),rq(\cdot)}^{(1)} \Big)^r + \frac{1}{C_2} \Big(\| [M_{M_0}^{0,K_0,L_0}(f)]^{1/r} \|_{rp(\cdot),rq(\cdot)}^{(1)} \Big)^r \Big\}$ 32 33___ 34___ $\leq A_{2}\left\{\left(\left\|\left[M_{\varphi}^{K_{0},L_{0}}(f)\chi_{\Omega_{0}}\right]^{1/r}\right\|_{rp(\cdot),rq(\cdot)}\right)^{r}+\frac{1}{C_{2}}\left(\left\|\left[M_{M_{0}}^{0,K_{0},L_{0}}(f)\right]^{1/r}\right\|_{rp(\cdot),rq(\cdot)}\right)^{r}\right\}$ 35___ 36___ $\leq A_2 \Big(\| M_{\varphi}^{K_0,L_0}(f) \chi_{\Omega_0} \|_{p(\cdot),q(\cdot)} + \frac{1}{C_2} \| M_{M_0}^{0,K_0,L_0}(f) \|_{p(\cdot),q(\cdot)} \Big)$ 37___ 38____ $\leq A_{2}\Big(\|M_{\varphi}^{K_{0},L_{0}}(f)\chi_{\Omega_{0}}\|_{p(\cdot),q(\cdot)}+\frac{C_{0}}{C}\|M_{\varphi}^{K_{0},L_{0}}(f)\|_{p(\cdot),q(\cdot)}\Big),$ 39___ 40 where $A_1, A_2 > 0$ depend only on p, q, and r. Hence, by taking $C_2 \ge 2C_0A_2$, we obtain 41___ $\|M_{\varphi}^{K_{0},L_{0}}(f)\|_{p(\,\cdot\,),q(\,\cdot\,)} \leq 2A_{2}\|M_{\varphi}^{K_{0},L_{0}}(f)\chi_{\Omega_{0}}\|_{p(\,\cdot\,),q(\,\cdot\,)},$ 42 43___ because $M^{K_0,L_0}_{\omega}(f) \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n).$ 44___ According to [4, (7.16)], we have that 45___ 46___

(2.5)
$$M_{\varphi}^{K_0,L_0}(f)(x) \leq C \Big[M_{HL} \Big(M_{\varphi}^{0,K_0,L_0}(f)^{1/r} \Big)(x) \Big]^r, \quad x \in \Omega_0.$$

The constant C>0 does not depend on K_0 , but it does depend on L_0 .

47___

48___

 \bigoplus

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

1	Anisotropic Hardy–Lorentz Spaces with Variable Exponents	1233
1 2		1200
3	From (2.5), Proposition 2.1, and [15, Lemma 2.3], we obtain	
4	$\ M_{\varphi}^{K_{0},L_{0}}(f)\chi_{\Omega_{0}}\ _{p(\cdot),q(\cdot)} \leq C \ \left(M_{HL}(M_{\varphi}^{0,K_{0},L_{0}}(f)^{1/r})\right)^{r}\ _{p(\cdot),q(\cdot)}$	1
5 6	$= C \ M_{HL} (M_{\varphi}^{0,K_0,L_0}(f)^{1/r}) \ _{rp(\cdot),rq(\cdot)}^r$	
7	$\leq C \ M_{\varphi}^{0,K_{0},L_{0}}(f)^{1/r} \ _{rp(\cdot),rq(\cdot)}^{r}$	
8		
9 10	$= C \ M_{\varphi}^{0,K_0,L_0}(f) \ _{p(\cdot),q(\cdot)}.$	
10	We conclude that	
12	$\ M_{\varphi}^{K_{0},L_{0}}(f)\ _{p(\cdot),q(\cdot)} \leq C \ M_{\varphi}^{0,K_{0},L_{0}}(f)\ _{p(\cdot),q(\cdot)}.$	
13	Again, note that this constant $C > 0$ does not depend on K_0 and it depends of	on L_0 .
14	We have that $M_{\varphi}^{K,L_0}(f)(x) \uparrow M_{\varphi}(f)(x)$, as $K \to \infty$, for every $x \in$	\mathbb{R}^n , and
15 16	$M^{0,K,L_0}_{\varphi}(f)(x) \uparrow M^0_{\varphi}(f)(x)$, as $K \to \infty$, for every $x \in \mathbb{R}^n$. Hence, the m	onotone
17	convergence theorem in the $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ -setting ([24, Theorem 2.8 and	l Defini-
18	tion 2.5, v)], jointly with [15, Lemma 2.3]), leads to	
19	$\ M_{\varphi}(f)\ _{p(\cdot),q(\cdot)} \leq C \ M_{\varphi}^{0}(f)\ _{p(\cdot),q(\cdot)}.$	
20	Observe that the last inequality says that $M_{\varphi}(f) \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n})$, but the	constant
21 22	$C > 0$ depends on f , because L_0 depends also on f .	
23	On the other hand, since $M_{\varphi}(f) \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n), M_{\varphi}^{K,0}(f) \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$	
24	for every $K \in \mathbb{N}$. Hence, we can take $L_0 = 0$ at the beginning of the proof o	this part.
25	By proceeding as above we concluded that	
26	$\ M_{\varphi}(f)\ _{p(\cdot),q(\cdot)} \leq C \ M^0_{\varphi}(f)\ _{p(\cdot),q(\cdot)},$	
27 28	where $C > 0$ does not depend on f .	
29	Thus, the proof of the theorem is finished.	
30	The last part of this section is dedicated to establishing some properties of t	the space
31	$H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A).$	
32 33	Proposition 2.9 Let $p, q \in \mathbb{P}_0$. Then $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ is continuously con	tained in
35 <u> </u>	$S'(\mathbb{R}^n).$	tuttica in
35		
36	Proof Let $f \in S'(\mathbb{R}^n)$ and $\varphi \in S(\mathbb{R}^n)$. We define $\lambda_0 = \langle f, \varphi \rangle $. We can writ	e
37	$\lambda_0 = (f st arphi)(0) \leq \sup_{z \in x + B_0} (f st arphi)(z) \leq M_arphi(f)(x), x \in B_0.$	
38 39	$z \in x + B_0$ Then	
40		• • • •
41	$ \{x \in \mathbb{R}^n : M_{\varphi}(f)(x) > \lambda_0/2\} \ge 1$ and $(M_{\varphi}(f))^*(t) \ge \lambda_0/2, t \in (0, \infty)$	0,1).
42	Hence, we get	
43 44	$\ M_{\varphi}(f)\ _{p(\cdot),q(\cdot)} \ge \ t^{\frac{1}{p(\cdot)} - \frac{1}{q(\cdot)}} (M_{\varphi}(f))^{*}(t)\chi_{(1/2,1)}(t)\ _{q(\cdot)}$	
44 <u> </u>		
46	$\geq \frac{\lambda_0}{2} \ t^{\frac{1}{p(\cdot)} - \frac{1}{q(\cdot)}} \chi_{(1/2,1)}(t) \ _{q(\cdot)}.$	
47	Since $\ t^{\frac{1}{p(\cdot)} - \frac{1}{q(\cdot)}} \chi_{(1/2,1)}(t)\ _{q(\cdot)} > 0$, we conclude the desired result.	
48	$\Lambda(1/2,1)(1/2)(1/2)(1/2)(1/2)(1/2)(1/2)(1/2)(1/$	-

1234

1____ 2___

3___

4___ 5___

6____ 7___ 8___ 9___ 10___

11___

12___ 13___

14___ 15___

16___ 17___

18___

19___

20___ 21___

22___ 23___ 24___ 25___ 26___

27___

28___ 29___

43___

44___

45___ 46___ 47___ 48___

 \oplus

Page 1234 Sheet 16 of

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Proposition 2.10 Let $p, q \in \mathbb{P}_0$. If $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$, then f is a bounded distribution in $S'(\mathbb{R}^n)$.

Proof Let $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and $\varphi \in S(\mathbb{R}^n)$. For every $x \in \mathbb{R}^n$, we have that

$$|(f * \varphi)(x)| \leq \sup_{z \in y+B_0} |(f * \varphi)(z)| \leq M_{\varphi}(f)(y), \quad y \in x+B_0.$$

By proceeding as in the proof of Proposition 2.9, we deduce that for a certain C > 0,

 $|(f \star \varphi)(x)| \leq C ||f||_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)}, \quad x \in \mathbb{R}^n.$

Thus, we prove that *f* is a bounded distribution in $S'(\mathbb{R}^n)$.

Proposition 2.11 Assume that $p, q \in \mathbb{P}_0$. Then $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ is complete.

Proof We choose $r \in (0,1]$ such that $p(\cdot)/r, q(\cdot)/r \in \mathbb{P}_1$. In order to see that $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ is complete, it is sufficient to prove that if $(f_k)_{k\in\mathbb{N}}$ is a sequence in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ such that $\sum_{k\in\mathbb{N}} ||f_k||_{H^p(\cdot),q(\cdot)(\mathbb{R}^n, A)}^r < \infty$, then the series $\sum_{k\in\mathbb{N}} f_k$ converges in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ (see, for instance, [3, Theorem 1.6, p. 5]). Assume that $(f_k)_{k\in\mathbb{N}}$ is a sequence in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ such that

$$\sum_{k\in\mathbb{N}} \|f_k\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)}^r < \infty.$$

For every $j \in \mathbb{N}$, we define $F_j = \sum_{k=0}^{j} f_k$. According to [15, Lemma 2.3] and [24, Theorem 2.4], if $j, \ell \in \mathbb{N}, j < \ell$, we get

$$\begin{split} \|F_{\ell} - F_{j}\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}^{r} \\ &= \Big\|\sum_{k=j+1}^{\ell} f_{k}\Big\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}^{r} \le \Big\|\sum_{k=j+1}^{\ell} M_{N}(f_{k})\Big\|_{p(\cdot),q(\cdot)}^{r} \\ &= \Big\|\Big(\sum_{k=j+1}^{\ell} M_{N}(f_{k})\Big)^{r}\Big\|_{p(\cdot)/r,q(\cdot)/r} \le \Big\|\sum_{k=j+1}^{\ell} (M_{N}(f_{k}))^{r}\Big\|_{p(\cdot)/r,q(\cdot)/r} \\ &\le \Big\|\sum_{k=j+1}^{\ell} (M_{N}(f_{k}))^{r}\Big\|_{p(\cdot)/r,q(\cdot)/r}^{(1)} \le \sum_{k=j+1}^{\ell} \|(M_{N}(f_{k}))^{r}\|_{p(\cdot)/r,q(\cdot)/r}^{(1)} \\ &\le C\sum_{k=j+1}^{\ell} \|(M_{N}(f_{k}))^{r}\|_{p(\cdot)/r,q(\cdot)/r} = C\sum_{k=j+1}^{\ell} \|f_{k}\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}^{r}. \end{split}$$

Hence, $(F_j)_{j \in \mathbb{N}}$ is a Cauchy sequence in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. By Proposition 2.9, $(F_j)_{j \in \mathbb{N}}$ is a Cauchy sequence in $S'(\mathbb{R}^n)$. Then there exists $F \in S'(\mathbb{R}^n)$ such that $F_j \to F$, as $j \to \infty$, in $S'(\mathbb{R}^n)$. We have that

$$M_N(F) \leq \lim_{j \to \infty} \sum_{k=0}^j M_N(f_k).$$

https://doi.org/10.4153

3___ 4___ 5___ 6___ 7___ 8___ 9___ 10____ 11___ 12___ 13___ 14___ 15___ 16___ 17___ 18___ 19____ 20____ 21___ 22___ 23

24___ 25___

26___

27

28___ 29___ 30___ 31___

32___

33___

34<u></u> 35_

36___

37___

38___

39___

40___ 41___ 42___

43___ 44___

45___ 46___

47___

48___

 \oplus

1____ 2___

Anisotropic Hardy–Lorentz Spaces with Variable Exponents

According to [24, Theorem 2.8 and Definition 2.5 v)], by proceeding as above, we obtain

$$\|M_{N}(F)\|_{p(\cdot),q(\cdot)}^{r} \leq \|\lim_{j\to\infty}\sum_{k=0}^{J}M_{N}(f_{k})\|_{p(\cdot),q(\cdot)}^{r} = \lim_{j\to\infty}\|\sum_{k=0}^{J}M_{N}(f_{k})\|_{p(\cdot),q(\cdot)}^{r}$$
$$\leq \sum_{k\in\mathbb{N}}\|(M_{N}(f_{k}))^{r}\|_{p(\cdot)/r,q(\cdot)/r} = C\sum_{k\in\mathbb{N}}\|f_{k}\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}^{r}.$$

Then $F \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. Also, we have that

$$\|F - \sum_{k=0}^{j} f_{k}\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}^{r} \leq C \sum_{k=j+1}^{\infty} \|f_{k}\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}^{r}, \quad j \in \mathbb{N}.$$

Hence, $F = \sum_{k \in \mathbb{N}} f_k$ in the sense of convergence in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$.

1235

3 A Calderón–Zygmund Decomposition

In this section we study a Calderón–Zygmund decomposition for our anisotropic setting (associated with the matrix dilation A) for a distribution $f \in S'(\mathbb{R}^n)$ satisfying that $|\{x \in \mathbb{R}^n : M_N f(x) > \lambda\}| < \infty$, where $N \in \mathbb{N}$, $N \ge 2$ and $\lambda > 0$. We will use the ideas and results established in [4, Section 5, Chapter I]. Also, we prove new properties involving variable exponent Hardy–Lorentz norms that will be useful in the sequel.

Let $\lambda > 0$, $N \in \mathbb{N}$, $N \ge 2$, and $f \in S'(\mathbb{R}^n)$ such that $|\Omega_{\lambda}| < \infty$, where

$$\Omega_{\lambda} = \left\{ x \in \mathbb{R}^n : M_N(f)(x) > \lambda \right\}.$$

By the Whitney Lemma ([4, Lemma 2.7]), there exist sequences $(x_j)_{j \in \mathbb{N}} \subset \Omega_{\lambda}$ and $(\ell_j)_{j \in \mathbb{N}} \subset \mathbb{Z}$ satisfying the following

(3.1)
$$\Omega_{\lambda} = \bigcup_{i \in \mathbb{N}} (x_j + B_{\ell_j});$$

(3.2)

2)
$$(x_i + B_{\ell_i - \omega}) \cap (x_j + B_{\ell_j - \omega}) = \emptyset, \quad i, j \in \mathbb{N}, i \neq j;$$

$$(x_j + B_{\ell_j + 4\omega}) \cap \Omega_{\lambda}^{\circ} = \emptyset, \quad (x_j + B_{\ell_j + 4\omega + 1}) \cap \Omega_{\lambda}^{\circ} \neq \emptyset, \quad j \in \mathbb{N};$$

if $i, j \in \mathbb{N}$ and $(x_i + B_{\ell_i + 2\omega}) \cap (x_j + B_{\ell_i + 2\omega}) \neq \emptyset,$ then $|\ell_i - \ell_j| \le \omega;$

$$(3.3) \qquad \qquad \sharp \{j \in \mathbb{N} : (x_i + B_{\ell_i + 2\omega}) \cap (x_j + B_{\ell_i + 2\omega}) \neq \emptyset\} \leq L, \quad i \in \mathbb{N}.$$

Here, *L* denotes a nonnegative integer that does not depend on Ω_{λ} . If $E \subset \mathbb{R}^n$ by # E we represent the cardinality of *E*.

Assume now that $\theta \in C^{\infty}(\mathbb{R}^n)$ satisfies that supp $\theta \subset B_{\omega}$, $0 \leq \theta \leq 1$, and $\theta = 1$ on B_0 . For every $j \in \mathbb{N}$, we define

$$\theta_i(x) = \theta(A^{-\ell_i}(x-x_i)), \quad x \in \mathbb{R}^n,$$

and, for every $i \in \mathbb{N}$,

$$\zeta_i(x) = \begin{cases} \theta_i(x) / (\sum_{j \in \mathbb{N}} \theta_j(x)) & x \in \Omega_\lambda, \\ 0 & x \in \Omega_\lambda^c. \end{cases}$$

The sequence $\{\zeta_i\}_{i\in\mathbb{N}}$ is a smooth partition of unity associated with the covering $\{x_i + B_{\ell_i+\omega}\}_{i\in\mathbb{N}}$ of Ω_{λ} .

1___ 2___

3___

4___ 5___ 6___ 7___

8___ 9___ 10___ 11___

12___ 13___ 14___ 15___

16____

17___

18___

19___

20____

21___ 22___ 23___

24___

25____

26____

27___

28___

29___

30___

31___ 32___

33___

34___

35___

36___ 37___

38____

39___

40___ 41___ 42__

43___

44___ 45___

46___ 47___

48___

 \oplus

Page 1236 Sheet 18 of

1236

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Let $i, s \in \mathbb{N}$. By \mathcal{P}_s we denote the linear space of polynomials in \mathbb{R}^n with degree at most *s*. \mathcal{P}_s is endowed with the norm $\|\cdot\|_{i,s}$ defined by

$$\|P\|_{i,s}=\Big(\frac{1}{\int\zeta_i}\int_{\mathbb{R}^n}|P(x)|^2\zeta_i(x)dx\Big)^{1/2},\quad P\in\mathcal{P}_s.$$

Thus, $(\mathcal{P}_s, \|\cdot\|_{i,s})$ is a Hilbert space. We consider the functional $T_{f,i,s}$ on \mathcal{P}_s given by

$$T_{f,i,s}(Q) = \frac{1}{\int \zeta_i} \langle f, Q\zeta_i \rangle, \quad Q \in \mathcal{P}_s$$

Then $T_{f,i,s}$ is continuous in $(\mathcal{P}_s, \|\cdot\|_{i,s})$, and there exists $P_{f,i,s} \in \mathcal{P}_s$ such that

$$T_{f,i,s}(Q) = \frac{1}{\int \zeta_i} \int_{\mathbb{R}^n} P_{f,i,s}(x) Q(x) \zeta_i(x) dx, \quad Q \in \mathcal{P}_s.$$

To simplify, we write P_i to refer to $P_{f,i,s}$. We define $b_i = (f - P_i)\zeta_i$.

We will find values of *s* and *N* for which the series $\sum_{i \in \mathbb{N}} b_i$ converges in $S'(\mathbb{R}^n)$ provided that $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. Then, we define $g = f - \sum_{i \in \mathbb{N}} b_i$.

The representation $f = g + \sum_{i \in \mathbb{N}} b_i$ is known as the Calderón–Zygmund decomposition of f of degree s and height λ associated with $M_N(f)$.

First, note that if $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and $N \in \mathbb{N}$, $N \ge N_0$, then

$$\|\chi_{\{x\in\mathbb{R}^n:M_N(f)(x)>\mu\}}\|_{p(\cdot),q(\cdot)}<\infty$$

for every $\mu > 0$, and by Lemma 2.8, $|\{x \in \mathbb{R}^n : M_N(f)(x) > \mu\}| < \infty$, for every $\mu > 0$. Here, N_0 is the one defined in Theorem 1.1.

Our next objective is to prove that $L^1_{loc}(\mathbb{R}^n) \cap H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ is a dense subspace of $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. This property will be useful to deal with the proof that every element of $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ can be represented as a sum of a special kind of distributions, so called atoms, which will be developed in the next section.

We need to establish some auxiliary results. First, we prove the absolute continuity of the norm $\|\cdot\|_{p(.),q(.)}$.

Proposition 3.1 Let $(E_k)_{k \in \mathbb{N}}$ be a sequence of measurable sets satisfying that $E_k \supset E_{k+1}$, $k \in \mathbb{N}$, $|E_1| < \infty$, and $|\cap_{k \in \mathbb{N}} E_k| = 0$. Assume that $p, q \in \mathbb{P}_0$. If $f \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, then

 $||f\chi_{E_k}||_{p(\cdot),q(\cdot)} \longrightarrow 0, \quad as \ k \longrightarrow \infty.$

Proof Let $f \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ and $k \in \mathbb{N}$. We have that $(f\chi_{E_k})^* \leq f^*$. Then $f\chi_{E_k} \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$. Moreover, since $|\cap_{k\in\mathbb{N}} E_k| = \lim_{k\to\infty} |E_k| = 0$, for every t > 0 there exists $k_0 \in \mathbb{N}$ such that $(f\chi_{E_k})^*(t) = 0$, $k \in \mathbb{N}$, $k \geq k_0$. Hence, for every t > 0,

$$t^{\frac{1}{p(\cdot)}-\frac{1}{q(\cdot)}}(f\chi_{E_k})^*(t) \longrightarrow 0, \text{ as } k \longrightarrow \infty.$$

By using dominated convergence theorem ([20, Lemma 3.2.8]) jointly with [15, Lemma 2.3] and by taking into account that $q \in \mathbb{P}_0$ and that $f \in \mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, we obtain

$$||f\chi_{E_k}||_{p(\cdot),q(\cdot)} \to 0, \text{ as } k \to \infty.$$

Note that the last property also holds by more general exponent functions *p* and *q*.

https://doi.org/10.4153 + 2016-053-6 Published online by Cambridge University Press

1____ 2___

3___

4___

5___

6___

7___

8___

9___

10____

11___

12___ 13___ 14___

15___

16___

17___

18___

19____ 20____ 21____ 22____ 23____ 24___

25____ 26____ 28____ 29____ 30____ 31____ 32____ 33____ 34___

35___ 36___ 37___ 38___ 39___

40___ 41___

42___ 43___ 44___ 45___ 46___ 47___ 48___

 \oplus

Anisotropic Hardy–Lorentz Spaces with Variable Exponents

Proposition 3.2 Assume that $p, q \in \mathbb{P}_0$. There exists $s_0 \in \mathbb{N}$, such that for every $s \in \mathbb{N}$, $s \ge s_0$, and each $N \in \mathbb{N}$, $N > \max\{N_0, s\}$, where N_0 is defined in Theorem 1.1, the following two properties holds.

(i) Let $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and $\lambda > 0$. If $f = g + \sum_{i \in \mathbb{N}} b_i$ is the anisotropic Calderón–Zygmund decomposition of f associated with $M_N f$ of height λ and degree s, then the series $\sum_{i \in \mathbb{N}} b_i$ converges in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$.

(ii) Suppose that $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and that, for every $j \in \mathbb{Z}$, $f = g_j + \sum_{i \in \mathbb{N}} b_{i,j}$ is the anisotropic Calderón–Zygmund decomposition of f associated with $M_N f$ of height 2^j and degree s. Then $(g_j)_{j \in \mathbb{Z}} \subset H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and $(g_j)_{j \in \mathbb{Z}}$ converges to f, as $j \to +\infty$, in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$.

Proof (i) Let $s, N \in \mathbb{N}, N > \max\{N_0, s\}$. The Calderón–Zygmund decomposition of f associated with $M_N f$ of height $\lambda > 0$ and degree s is $f = g + \sum_{i \in \mathbb{N}} b_i$. We are going to specify s and N in order that the series $\sum_{i \in \mathbb{N}} b_i$ converges in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$.

By using [4, Lemmas 5.4 and 5.6], we get that there exists C > 0 so that, for every $i \in \mathbb{N}$,

$$M_N(b_i)(x) \leq C\Big(M_Nf(x)\chi_{x_i+B_{\ell_i+2\omega}}(x) + \lambda \sum_{k\in\mathbb{N}}\lambda_-^{-k(s+1)}\chi_{x_i+(B_{\ell_i+2\omega+1+k}\setminus B_{\ell_i+2\omega+k})}(x)\Big), \quad x\in\mathbb{R}^n.$$

Let $j, m \in \mathbb{N}$, j < m. For every $x \in \mathbb{R}^n$, we infer

$$\begin{split} &M_N\Big(\sum_{i=j}^m b_i\Big)(x)\\ &\leq \sum_{i=j}^m M_N(b_i)(x)\\ &\leq C\Big(M_N f(x)\sum_{i=j}^m \chi_{x_i+B_{\ell_i+2\omega}}(x) + \lambda \sum_{i=j}^m \sum_{k\in\mathbb{N}} \lambda_-^{-k(s+1)} \chi_{x_i+(B_{\ell_i+2\omega+1+k}\setminus B_{\ell_i+2\omega+k})}(x)\Big). \end{split}$$

We also have that, for every $x \in x_i + (B_{\ell_i+2\omega+1+k} \setminus B_{\ell_i+2\omega+k})$, with $i, k \in \mathbb{N}, i \le m$,

$$M_{HL}(\chi_{x_i+B_{\ell_i+2\omega}})(x) \ge \frac{1}{|x_i+B_{\ell_i+2\omega+1+k}|} \int_{x_i+B_{\ell_i+2\omega+1+k}} \chi_{x_i+B_{\ell_i+2\omega}}(y) dy = b^{-k-1}$$

We choose r > 1 such that $rp, rq \in \mathbb{P}_1$. Then we take $s \in \mathbb{N}$ such that $\lambda_{-}^{-s}b^r \leq 1$ and $N_0 < s$. For every $i \in \mathbb{N}$, $i \leq m$, we get

$$\sum_{k=0}^{\infty} \lambda_{-}^{-k(s+1)} \chi_{x_{i}+(B_{\ell_{i}+2\omega+1+k}\setminus B_{\ell_{i}+2\omega+k})}(x)$$

$$\leq C \max_{k\in\mathbb{N}} (\lambda_{-}^{-s-1}b^{r})^{k} (M_{HL}(\chi_{x_{i}+B_{\ell_{i}+2\omega}})(x))^{r}$$

$$\leq C \Big(M_{HL}(\chi_{x_i+B_{\ell_i+2\omega}})(x) \Big)', \quad x \in (x_i+B_{\ell_i+2\omega})^c.$$

2____ 3___ 4___ 5___ 6___ 7___ 8___ 9___ 10___ 11___ 12___ 13___ 14___ 15___ 16___ 17___ 18___ 19___ 20____ 21___ 22___

23___

24___ 25___ 26___ 27___ 28___ 29___ 30___

42___ 43___ 44___ 45___

46___ 47___ 48___

 \oplus

1___

1238

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Hence, we obtain

$$\begin{split} &M_N\Big(\sum_{i=j}^m b_i\Big)(x)\\ &\leq C_0\Big(M_Nf(x)\sum_{i=j}^m \chi_{x_i+B_{\ell_i+2\omega}}(x)+\lambda\sum_{i=j}^m \Big(M_{HL}(\chi_{x_i+B_{\ell_i+2\omega}})(x)\Big)^r\Big), \quad x\in\mathbb{R}^n. \end{split}$$

By using [15, Lemma 2.3], since $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$ is a quasi Banach space, we obtain

$$(3.4) \qquad \left\| M_{N}\left(\sum_{i=j}^{m} b_{i}\right) \right\|_{p(\cdot),q(\cdot)}$$

$$\leq C\left(\left\| M_{N}(f) \sum_{i=j}^{m} \chi_{x_{i}+B_{\ell_{i}+2\omega}} \right\|_{p(\cdot),q(\cdot)}$$

$$+ \lambda \left\| \sum_{i=j}^{m} \left(M_{HL}(\chi_{x_{i}+B_{\ell_{i}+2\omega}}) \right)^{r} \right\|_{p(\cdot),q(\cdot)} \right)$$

$$= C\left(\left\| M_{N}(f) \sum_{i=j}^{m} \chi_{x_{i}+B_{\ell_{i}+2\omega}} \right\|_{p(\cdot),q(\cdot)}$$

$$+ \lambda \left\| \left(\sum_{i=j}^{m} \left(M_{HL}(\chi_{x_{i}+B_{\ell_{i}+2\omega}}) \right)^{r} \right)^{1/r} \right\|_{rp(\cdot),rq(\cdot)}^{r} \right)$$

By using Proposition 2.2, we get

$$\left\| \left(\sum_{i=j}^{m} \left(M_{HL}(\chi_{x_{i}+B_{\ell_{i}+2\omega}}) \right)^{r} \right)^{1/r} \right\|_{rp(\cdot),rq(\cdot)}^{r} \leq C \left\| \left(\sum_{i=j}^{m} \chi_{x_{i}+B_{\ell_{i}+2\omega}} \right)^{1/r} \right\|_{rp(\cdot),rq(\cdot)}^{r}$$
$$= C \left\| \sum_{i=i}^{m} \chi_{x_{i}+B_{\ell_{i}+2\omega}} \right\|_{p(\cdot),q(\cdot)}.$$

From (3.3) and (3.4), it follows that

$$\begin{split} \left\| M_N \Big(\sum_{i=j}^m b_i \Big) \right\|_{p(\cdot),q(\cdot)} \\ &\leq C \Big(\left\| M_N(f) \sum_{i=j}^m \chi_{x_i+B_{\ell_i+2\omega}} \right\|_{p(\cdot),q(\cdot)} + \lambda \left\| \sum_{i=j}^m \chi_{x_i+B_{\ell_i+2\omega}} \right\|_{p(\cdot),q(\cdot)} \Big) \\ &\leq C \left\| M_N(f) \sum_{i=j}^m \chi_{x_i+B_{\ell_i+2\omega}} \right\|_{p(\cdot),q(\cdot)} \\ &\leq C \left\| M_N(f) \chi_{\bigcup_{i=j}^\infty (x_i+B_{\ell_i+2\omega})} \right\|_{p(\cdot),q(\cdot)}. \end{split}$$

For every $k \in \mathbb{N}$, we define $E_k = \bigcup_{i=k}^{\infty} (x_i + B_{\ell_i + 2\omega})$. By (3.3) there exists C > 0 such that $\sum_{i=k}^{\infty} \chi_{x_i + B_{\ell_i + 2\omega}} \leq C \chi_{E_k}, k \in \mathbb{N}$. By (3.1) and (3.2), $\bigcup_{i \in \mathbb{N}} (x_i + B_{\ell_i - \omega}) \subset \Omega_{\lambda}$, and then $\sum_{i \in \mathbb{N}} |x_i + B_{\ell_i - \omega}| = b^{-\omega} \sum_{i \in \mathbb{N}} b^{\ell_i} \leq |\Omega_{\lambda}| < \infty$, where $\Omega_{\lambda} = \{x \in \mathbb{R}^n : M_N(f)(x) > \lambda\}$. We deduce that

$$|E_k| \leq \sum_{i=k}^{\infty} |x_i + B_{\ell_i+2\omega}| = b^{2\omega} \sum_{i=k}^{\infty} b^{\ell_i}, \quad k \in \mathbb{N}.$$

https://doi.org/10.4153

1____ 2___

3___

4___ 5___

6___

7___ 8___

9___

10____

11___

12___

13___ 14___ 15___ 16___

17____ 18____ 19____ 20____ 21___

22___ 23___ 24___ 25___ 26___ 27___ 28___

29___ 30___ 31___ 32___

33___ 34___ 35___ 36___

37___

38___

39___ 40___ 41___

42___ 43___

44___ 45___ 46___

47___

48___

 \oplus

Anisotropic Hardy–Lorentz Spaces with Variable Exponents Proposition 3.1 implies that

 $\lim_{k\to\infty}\|M_N(f)\chi_{E_k}\|_{p(\cdot),q(\cdot)}=0.$

Hence, the sequence $\{\sum_{i=0}^{k} b_i\}_{k \in \mathbb{N}}$ is Cauchy in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. Since $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ is complete (Proposition 2.11), the series $\sum_{i \in \mathbb{N}} b_i$ converges in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$.

(ii) In order to prove this property, we can proceed as in the proof of (i). Assume that $j \in \mathbb{Z}$. We define $\Omega_j = \{x \in \mathbb{R}^n : M_N f(x) > 2^j\}$. By putting $b_j = \sum_{i \in \mathbb{N}} b_{i,j}$, since, as we have just proved in (i), the last series converges in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and then in $S'(\mathbb{R}^n)$, we obtain, for a chosen r > 1 verifying that $rp, rq \in \mathbb{P}_1$,

$$M_N(b_j)(x) \leq C_0\Big(M_Nf(x)\chi_{\Omega_j}(x) + 2^j \sum_{i\in\mathbb{N}} \Big(M_{HL}(\chi_{x_i+B_{\ell_i+2\omega}})(x)\Big)^r\Big), \quad x\in\mathbb{R}^n.$$

It follows that

$$(3.5) \| M_N(b_j) \|_{p(\cdot),q(\cdot)} \leq C \Big(\| M_N(f) \chi_{\Omega_j} \|_{p(\cdot),q(\cdot)} + 2^j \Big\| \Big(\sum_{i \in \mathbb{N}} \Big(M_{HL}(\chi_{x_i + B_{\ell_i + 2\omega}}) \Big)^r \Big)^{1/r} \Big\|_{rp(\cdot),rq(\cdot)}^r \Big).$$

From Proposition 2.2, we get

$$\begin{split} \left\| \left(\sum_{i \in \mathbb{N}} \left(M_{HL}(\chi_{\{x_i + B_{\ell_i + 2\omega}\}}) \right)^r \right)^{1/r} \right\|_{rp(\cdot), rq(\cdot)}^r &\leq C \left\| \left(\sum_{i \in \mathbb{N}} \chi_{x_i + B_{\ell_i + 2\omega}} \right)^{1/r} \right\|_{rp(\cdot), rq(\cdot)}^r \\ &= C \left\| \sum_{i \in \mathbb{N}} \chi_{x_i + B_{\ell_i + 2\omega}} \right\|_{p(\cdot), q(\cdot)} \\ &\leq C \left\| \chi_{\Omega_j} \right\|_{p(\cdot), q(\cdot)}. \end{split}$$

From (3.5) it follows that

$$\|M_{N}(b_{j})\|_{p(\cdot),q(\cdot)} \leq C(\|M_{N}(f)\chi_{\Omega_{j}}\|_{p(\cdot),q(\cdot)} + 2^{j}\|\chi_{\Omega_{j}}\|_{p(\cdot),q(\cdot)})$$

$$\leq C\|M_{N}(f)\chi_{\Omega_{j}}\|_{p(\cdot),q(\cdot)}.$$

Since $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$, by again invoking [15, Lemma 2.3], we have that

$$\|M_N(f)\|_{p(\cdot),q(\cdot)}^{1/r} = \|(M_N(f))^{1/r}\|_{rp(\cdot),rq(\cdot)} < \infty$$

Then by [24, Theorem 2.8] (see [24, Definition 2.5 vii)]), $M_N(f)(x) < \infty$, a.e. $x \in \mathbb{R}^n$. Hence, $M_N(f)\chi_{\Omega_j} \downarrow 0$, as $j \to +\infty$, for a.e. $x \in \mathbb{R}^n$. According to Proposition 3.1 we conclude that $\|M_N(f)\chi_{\Omega_j}\|_{p(\cdot),q(\cdot)} \to 0$, as $j \to +\infty$. Hence, $\|M_N(b_j)\|_{p(\cdot),q(\cdot)} \to 0$, as $j \to +\infty$, and $\|f - g_j\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)} \to 0$, as $j \to +\infty$.

By $C_c^{\infty}(\mathbb{R}^n)$ we denote the space of smooth functions with compact support in \mathbb{R}^n . We say that a distribution $h \in S'(\mathbb{R}^n)$ is in $L^1_{loc}(\mathbb{R}^n)$ when there exists a (unique) $H \in L^1_{loc}(\mathbb{R}^n)$ such that

$$\langle h, \phi \rangle = \int_{\mathbb{R}^n} H(x)\phi(x)dx, \quad \phi \in C^{\infty}_c(\mathbb{R}^n).$$

The space $S'(\mathbb{R}^n) \cap L^1_{loc}(\mathbb{R}^n)$ is also sometimes denoted by $S_r(\mathbb{R}^n)$ and it was studied, for instance, in [21, 56, 57].

https://doi.org/10.4153 + 2016-053-6 Published online by Cambridge University Press

1239

Page 1240 Sheet 22 of

1240

1____ 2___

3___

4____

5___ 6___

7___

8___

9___

10____

11___ 12___

13___

14___ 15___ 16___

17___ 18___ 19___ 20___

21____

22___

23___

24___

25____

26____

27____

28___

29___

30___ 31___ 32___

33___ 34

35___

36___ 37___

38___ 39___

40___

41____

42___ 43___

44___

45___

46___

47___

48___

 \oplus

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Proposition 3.3 If $f \in S'(\mathbb{R}^n)$, $\lambda > 0$, $s, N \in \mathbb{N}$, $N \ge 2$, and s < N, and $f = g + \sum_{i \in \mathbb{N}} b_i$ is the anisotropic Calderón–Zygmund decomposition of f associated with $M_N(f)$ of height λ and degree s, then $g \in L^1_{loc}(\mathbb{R}^n)$.

Proof Let $\lambda > 0$, $N \in \mathbb{N}$, $N \ge 2$, $s \in \mathbb{N}$, s < N, and $f \in S'(\mathbb{R}^n)$ such that $|\Omega_{\lambda}| < \infty$, where $\Omega_{\lambda} = \{x \in \mathbb{R}^n : M_N(f)(x) > \lambda\}$. We write $f = g + \sum_{i \in \mathbb{N}} b_i$ the Calderón– Zygmund decomposition of f associated with $M_N(f)$ of height λ and degree s. According to [4, Lemma 5.9] we have that

 $M_N(g)(x) \leq C\lambda \sum_{i \in \mathbb{N}} \lambda_{-}^{-t_i(s+1)} + M_N(f)(x) \chi_{\Omega_{\lambda}^c}(x), \quad x \in \mathbb{R}^n,$

where

 $t_i = t_i(x) = \begin{cases} t & \text{if } x \in x_i + (B_{\ell_i + 2\omega + t + 1} \setminus B_{\ell_i + 2\omega + t}), \text{ for some } t \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$

As shown in the proof of [4, Lemma 5.10 (i), p. 34], we get

$$\int_{\mathbb{R}^n} \sum_{i \in \mathbb{N}} \lambda_{-}^{-t_i(x)(s+1)} dx \le C |\Omega_{\lambda}|$$

Then, since $M_N(f)(x) \leq \lambda$, $x \in \Omega_{\lambda}^c$, we obtain that $M_N(g) \in L^1_{loc}(\mathbb{R}^n)$.

Let $\varphi \in S(\mathbb{R}^n)$. Since for a certain C > 0, we have $g * \varphi_k \leq CM_N(g)$, $k \in \mathbb{N}$, by proceeding as in the proof of [4, Theorem 3.9] we can prove that for every compact subset F of \mathbb{R}^n there exists a sequence $\{k_j\}_{j\in\mathbb{N}} \subset \mathbb{Z}$ such that $k_j \to -\infty$, as $j \to \infty$, and $g * \varphi_{k_j} \to G_F$, as $j \to \infty$, in the weak topology of $L^1(F)$ for a certain $G_F \in L^1(F)$. A diagonal argument allows us to get a sequence $\{k_j\}_{j\in\mathbb{N}} \subset \mathbb{Z}$ such that $k_j \to -\infty$, as $j \to \infty$, and $g * \varphi_{k_j} \to G$, in the weak * topology of $\mathcal{M}(K)$ (the space of complex measures supported in K) for every compact subset K of \mathbb{R}^n , being $G \in L^1_{loc}(\mathbb{R}^n)$. According to [4, Lemma 3.8], $g * \varphi_{k_j} \to g$, as $j \to \infty$ in $S'(\mathbb{R}^n)$. If $\phi \in C_c^{\infty}(\mathbb{R}^n)$, we have that

(3.6)
$$\langle g, \phi \rangle = \lim_{j \to \infty} \int_{\mathbb{R}^n} (g * \varphi_{k_j})(x) \phi(x) dx = \int_{\mathbb{R}^n} G(x) \phi(x) dx.$$

Since $C_c^{\infty}(\mathbb{R}^n)$ is a dense subspace of $S(\mathbb{R}^n)$, *g* is characterized by (3.6).

Corollary 3.4 Assume that $p, q \in \mathbb{P}_0$. Then $L^1_{loc}(\mathbb{R}^n) \cap H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ is a dense subspace of $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$.

Proof This property is a consequence of Propositions 3.2 and 3.3.

We finish this section with a convergence property for the good parts of Calderón– Zygmund decomposition of distributions in $L^1_{loc}(\mathbb{R}^n) \cap H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$, which we will use in the proof of atomic decompositions of the elements of $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$.

Proposition 3.5 Assume that $p, q \in \mathbb{P}_0$, and $f \in L^1_{loc}(\mathbb{R}^n) \cap H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. For every $j \in \mathbb{N}$, $f = g_j + \sum_{i \in \mathbb{N}} b_{i,j}$ is the anisotropic Calderón–Zygmund decomposition of f associated with $M_N(f)$ of height 2^j and degree s, with $s, N \in \mathbb{N}$, $s \ge s_0$, and $N > \max\{s, N_0\}$, where N_0 is as in Theorem 1.1 and s_0 is as in Proposition 3.2. Then $g_j \to 0$, as $j \to -\infty$, in $S'(\mathbb{R}^n)$. DRAFT: Canad. J. Math.

Đ

Æ

 \oplus

1____ 2___

3___ 4___

5___ 6___

7___

8___

9___ 10____

11

12___ 13___ 14___

15___

16___ 17___

18___ 19___ 20____

21____ 22___ 23___

24___

25____ 26____

27___ 28___ 29___

30___ 31___

32____

33___ 34___ 35___

36___

37___

38___

39___ 40___

41___

42____

43___

44___ 45___

46___

47___ 48___

 \oplus

Anisotropic Hardy-Lorentz Spaces with Variable Exponents **Proof** Since $f \in L^1_{loc}(\mathbb{R}^n)$, there exists a unique $F \in L^1_{loc}(\mathbb{R}^n)$ such that $\langle f,\phi\rangle = \int_{\mathbb{T}^n} F(x)\phi(x)dx, \quad \phi\in C^\infty_c(\mathbb{R}^n).$ According to Proposition 3.3, for every $j \in \mathbb{Z}$, there exists a unique $G_j \in L^1_{loc}(\mathbb{R}^n)$ for which $\langle g_j, \phi \rangle = \int_{\mathbb{T}^n} G_j(x) \phi(x) dx, \quad \phi \in C_c^\infty(\mathbb{R}^n).$ (3.7)Let $j \in \mathbb{Z}$ and $\phi \in C_c^{\infty}(\mathbb{R}^n)$. We are going to see that $\sum_{x,y} \int_{\mathbb{R}^n} \left| \left(F(x) - P_{i,j}(x) \right) \zeta_{i,j}(x) \right| |\phi(x)| dx < \infty.$ For every $i \in \mathbb{N}$, by [4, Lemma 5.3], we have that $\int_{\mathbb{D}^n} |(F(x) - P_{i,j}(x))\zeta_{i,j}(x)||\phi(x)|dx$ $\leq C\Big(\int_{(x_{i,j}+B_{l_{i,j}+\omega})\cap \operatorname{supp}(\phi)} |F(x)| dx + 2^j |(x_{i,j}+B_{l_{i,j}+\omega})\cap \operatorname{supp}(\phi)|\Big).$ Then $\sum_{i\in\mathbb{N}}\int_{\mathbb{R}^n}|(F(x)-P_{i,j}(x))\zeta_{i,j}(x)||\phi(x)|dx\leq C\Big(\int_{\mathrm{supp}(\phi)}|F(x)|dx+2^j|\operatorname{supp}(\phi)|\Big).$ Hence, from Proposition 3.2(i), we get $\int_{\mathbb{R}^n} \sum_{i \in \mathbb{N}} (F(x) - P_{i,j}(x)) \zeta_{i,j}(x) \phi(x) dx = \sum_{i \in \mathbb{N}} \int_{\mathbb{R}^n} (F(x) - P_{i,j}(x)) \zeta_{i,j}(x) \phi(x) dx$ $= \sum_{i=\mathbb{N}} \left\langle (f - P_{i,j}) \zeta_{i,j}, \phi \right\rangle$ $=\left\langle \sum_{i,j} (f - P_{i,j}) \zeta_{i,j}, \phi \right\rangle.$ Then there exists a measurable subset $E \subset \mathbb{R}^n$ such that $|\mathbb{R}^n \setminus E| = 0$, and $G_j(x) = F(x) - \sum_{i \in \mathcal{W}} (F(x) - P_{i,j}(x))\zeta_{i,j}(x), \quad x \in E \quad \text{and} \quad j \in \mathbb{Z},$ for a suitable sense of the convergence of series. Note that we have used a diagonal argument to justify the convergence for every $j \in \mathbb{Z}$. We can write $G_j(x) = F(x)\chi_{\Omega_j^c}(x) - \sum_{i \in \mathbb{N}} P_{i,j}(x)\zeta_{i,j}(x), \quad x \in E \text{ and } j \in \mathbb{Z},$ where $\Omega_j = \{x \in \mathbb{R}^n : M_N(f)(x) > 2^j\}, j \in \mathbb{Z}$. Note that the last series is actually a finite sum for every $x \in \mathbb{R}^n$. Let $j \in \mathbb{Z}$. According to [4, Lemma 5.3] we obtain $|G_i(x)| \leq C2^j$, a.e. $x \in \Omega_i$. On the other hand, $G_i(x) = F(x)$, a.e. $x \in \Omega_i^c$. Also, we have that

 $|F| \leq \sup_{k \in \mathbb{Z}, \varphi \in C^{\infty}_{c}(\mathbb{R}^{n}) \cap S_{N}} |f * \varphi_{k}| \leq M_{N}(f).$

1241

1___ 2___

3___ 4___ 5___

6___ 7___ 8___ 9___

10___ 11___ 12___

13___ 14___

15___ 16___

17___

18___ 19___

20____

21___ 22___

23___

24___ 25___ 26___ 27___

28___

29___ 30___

40___

41___ 42___

43____ 44___ 45___ 46___ 47___ 48___

 \oplus

1242

Then
$$|G_j(x)| \leq C2^j$$
, a.e. $x \in \Omega_j^c$. Hence, we conclude that

(3.8)
$$|G_j(x)| \le C2^j$$
, a.e. $x \in \mathbb{R}^n$

We consider the functional T_j defined on $S(\mathbb{R}^n)$ by

$$T_j(\phi) = \int_{\mathbb{R}^n} G_j(x)\phi(x)dx, \quad \phi \in S(\mathbb{R}^n).$$

From (3.8) we deduce that $T_j \in S'(\mathbb{R}^n)$. By (3.7), $T_j(\phi) = \langle g_j, \phi \rangle, \phi \in C_c^{\infty}(\mathbb{R}^n)$. Then

$$\langle g_j, \phi \rangle = \int_{\mathbb{R}^n} G_j(x) \phi(x) dx, \quad \phi \in S(\mathbb{R}^n)$$

and, again from (3.8), it follows that $g_j \to 0$, as $j \to -\infty$, in $S'(\mathbb{R}^n)$.

Page 1242 Sheet 24 of

4 Atomic Characterization (Proof of Theorem 1.3)

As we mentioned in the introduction, we are going to prove Theorem 1.3 in two steps, first in the case where $r = \infty$ and then when $r < \infty$.

4.1 **Proof of Theorem 1.3 when** $r = \infty$ **.**

(i) Suppose that for every $j \in \mathbb{N}$, a_j is a $(p(\cdot), q(\cdot), \infty, s)$ -atom associated with $x_j \in \mathbb{R}^n$ and $\ell_j \in \mathbb{Z}$. Here, $s \in \mathbb{N}$ will be fixed later. Assume also that $(\lambda_j)_{j \in \mathbb{N}} \subset (0, \infty)$ and that

$$\left\|\sum_{j\in\mathbb{N}}\frac{\lambda_j}{\|\chi_{x_j+B_{\ell_j}}\|_{p(\cdot),q(\cdot)}}\chi_{x_j+B_{\ell_j}}\right\|_{p(\cdot),q(\cdot)}<\infty.$$

We are going to show that the series $\sum_{j \in \mathbb{N}} \lambda_j a_j$ converges in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. Let $\ell, m \in \mathbb{N}, \ell < m$. We define $f_{\ell,m} = \sum_{j=\ell}^m \lambda_j a_j$, and we take $\varphi \in S(\mathbb{R}^n)$. We have that (4.1)

$$\begin{split} \|M_{\varphi}(f_{\ell,m})\|_{p(\cdot),q(\cdot)} \\ &\leq \left\|\sum_{j=\ell}^{m} \lambda_{j} M_{\varphi}(a_{j})\right\|_{p(\cdot),q(\cdot)} \\ &\leq C \bigg(\left\|\sum_{j=\ell}^{m} \lambda_{j} M_{\varphi}(a_{j}) \chi_{x_{j}+B_{\ell_{j}+\omega}}\right\|_{p(\cdot),q(\cdot)} + \left\|\sum_{j=\ell}^{m} \lambda_{j} M_{\varphi}(a_{j}) \chi_{x_{j}+B_{\ell_{j}+\omega}}\right\|_{p(\cdot),q(\cdot)}\bigg) \\ &= I_{1}+I_{2}. \end{split}$$

We now estimate I_i , i = 1, 2. We first study I_1 . Let $j \in \mathbb{N}$. Since a_j is a $(p(\cdot), q(\cdot), \infty, s)$ -atom, we can write

$$M_{\varphi}(a_j)(x) \leq ||a_j||_{\infty} ||\varphi||_1 \leq C ||\chi_{x_j+B_{\ell_j}}||_{p(\cdot),q(\cdot)}^{-1}, \quad x \in \mathbb{R}^n.$$

By defining $g_j = \chi_{x_j + B_{\ell_i}} (\|\chi_{x_j + B_{\ell_i}}\|_{p(\cdot), q(\cdot)}^{-1} \lambda_j)^{\alpha}$, it follows that

$$M_{HL}g_{j}(x) \geq \left(\|\chi_{x_{j}+B_{\ell_{j}}}\|_{p(\cdot),q(\cdot)}^{-1}\lambda_{j}\right)^{\alpha} \frac{1}{|B_{\ell_{j}+\omega}|} \int_{x_{j}+B_{\ell_{j}+\omega}} \chi_{x_{j}+B_{\ell_{j}}}(y) dy$$

= $b^{-\omega} \left(\|\chi_{x_{j}+B_{\ell_{j}}}\|_{p(\cdot),q(\cdot)}^{-1}\lambda_{j}\right)^{\alpha}, \quad x \in x_{j}+B_{\ell_{j}+\omega},$

https://doi.org/10.4153 + 2016-053-6 Published online by Cambridge University Press

1___ 2___

3___

4___ 5___

6___ 7___

8___ 9___ 10___

11____ 12___ 13___

14___ 15___

16___ 17___ 18___

19___

20____ 21___

22___

23___ 24___

25___ 26___ 27

28___ 29___ 30___

31___

32___ 33___ 34___ 35___ 36___

37_____ 38_____ 40____ 41____ 42____ 43____ 44____ 45____ 46____

47___

48____

 \oplus

Æ

Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1243 where $\alpha \in (0,1)$ is such that $p(\cdot)/\alpha, q(\cdot)/\alpha \in \mathbb{P}_1$. According to Proposition 2.2 and [15, Lemma 2.3], we have that $I_{1} \leq C \left\| \sum_{j=\ell}^{m} \lambda_{j} \| \chi_{x_{j}+B_{\ell_{j}}} \|_{p(\cdot),q(\cdot)}^{-1} \chi_{x_{j}+B_{\ell_{j}}+\omega} \right\|_{p(\cdot),q(\cdot)}$ (4.2) $\leq C \Big\| \sum_{i=\ell}^m (M_{HL}g_j)^{1/\alpha} \Big\|_{p(\,\cdot\,),q(\,\cdot\,)}$ $\leq C \left\| \left(\sum_{i=\ell}^m (M_{HL}g_j)^{1/\alpha} \right)^{\alpha} \right\|_{p(\cdot)/\alpha,q(\cdot)/\alpha}^{1/\alpha}$ $\leq C \left\| \left(\sum_{j=\ell}^{m} g_{j}^{1/\alpha} \right)^{\alpha} \right\|_{p(\cdot)/\alpha,q(\cdot)/\alpha}^{1/\alpha}$ $= C \Big\| \sum_{i=\ell}^{m} \lambda_{j} \| \chi_{x_{j}+B_{\ell_{j}}} \|_{p(\cdot),q(\cdot)}^{-1} \chi_{x_{j}+B_{\ell_{j}}} \Big\|_{p(\cdot),q(\cdot)}.$ Suppose now that *a* is a $(p(\cdot), q(\cdot), \infty, s)$ -atom associated with $z \in \mathbb{R}^n$ and $k \in \mathbb{Z}$. Let $m \in \mathbb{N}$. By proceeding as in [4, pp. 19–20] we obtain $M_{\varphi}(a)(x)$ $\leq C \frac{1}{\|\chi_{z+B_k}\|_{p(\,\cdot\,),q(\,\cdot\,)}} (b\lambda_-^{s+1})^{-m}$ $\leq C \frac{1}{\|\chi_{z+B_k}\|_{p(\cdot),q(\cdot)}} b^{m(\gamma-1)} \lambda_{-}^{-m(s+1)} \Big(\frac{1}{|B_{k+m+\omega+1}|} \int_{z+B_{k+m+\omega+1}} \chi_{z+B_k}(y) dy \Big)^{\gamma}$ $\leq C \frac{b^{m(\gamma-1)} \lambda_{-}^{-m(s+1)}}{\| \chi_{z+B_{k}} \|_{p(z),p(z)}} \left(M_{HL}(\chi_{z+B_{k}})(x) \right)^{\gamma}, \quad x \in z + \left(B_{k+m+\omega+1} \backslash B_{k+m+\omega} \right).$

Here γ is chosen such that $\gamma p(\cdot), \gamma q(\cdot) \in \mathbb{P}_1$. We now take $s \in \mathbb{N}$, satisfying that $b^{\gamma-1}\lambda_{-}^{-(s+1)} \leq 1$. We obtain

$$M_{\varphi}(a)(x) \leq C \frac{1}{\|\chi_{z+B_k}\|_{p(\cdot),q(\cdot)}} \Big(M_{HL}(\chi_{z+B_k})(x) \Big)^{\gamma}, \quad x \notin z+B_{k+\omega}.$$

By proceeding as above, we get

$$(4.3) I_{2} \leq C \Big\| \sum_{j=\ell}^{m} \lambda_{j} \| \chi_{x_{j}+B_{\ell_{j}}} \|_{p(\cdot),q(\cdot)}^{-1} \Big(M_{HL}(\chi_{x_{j}+B_{\ell_{j}}}) \Big)^{\gamma} \Big\|_{p(\cdot),q(\cdot)} \\ = C \Big\| \Big(\sum_{j=\ell}^{m} \Big(\lambda_{j}^{1/\gamma} \| \chi_{x_{j}+B_{\ell_{j}}} \|_{p(\cdot),q(\cdot)}^{-1/\gamma} M_{HL}(\chi_{x_{j}+B_{\ell_{j}}}) \Big)^{\gamma} \Big)^{1/\gamma} \Big\|_{\gamma p(\cdot),\gamma q(\cdot)}^{\gamma} \\ \leq C \Big\| \sum_{j=\ell}^{m} \lambda_{j} \| \chi_{x_{j}+B_{\ell_{j}}} \|_{p(\cdot),q(\cdot)}^{-1} \chi_{x_{j}+B_{\ell_{j}}} \Big\|_{p(\cdot),q(\cdot)}.$$

By combining (4.1), (4.2), and (4.3), we infer that the sequence $(\sum_{j=0}^{k} \lambda_j a_j)_{k \in \mathbb{N}}$ is Cauchy in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. Since $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ is complete (Proposition 2.11),

3____ 4____ 5____ 6____ 7____ 8____ 9___

10___ 11___

12____

13___ 14___

15___

16___

17___

18___

19____ 20____ 21____ 22____ 23___

24___ 25___ 26___ 27___ 28___

29___ 30___ 31___ 32___ 33___

34___

35___ 36___ 37___ 38___

39___

40___

41____ 42___ 43___ 44___ 45___ 46___

47___

48___

 \oplus

Page 1244 Sheet 26 of

1244

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

the series $\sum_{j \in \mathbb{N}} \lambda_j a_j$ converges in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. Moreover, we get

$$\left\|\sum_{j\in\mathbb{N}}\lambda_j a_j\right\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)} \leq C \left\|\sum_{j\in\mathbb{N}}\frac{\lambda_j}{\|\chi_{x_j+B_{\ell_j}}\|_{p(\cdot),q(\cdot)}}\chi_{x_j+B_{\ell_j}}\right\|_{p(\cdot),q(\cdot)}.$$

(ii) Assume that $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A) \cap L^1_{loc}(\mathbb{R}^n)$, $s \ge s_0$ (s_0 was defined in Proposition 3.2), and $N > \max\{N_0, s\}$ (N_0 was defined in Theorem 1.1). We recall that $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A) \cap L^1_{loc}(\mathbb{R}^n)$ is a dense subspace of $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ (Corollary 3.4). Let $j \in \mathbb{Z}$. We define $\Omega_j = \{x \in \mathbb{R}^n : M_N(f)(x) > 2^j\}$. According to [4, Chapter 1, Section 5] we can write $f = g_j + \sum_{k \in \mathbb{N}} b_{j,k}$, that is, the Calderón–Zygmund decomposition of degree s and height 2^j associated with $M_N f$. The properties of g_j and $b_{j,k}$ will be specified when we need each of them.

As proved in Proposition 3.2(ii), $g_j \to f$, as $j \to +\infty$, in both $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and $S'(\mathbb{R}^n)$, and in Proposition 3.5, $g_j \to 0$, as $j \to -\infty$, in $S'(\mathbb{R}^n)$. We have that

$$f = \sum_{j \in \mathbb{Z}} (g_{j+1} - g_j), \quad \text{in} \quad S'(\mathbb{R}^n).$$

As in [4, p. 38] we can write, for every $j \in \mathbb{Z}$,

$$g_{j+1}-g_j=\sum_{i\in\mathbb{N}}h_{i,j},$$
 in $S'(\mathbb{R}^n),$

where

$$h_{i,j} = (f - P_i^j)\zeta_i^j - \sum_{k \in \mathbb{N}} ((f - P_k^{j+1})\zeta_i^j - P_{i,k}^{j+1})\zeta_k^{j+1}, \quad i \in \mathbb{N}.$$

According to the properties of the polynomials *P*'s and the functions ζ 's it follows that, for every $P \in \mathcal{P}_s$,

$$\int_{\mathbb{R}^n} h_{i,j}(x) P(x) \, dx = 0, \quad i, j \in \mathbb{N}.$$

We also have that, for certain $C_0 > 0$, $||h_{i,j}||_{\infty} \le C_0 2^j$ and supp $h_{i,j} \subset x_{i,j} + B_{\ell_{i,j}+4\omega}$, for every $i, j \in \mathbb{N}$ ([4, (6.12) and (6.13), p. 38]). Hence, for every $i, j \in \mathbb{N}$, the function $a_{i,j} = h_{i,j} 2^{-j} C_0^{-1} ||\chi_{x_{i,j}+B_{\ell_{i,j}+4\omega}}||_{p(\cdot),q(\cdot)}^{-1}$ is a $(p(\cdot), q(\cdot), \infty, s)$ -atom. Moreover,

(4.4)
$$f = \sum_{i \in \mathbb{N}, j \in \mathbb{Z}} \lambda_{i,j} a_{i,j} \quad \text{in} \quad S'(\mathbb{R}^n)$$

where $\lambda_{i,j} = 2^j C_0 \| \chi_{x_{i,j}+B_{\ell_{i,j}+4\omega}} \|_{p(\cdot),q(\cdot)}$, for every $i \in \mathbb{N}, j \in \mathbb{Z}$. We are going to explain the convergence of the double series in (4.4). Œ

1____ 2___

3___

4____ 5___

6___ 7___

8___ 9___ 10___

11____ 12___ 13___

14___ 15___

16___ 17___ 18___

19___ 20___

21___ 22___ 23

24___ 25

26____

27____ 28___ 29___ 30___ 31___

32___ 33___ 35___ 36___ 37___ 38___ 39___ 40

41___

42___ 43___ 44___ 45___

46___

47___

48___

 \oplus

Æ

Anisotropic Hardy–Lorentz Spaces with Variable Exponents We now choose $\beta > 1$ such that $\beta p, \beta q \in \mathbb{P}_1$. Assume that $\pi = (\pi_1, \pi_2) : \mathbb{N} \to \mathbb{N} \times \mathbb{Z}$ is a bijection. By proceeding as before we get, for every $k \in \mathbb{N}$, $\left\| \sum_{m=0}^k \frac{\lambda_{\pi(m)}}{\|\chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+4w}}\|_{p(\cdot),q(\cdot)}} \chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+4w}} \right\|_{p(\cdot),q(\cdot)}$ $\leq C \left\| \sum_{m=0}^k 2^{\pi_2(m)} \chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+4w}} \right|^\beta \|_{p(\cdot),q(\cdot)}$ $\leq C \left\| \sum_{m=0}^k (2^{\pi_2(m)/\beta} M_{HL}(\chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+2w}}))^\beta \right\|_{p(\cdot),q(\cdot)}$ $= C \left\| \left(\sum_{m=0}^k (M_{HL}(2^{\pi_2(m)/\beta} \chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+2w}}))^\beta \right)^{1/\beta} \right\|_{\beta p(\cdot),\beta q(\cdot)}^\beta$ $\leq C \left\| \sum_{j \in \mathbb{Z}} 2^{j} \sum_{i \in \mathbb{N}} \chi_{x_{i,j}+B_{\ell_{i,j}+2w}}} \right\|_{p(\cdot),q(\cdot)}$

Since $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$, by [24, Thm. 2.8 and Def. 2.5 vii)], $M_N(f)(x) < \infty$, a.e. $x \in \mathbb{R}^n$. Let $x \in \mathbb{R}^n$ such that $M_N(f)(x) < \infty$. There exists $j_0 \in \mathbb{Z}$ such that $2^{j_0} < M_N(f)(x) \le 2^{j_0+1}$. We have that

$$\sum_{j\in\mathbb{Z}} 2^{j} \chi_{\Omega_{j}}(x) = \sum_{j\leq j_{0}} 2^{j} = 2^{j_{0}+1} \leq 2M_{N}(f)(x).$$

We conclude that

$$\begin{split} & \Big| \sum_{m=0}^{k} \frac{\lambda_{\pi(m)}}{\|\chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+4\omega}}\|_{p}(\cdot),q(\cdot)} \chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+4\omega}} \Big\|_{p}(\cdot),q(\cdot) \\ & = \Big\| \Big(\sum_{m=0}^{k} \frac{\lambda_{\pi(m)}}{\|\chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+4\omega}}\|_{p}(\cdot),q(\cdot)} \chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+4\omega}} \Big)^{1/\beta} \Big\|_{\beta p(\cdot),\beta q(\cdot)}^{\beta} \\ & \leq C \|f\|_{H^{p}(\cdot),q(\cdot)(\mathbb{R}^{n},A)}, \end{split}$$

where C > 0 does not depend on (k, π) .

According to [24, Theorem 2.8 and Definition 2.5, v)], we deduce that

$$\left\|\sum_{m\in\mathbb{N}}\frac{\lambda_{\pi(m)}}{\|\chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+4\omega}}\|_{p(\cdot),q(\cdot)}}\chi_{x_{\pi(m)}+B_{\ell_{\pi(m)}+4\omega}}\right\|_{p(\cdot),q(\cdot)}\leq C\|f\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}.$$

From the property we have just established in part (i) of this proof, we deduce that the series $\sum_{m \in \mathbb{N}} \lambda_{\pi(m)} a_{\pi(m)}$ converges both in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and $S'(\mathbb{R}^n)$. Hence, for every $\phi \in S(\mathbb{R}^n)$, the series $\sum_{m \in \mathbb{N}} \lambda_{\pi(m)} \langle a_{\pi(m)}, \phi \rangle$ converges in \mathbb{C} . 1____ 2___

3___

4___ 5___ 6___

7___

8___ 9___

10____

11___ 12___

13___ 14___ 15___ 16___

17___

18___ 19___ 20___

21___

22___ 23

24___

25___ 26___ 27___

28___

29___

30___

31___ 32___ 33___ 34___ 35___

36___ 37___ 38___ 39___

40___

41___ 42___ 43___ 44___ 45___

46___

 \oplus

Page 1246 Sheet 28 of

1246

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Also, we have that if $\Lambda: \mathbb{N} \times \mathbb{Z} \to \mathbb{N} \times \mathbb{Z}$ is a bijection, then the series

 $\sum_{m\in\mathbb{N}}\lambda_{\Lambda\circ\pi(m)}\langle a_{\Lambda\circ\pi(m)},\phi\rangle$

converges in \mathbb{C} , for every $\phi \in S(\mathbb{R}^n)$. In other words, the series $\sum_{m \in \mathbb{N}} \lambda_{\pi(m)} \langle a_{\pi(m)}, \phi \rangle$ converges unconditionally in \mathbb{C} , for every $\phi \in S(\mathbb{R}^n)$. Hence,

$$\sum_{m\in\mathbb{N}}\lambda_{\pi(m)}|\langle a_{\pi(m)},\phi\rangle|<\infty,$$

for every $\phi \in S(\mathbb{R}^n)$.

Let $\phi \in S(\mathbb{R}^n)$. Since $\sum_{m \in \mathbb{N}} \lambda_{\pi(m)} |\langle a_{\pi(m)}, \phi \rangle| < \infty$, the double series

n

$$\sum_{(i,j)\in\mathbb{N}\times\mathbb{Z}}\lambda_{i,j}\langle a_{i,j},\phi$$

is summable, that is, $\sup_{m \in \mathbb{N}} \sum_{1 \le i \le m, |j| \le m} \lambda_{i,j} |\langle a_{i,j}, \phi \rangle| < \infty$. Then for every bijection $\pi: \mathbb{N} \to \mathbb{N} \times \mathbb{Z}$, we have that

$$\langle f, \phi \rangle = \sum_{i \in \mathbb{N}} \left(\sum_{j \in \mathbb{Z}} \lambda_{i,j} \langle a_{i,j}, \phi \rangle \right) = \sum_{m \in \mathbb{N}} \lambda_{\pi(m)} \langle a_{\pi(m)}, \phi \rangle.$$

Suppose now that $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$. Then there exists a sequence $\{f_j\}_{j\in\mathbb{N}}$ in $L^1_{\text{loc}}(\mathbb{R}^n) \cap H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ such that $f_1 = 0, f_j \to f$, as $j \to \infty$, in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$, and $\|f_{j+1} - f_j\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)} < 2^{-j}\|f\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)}$, for every $j \in \mathbb{N}$. Then we can write

$$f = \sum_{j \in \mathbb{N}} (f_{j+1} - f_j),$$

in the sense of convergence in both $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and $S'(\mathbb{R}^n)$. For every $j \in \mathbb{N}$, there exist a sequence $\{\lambda_{i,j}\}_{i\in\mathbb{N}} \subset (0,\infty)$ and a sequence $\{a_{i,j}\}_{i\in\mathbb{N}}$ of $(p(\cdot), q(\cdot), \infty, s)$ -atoms, being for every $i \in \mathbb{N}$, $a_{i,j}$ associated with $x_{i,j} \in \mathbb{R}^n$ and $\ell_{i,j} \in \mathbb{Z}$, satisfying that

$$f_{j+1} - f_j = \sum_{i \in \mathbb{N}} \lambda_{i,j} a_{i,j}, \text{ in } S'(\mathbb{R}^n),$$

and

$$\left\|\sum_{i\in\mathbb{N}}\frac{\lambda_{i,j}}{\|\chi_{x_{i,j}+B_{\ell_{i,j}}}\|_{p}(\cdot),q(\cdot)}\chi_{x_{i,j}+B_{\ell_{i,j}}}\right\|_{p}(\cdot),q(\cdot)}\leq C2^{-j}\|f\|_{H^{p}(\cdot),q(\cdot)}(\mathbb{R}^{n},A)$$

Here, C > 0 does not depend on f.

We have that

$$\left\|\sum_{i\in\mathbb{N},j\in\mathbb{Z}}\frac{\lambda_{i,j}}{\|\chi_{x_{i,j}+B_{\ell_{i,j}}}\|_{p(\cdot),q(\cdot)}}\chi_{x_{i,j}+B_{\ell_{i,j}}}\right\|_{p(\cdot),q(\cdot)}$$
$$\leq \sum_{j\in\mathbb{Z}}\left\|\sum_{i\in\mathbb{N}}\frac{\lambda_{i,j}}{\|\chi_{x_{i,j}+B_{\ell_{i,j}}}\|_{p(\cdot),q(\cdot)}}\chi_{x_{i,j}+B_{\ell_{i,j}}}\right\|_{p(\cdot),q(\cdot)}$$

 $\leq C \|f\|_{H^{p}(\cdot),q(\cdot)(\mathbb{R}^{n},A)}.$

47___ 48___

41___

42____

43___ 44___ 45___

46___ 47___ 48___

 \oplus

Anisotropic Hardy–Lorentz Spaces with Variable Exponents

By proceeding as above we can write $f = \sum_{m \in \mathbb{N}} \lambda_{\pi(m)} a_{\pi(m)}, \quad \text{in } S'(\mathbb{R}^n),$ for every bijection $\pi: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. Thus, the proof of this case is completed. **4.2** Proof of Theorem **1.3** when $r < \infty$. In order to prove this property we proceed in a series of steps establishing auxiliary and partial results. **Proposition 4.1** Let $1 < r < \infty$ and let $p, q \in \mathbb{P}_0$. There exists $s_0 \in \mathbb{N}$ satisfying that if $s \in \mathbb{N}$, $s \ge s_0$, we can find C > 0 for which, for every $f \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$, there exist,

for each $j \in \mathbb{N}$, $\lambda_j > 0$ and a $(p(\cdot), q(\cdot), r, s)$ -atom a_j associated with some $x_j \in \mathbb{R}^n$ and $\ell_i \in \mathbb{Z}$, such that Ш **∥**−1

$$\left\|\sum_{j\in\mathbb{N}}\lambda_{j}\|\chi_{x_{j}+B_{\ell_{j}}}\|_{p(\cdot),q(\cdot)}^{-1}\chi_{x_{j}+B_{\ell_{j}}}\right\|_{p(\cdot),q(\cdot)}\leq C\|f\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}$$

and $f = \sum_{i \in \mathbb{N}} \lambda_i a_i$ in $S'(\mathbb{R}^n)$.

Proof Suppose that *a* is a $(p(\cdot), q(\cdot), \infty, s)$ -atom associated with $x_0 \in \mathbb{R}^n$ and $k \in$ \mathbb{Z} . We have that

$$||a||_{r} = \left(\int_{x_{0}+B_{k}} |a(x)|^{r} dx\right)^{1/r} \leq b^{k/r} ||a||_{\infty} \leq b^{k/r} ||\chi_{x_{0}+B_{k}}||_{p(\cdot),q(\cdot)}^{-1}.$$

Hence, *a* is a $(p(\cdot), q(\cdot), r, s)$ -atom associated with $x_0 \in \mathbb{R}^n$ and $k \in \mathbb{Z}$. Then this property follows from the previous case $r = \infty$.

We are going to see that the $(p(\cdot), q(\cdot), r, s)$ -atoms are in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$.

Proposition 4.2 Let $p, q \in \mathbb{P}_0$ such that p(0) < q(0). Assume that $\max\{1, q_+\} < \infty$ $r < \infty$. There exists $s_0 \in \mathbb{N}$ such that if a is a $(p(\cdot), q(\cdot), r, s_0)$ -atom, then $a \in \mathbb{N}$ $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A).$

Proof Let $\varphi \in S(\mathbb{R}^n)$. Assume that a is a $(p(\cdot), q(\cdot), r, s)$ -atom associated with $x_0 \in \mathbb{R}^n$ and $\ell_0 \in \mathbb{Z}$, where $s \in \mathbb{N}$ will be specified later. We have that

$$\|M_{\varphi}(a)\|_{p(\cdot),q(\cdot)} \leq C\Big(\|M_{\varphi}(a)\chi_{x_{0}+B_{\ell_{0}+w}}\|_{p(\cdot),q(\cdot)} + \|M_{\varphi}(a)\chi_{(x_{0}+B_{\ell_{0}+w})^{c}}\|_{p(\cdot),q(\cdot)}\Big)$$

= $I_{1} + I_{2}.$

It is clear that

$$(M_{\varphi}(a)\chi_{x_0+B_{\ell_0+w}})^*(t) = 0 \quad \text{for} \quad t \ge |x_0+B_{\ell_0+w}| = b^{\ell_0+w}.$$

Then since $0 < p(0) = \lim_{t \to 0^+} p(t) < q(0) = \lim_{t \to 0^+} q(t)$, we can write

$$I_{1} \leq C \left\| t^{1/p(t)-1/q(t)} (M_{\varphi}(a))^{*} \chi_{(0,b^{\ell_{0}+w})} \right\|_{q(\cdot)} \leq C \left\| (M_{\varphi}(a))^{*} \chi_{(0,b^{\ell_{0}+w})} \right\|_{q(\cdot)}.$$

1247

Page 1248 Sheet 30 of

1248

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

By using [15, Lemma 2.2] and since $r > \max\{1, q_+\}$, we obtain

$$I_{1} \leq C \| (M_{\varphi}(a))^{*} \|_{L^{r}(0,\infty)} = C \| M_{\varphi}(a) \|_{L^{r}(\mathbb{R}^{n})} \leq C \| a \|_{L^{r}(\mathbb{R}^{n})}$$

$$\leq C b^{\ell_{0}/r} \| \chi_{x_{0}+B_{\ell_{0}}} \|_{p(\cdot),q(\cdot)}^{-1} < \infty.$$

By proceeding as in the proof of the case $r = \infty$ (see [4, pp. 19–21]) we get

$$M_{\varphi}(a)(x) \leq \frac{C}{\|\chi_{x_0+B_{\ell_0}}\|_{p(\cdot),q(\cdot)}} (M_{HL}(\chi_{x_0+B_{\ell_0}})(x))^{\gamma}, \quad x \notin x_0 + B_{\ell_0+w},$$

provided that $s \ge \frac{\gamma-1}{\log_b(\lambda_-)} - 1$, where $\gamma > 1$ is such that $\gamma p, \gamma q \in \mathbb{P}_1$. Then Proposition 2.1 implies that

$$I_{2} \leq C \frac{\|(M_{HL}(\chi_{x_{0}+B_{\ell_{0}}}))^{\gamma}\|_{p(\cdot),q(\cdot)}}{\|\chi_{x_{0}+B_{\ell_{0}}}\|_{p(\cdot),q(\cdot)}} = C \frac{\|M_{HL}(\chi_{x_{0}+B_{\ell_{0}}})\|_{\gamma p(\cdot),\gamma q(\cdot)}}{\|\chi_{x_{0}+B_{\ell_{0}}}\|_{p(\cdot),q(\cdot)}} \leq C$$

Thus, we have shown that $a \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$.

Note that the constant *C* in the proof of the last proposition depends on the atom *a*. This fact indicates that this next result cannot be a consequence of Proposition 4.2. We need a more involved argument to show the following property.

Proposition 4.3 Let $p, q \in \mathbb{P}_0$ with p(0) < q(0). There exist $s_0 \in \mathbb{N}$ and $r_0 > 1$ such that, for every $r \ge r_0$ we can find C > 0 satisfying that if, for every $j \in \mathbb{N}$, $\lambda_j > 0$ and a_j is a $(p(\cdot), q(\cdot), r, s_0)$ -atom associated with $x_j \in \mathbb{R}^n$ and $\ell_j \in \mathbb{Z}$ such that

$$\sum_{j\in\mathbb{N}}\lambda_{j}\|\chi_{x_{j}+B_{\ell_{j}}}\|_{p(\cdot),q(\cdot)}^{-1}\chi_{x_{j}+B_{\ell_{j}}}\in\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^{n}),$$

then $f = \sum_{i \in \mathbb{N}} \lambda_i a_i \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ and

$$\|f\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)} \leq C \|\sum_{j\in\mathbb{N}}\lambda_{j}\|\chi_{x_{j}+B_{\ell_{j}}}\|_{p(\cdot),q(\cdot)}^{-1}\chi_{x_{j}+B_{\ell_{j}}}\|_{p(\cdot),q(\cdot)}$$

In order to prove this proposition we need to establish some preliminary properties.

Lemma 4.4 Assume that $(\lambda_k)_{k \in \mathbb{N}}$ is a sequence in $(0, \infty)$, $(\ell_k)_{k \in \mathbb{N}}$ is a sequence in \mathbb{Z} , $(x_k)_{k \in \mathbb{N}}$ is a sequence in \mathbb{R}^n , v is a doubling weight, that is, vdx is a doubling measure, (with respect to the anisotropic balls), $\ell \in \mathbb{N}$, $\ell \ge 1$, and 0 . Then

(4.5)
$$\left\|\sum_{k\in\mathbb{N}}\lambda_k\chi_{x_k+B_{\ell_k+\ell}}\right\|_{L^p(\mathbb{R}^n,\nu)} \leq Cb^{\ell\delta}\left\|\sum_{k\in\mathbb{N}}\lambda_k\chi_{x_k+B_{\ell_k}}\right\|_{L^p(\mathbb{R}^n,\nu)}$$

Here, $C, \delta > 0$ *depends only on v*.

Proof Suppose first that p > 1. We follow the ideas in the proof of [55, Theorem 2, p. 53]. We take $0 \le g \in L^{p'}(\mathbb{R}^n, \nu)$, where p' is the exponent conjugated to p, that is, p' = p/(p-1). Let $y \in \mathbb{R}^n$ and $k \in \mathbb{Z}$. We define the maximal operator M_v by

$$M_{\nu}(h)(z) = \sup_{m \in \mathbb{Z}, y \in z+B_m} \frac{1}{\nu(y+B_m)} \int_{y+B_m} |h(x)|\nu(x)dx, \quad z \in \mathbb{R}^n.$$

3___ 4____ 5____ 6____ 7___ 8____ 9___ 10____ 11___ 12___ 13___ 14___ 15___ 16____ 17___ 18___ 19 20____ 21____ 22___ 23 24___ 25

26___ 27___ 28___

29___ 30___ 31___ 32___

33___

34___ 35___

36___

37___

38___ 39___ 40___ 41___

42___ 43___

44___

45___

46___ 47___ 48___

 \oplus

1____ 2___

Æ

Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1____ 2____ Since *v* is doubling with respect to the anisotropic balls, for a certain $\delta > 0$, we have 3___ that 4___ 5___ $\int_{y+B_{k+\ell}} g(x)v(x)dx \leq b^{\ell\delta} \frac{v(y+B_k)}{v(y+B_{k+\ell})} \int_{y+B_{k+\ell}} g(x)v(x)dx$ 6___ 7___ $\leq b^{\ell\delta} \int_{v \perp R} M_v(g)(x)v(x)dx, \quad y \in \mathbb{R}^n, \ k \in \mathbb{Z}.$ 8___ 9___ We have taken into account that 10____ $M_{\nu}(g)(z) \geq \frac{1}{\nu(\nu+B_{\ell+L})} \int_{\nu+B_{\ell+L}} g(x)\nu(x)dx, \quad z \in y+B_k.$ 11___ 12____ 13___ Let $m \in \mathbb{N}$. We can write 14___ $\int_{\mathbb{R}^n} \sum_{k=0}^m \lambda_k \chi_{x_k+B_{\ell+\ell_k}}(x) g(x) v(x) dx = \sum_{k=0}^m \lambda_k \int_{x_k+B_{\ell+\ell_k}} g(x) v(x) dx$ 15___ 16___ 17___ $\leq b^{\ell\delta} \sum_{k=0}^{m} \lambda_k \int_{x_k+B_\ell} M_\nu(g)(x)\nu(x)dx.$ 18___ 19___ Hence, the maximal theorem [55, Theorem 3, p. 3] leads to 20____ 21____ $\left|\int_{\mathbb{R}^n}\sum_{k=1}^m \lambda_k \chi_{x_k+B_{\ell+\ell_k}}(x)g(x)v(x)dx\right|$ 22___ 23___ $\leq b^{\ell\delta} \Big\| \sum_{k=0}^m \lambda_k \chi_{x_k+B_{\ell_k}} \Big\|_{L^p(\mathbb{R}^n,\nu)} \|M_\nu(g)\|_{L^{p'}(\mathbb{R}^n,\nu)}$ 24___ 25____ 26____ $\leq Cb^{\ell\delta} \Big\| \sum_{k=0}^m \lambda_k \chi_{x_k+B_{\ell_k}} \Big\|_{L^p(\mathbb{R}^n,\nu)} \|g\|_{L^{p'}(\mathbb{R}^n,\nu)}.$ 27___ 28___ We conclude that 29___ 30___ $\left\|\sum_{k=0}^{m}\lambda_{k}\chi_{x_{k}+B_{\ell+\ell_{k}}}(x)\right\|_{L^{p}(\mathbb{R}^{n},\nu)}\leq Cb^{\ell\delta}\left\|\sum_{k=0}^{m}\lambda_{k}\chi_{x_{k}+B_{\ell_{k}}}\right\|_{L^{p}(\mathbb{R}^{n},\nu)}.$ 31___ 32____ By taking $m \to \infty$, the monotone convergence theorem allows us to establish (4.5) 33___ 34___ in this case. Assume now that $0 . For every <math>x_0 \in \mathbb{R}^n$ and $k_0 \in \mathbb{Z}$, we denote by $\delta_{(x_0,k_0)}$ 35___ the Dirac measure in \mathbb{R}^{n+1} supported in (x_0, k_0) . Let $m \in \mathbb{N}$. We have that 36___ 37___ $\int_{x \in y+B_{n+1}} \sum_{k=1}^{m} \lambda_k \delta_{(x_k,\ell_k)}(y,j)$ 38___ 39___ 40___ $=\sum_{k=1}^{m}\lambda_{k}\int_{\mathbb{R}^{n+1}}\chi_{\{(y,j):x\in y+B_{\ell+j}\}}(y,j)\delta_{(x_{k},\ell_{k})}(y,j)$ 41___ 42____ $=\sum_{k=0}^m \lambda_k \chi_{\{(y,j):x \in y+B_{\ell+j}\}}(x_k,\ell_k) = \sum_{k=0}^m \lambda_k \chi_{x_k+B_{\ell+\ell_k}}(x), \quad x \in \mathbb{R}^n.$ 43___ 44___ 45___ Also, we can write 46___ 47___

$$\int_{x\in y+B_j}\sum_{k=0}^m\lambda_k\delta_{(x_k,\ell_k)}(y,j)=\sum_{k=0}^m\lambda_k\chi_{x_k+B_{\ell_k}}(x), \quad x\in\mathbb{R}^n.$$

48___

 \oplus

1249

Page 1250 Sheet 32 of

1250

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

By arguing as in the proof of [55, Theorem 1, p. 52], replacing the area Littlewood–Paley functions by our area integrals, we can prove that

$$\left\|\int_{x\in y+B_{\ell+j}}\sum_{k=0}^{m}\lambda_k\delta_{(x_k,\ell_k)}(y,j)\right\|_{L^p(\mathbb{R}^n,\nu)}$$

$$\leq Cb^{\ell\delta}\left\|\int_{x\in y+B_j}\sum_{k=0}^{m}\lambda_k\delta_{(x_k,\ell_k)}(y,j)\right\|_{L^p(\mathbb{R}^n,\nu)}.$$

By letting $m \to \infty$ and using monotone convergence theorem we conclude (4.5).

We now recall definitions of anisotropic A_r -weights and anisotropic weighted Hardy spaces (see [6, 55]).

Let $r \in (1, \infty)$ and v be a nonnegative measurable function on \mathbb{R}^n . The function v is said to be a weight in the anisotropic Muckenhoupt class $\mathcal{A}_r(\mathbb{R}^n, A)$ when

$$[v]_{\mathcal{A}_{r}(\mathbb{R}^{n},A)} \coloneqq \sup_{x \in \mathbb{R}^{n}, \, k \in \mathbb{Z}} \Big(\frac{1}{|B_{k}|} \int_{x + B_{k}} v(y) dy \Big) \Big(\frac{1}{|B_{k}|} \int_{x + B_{k}} (v(y))^{-1/(r-1)} dy \Big)^{r-1} < \infty$$

We say that *v* belongs to the anisotropic Muckenhoupt class $\mathcal{A}_1(\mathbb{R}^n, A)$ when

$$[v]_{\mathcal{A}_1(\mathbb{R}^n,A)} \coloneqq \sup_{x \in \mathbb{R}^n, k \in \mathbb{Z}} \left(\frac{1}{|B_k|} \int_{x+B_k} v(y) dy \right) \sup_{y \in x+B_k} \left(v(y) \right)^{-1} < \infty$$

We define $\mathcal{A}_{\infty}(\mathbb{R}^n, A) = \bigcup_{1 \leq r < \infty} \mathcal{A}_r(\mathbb{R}^n, A).$

The weight v satisfies the reverse Hölder condition $RH_r(\mathbb{R}^n, A)$ (in short, $v \in RH_r(\mathbb{R}^n, A)$) if there exists C > 0 such that

$$\left(\frac{1}{|B_k|}\int_{x+B_k}(v(y))^r dy\right)^{1/r} \leq C \frac{1}{|B_k|}\int_{x+B_k}v(y)dy, \quad x\in\mathbb{R}^n, \text{ and } k\in\mathbb{Z}.$$

The classes $\mathcal{A}_r(\mathbb{R}^n, A)$ and $RH_\alpha(\mathbb{R}^n, A)$ are closely connected. In particular, if $v \in \mathcal{A}_1(\mathbb{R}^n, A)$, there exists $\alpha \in (1, \infty)$ such that $v \in RH_\alpha(\mathbb{R}^n, A)$ ([37, Theorem 1.3]).

Let $1 \le r < \infty$ and $v \in \mathcal{A}_r(\mathbb{R}^n, A)$. For every $N \in \mathbb{N}$, the anisotropic Hardy space $H_N^r(\mathbb{R}^n, v, A)$ consists of all those $f \in S'(\mathbb{R}^n)$ such that $M_N(f) \in L^r(\mathbb{R}^n, v)$. There exists $N_{r,v} \in \mathbb{N}$ satisfying that $H_N^r(\mathbb{R}^n, v, A) = H_{N_{r,v}}^r(\mathbb{R}^n, v, A)$, for every $N \ge N_{r,v}$. Moreover, when $N \ge N_{r,v}$, the quantities $||M_N(f)||_{L^r(\mathbb{R}^n, v)}$ and $||M_{N_{r,v}}(f)||_{L^r(\mathbb{R}^n, v)}$ are equivalent, for every $f \in H_{N_{r,v}}^r(\mathbb{R}^n, v, A)$. We denote by $H^r(\mathbb{R}^n, v, A)$ to the space $H_{N_{r,v}}^r(\mathbb{R}^n, v, A)$.

By proceeding as in the proof of [55, Lemma 5, p. 116], we can obtain the following property.

Lemma 4.5 Let $p \in (0, \infty)$ and $q > \max\{1, p\}$. Assume that $v \in RH_{(q/p)'}(\mathbb{R}^n, A)$. Then there exists C > 0 such that if, for every $k \in \mathbb{N}$, the measurable function a_k has its support contained in the ball $x_k + B_{\ell_k}$, where $x_k \in \mathbb{R}^n$, $\ell_k \in \mathbb{Z}$, $||a_k||_q \le ||\chi_{x_k+B_{\ell_k}}||_q$, and $\lambda_k > 0$, we have that

$$\left\|\sum_{k\in\mathbb{N}}\lambda_k a_k\right\|_{L^p(\mathbb{R}^n,\nu)}\leq C\left\|\sum_{k\in\mathbb{N}}\lambda_k\chi_{x_k+B_{\ell_k}}\right\|_{L^p(\mathbb{R}^n,\nu)}$$

If $1 < r \le \infty$ and $N \in \mathbb{N}$, we say that a function $a \in L^r(\mathbb{R}^n)$ is a (r, N)-atom associated with $x_0 \in \mathbb{R}^n$ and $j_0 \in \mathbb{Z}$, when *a* satisfies the following properties:

3___ 4____ 5____ 6____ 7____ 8____ 9____ 10____ 11 12____ 13___ 14___ 15___ 16____ 17___ 18___ 19 20____ 21____ 22___ 23 24___ 25 26____ 27 28 29___ 30___ 31___ 32___ 33___ 34___ 35___ 36___ 37___

> 38___ 39___

40

41____

42____

43___ 44___ 45___ 46___

47___

48___

 \oplus

1____ 2___

1251

2____ 3___ 4___ 5___ 6___ 7___ 8___ 9___ 10____ 11___ 12____ 13___ 14___ 15___ 16____ 17___ 18___ 19___ 20____

21____

22___

23___

24___ 25___ 26___ 27___

28___

29___

30___ 31___ 32___

33___

34___ 35___ 36___

37___ 38___ 39___ 40___

41____

42____

43___ 44___ 45___ 46___

47___

48___

 \oplus

1___

Anisotropic Hardy-Lorentz Spaces with Variable Exponents

- (i) supp $a \subset x_0 + B_{j_0}$,
- (ii) $||a||_r \le b^{j_0/r}$,

(iii) $\int_{\mathbb{R}^n} a(x) x^{\alpha} dx = 0$, for all $|\alpha| \le N$, $\alpha \in \mathbb{N}^n$.

The next result is an anisotropic version of the second part of [55, Theorem 1, p. 112].

Lemma 4.6 Let $0 . Assume that <math>v \in RH_{(q/p)'}(\mathbb{R}^n, A)$ where $q > \max\{1, p\}$. There exists $N_1 \in \mathbb{N}$ and C > 0 such that if, for every $k \in \mathbb{N}$, a_k is a (q, N_1) -atom associated with $x_k \in \mathbb{R}^n$ and $\ell_k \in \mathbb{Z}$, and $\lambda_k > 0$, satisfying that

$$\Big\|\sum_{k=1}^{\infty}\lambda_k\chi_{x_k+B_{\ell_k}}\Big\|_{L^p(\mathbb{R}^n,\nu)}<\infty,$$

the series $\sum_{k=1}^{\infty} \lambda_k a_k$ converges in both $S'(\mathbb{R}^n)$ and $H^p(\mathbb{R}^n, v, A)$ to an element $f \in H^p(\mathbb{R}^n, v, A)$ such that

$$\|f\|_{H^p(\mathbb{R}^n,\nu,A)} \leq C \left\| \sum_{k=1}^\infty \lambda_k \chi_{x_k+B_{\ell_k}} \right\|_{L^p(\mathbb{R}^n,\nu)}$$

Proof Suppose that *a* is a (q, N)-atom associated with $x_0 \in \mathbb{R}^n$ and $\ell_0 \in \mathbb{Z}$. Here $N \in \mathbb{N}$ will be specified later.

We choose $\varphi \in S(\mathbb{R}^n)$. We now estimate $||M_{\varphi}(a)||_{L^q(\mathbb{R}^n)}$ by considering in a separate way the regions $x_0 + B_{\ell_0+w}$ and $(x_0 + B_{\ell_0+w})^c$.

Since q > 1 the maximal theorem ([4, Theorem 3.6]) implies that

$$\left(\int_{\mathbb{R}^n} \chi_{x_0+B_{\ell_0+w}}(x) |M_{\varphi}(a)(x)|^q dx\right)^{1/q} \leq \|M_{\varphi}(a)\|_{L^q(\mathbb{R}^n)} \leq Cb^{\ell_0/q} \leq Cb^{(\ell_0+w)/q}.$$

Hence, the function $\beta_0 = \frac{1}{C} \chi_{x_0+B_{\ell_0+w}} M_{\varphi}(a)$ is a (q, -1)-atom associated with x_0 and $\ell_0 + w$. The index -1 means that no null moment condition needs to be satisfied. By proceeding as in [4, p. 20] we get, for every $m \in \mathbb{N}$,

$$M_{\varphi}(a)(x) \leq C(b\lambda_{-}^{N+1})^{-m}, \quad x \in x_0 + (B_{\ell_0+w+m+1} \setminus B_{\ell_0+w+m}).$$

We define $\rho_m = \chi_{x_0+B_{\ell_0+w+m+1}}$, $m \in \mathbb{N}$. It is clear that ρ_m is a (q, -1)-atom associated with x_0 and $\ell_0 + w + m + 1$, for every $m \in \mathbb{N}$, and that

$$\chi_{(x_0+B_{\ell_0+w})^c}M_{\varphi}(a) \leq C \sum_{m \in \mathbb{N}} (b\lambda_-^{N+1})^{-m} \rho_m$$

Hence, we obtain

(4.6)
$$M_{\varphi}(a) \leq C \Big(\beta_0 + \sum_{m \in \mathbb{N}} (b\lambda_-^{N+1})^{-m} \rho_m \Big).$$

Here, C > 0 does not depend on *a*.

Suppose that $k \in \mathbb{N}$ and, for every $j \in \mathbb{N}$, $j \le k$, $\lambda_j > 0$ and a_j is a (q, N)-atom associated with $x_j \in \mathbb{R}^n$ and $\ell_j \in \mathbb{Z}$. According to (4.6) we get

$$M_{\varphi}\Big(\sum_{j=0}^{k}\lambda_{j}a_{j}\Big) \leq C\Big(\sum_{j=0}^{k}\lambda_{j}(\beta_{0,j}+\sum_{m=0}^{\infty}(b\lambda_{-}^{N+1})^{-m}\rho_{m,j})\Big),$$

where $\beta_{0,j}$ and $\rho_{m,j}$, j = 1, ..., k, and $m \in \mathbb{N}$ have the obvious meaning and are (q, -1)-atoms. By using Lemmas 4.4 and 4.5, and by taking $p_1 = \min\{1, p\}$ we have

https://doi.org/10.4153

Page 1252 Sheet 34 of

1252

1____ 2___

3___ 4___ 5___ 6___ 7___ 8___ 9___ 10____ 11___ 12___ 13___ 14___ 15___ 16___ 17___ 18___

19___ 20___ 21___ 22___

23___ 24___

25___ 26___

27___

28___

29___ 30___ 31___ 32___

33___

34___ 35___ 36___ 37___

38___ 39___

40___

41___ 42___

43___

44___

45___

46___

47___

48___

 \oplus

that

$$\begin{split} &\sum_{j=0}^{N} \lambda_{j} a_{j} \Big\|_{H^{p}(\mathbb{R}^{n},\nu,A)}^{p_{1}} \\ &\leq C \Big\| \sum_{j=0}^{k} \lambda_{j} (\beta_{0,j} + \sum_{m \in \mathbb{N}} (b\lambda_{-}^{N+1})^{-m} \rho_{m,j}) \Big\|_{L^{p}(\mathbb{R}^{n},\nu)}^{p_{1}} \\ &\leq C \bigg(\sum_{m \in \mathbb{N}} (b\lambda_{-}^{N+1})^{-mp_{1}} \Big\| \sum_{j=0}^{k} \lambda_{j} \rho_{m,j} \Big\|_{L^{p}(\mathbb{R}^{n},\nu)}^{p_{1}} + \Big\| \sum_{j=0}^{k} \lambda_{j} \beta_{0,j} \Big\|_{L^{p}(\mathbb{R}^{n},\nu)}^{p_{1}} \bigg) \\ &\leq C \bigg(\sum_{m \in \mathbb{N}} (b\lambda_{-}^{N+1})^{-mp_{1}} \Big\| \sum_{j=0}^{k} \lambda_{j} \chi_{x_{j}+B_{\ell_{j}+w+m+1}} \Big\|_{L^{p}(\mathbb{R}^{n},\nu)}^{p_{1}} + \Big\| \sum_{j=0}^{k} \lambda_{j} \chi_{x_{j}+B_{\ell_{j}}} \Big\|_{L^{p}(\mathbb{R}^{n},\nu)}^{p_{1}} \bigg) \\ &\leq C \bigg(\sum_{m \in \mathbb{N}} (b\lambda_{-}^{N+1})^{-mp_{1}} b^{\delta mp_{1}} + 1 \bigg) \Big\| \sum_{j=0}^{k} \lambda_{j} \chi_{x_{j}+B_{\ell_{j}+w}} \Big\|_{L^{p}(\mathbb{R}^{n},\nu)}^{p_{1}}, \end{split}$$

for a certain $\delta > 0$. Hence, if $(\delta - 1) \ln b / \ln(\lambda_{-}) < N + 1$, we conclude that

$$\left\|\sum_{j=0}^{k} \lambda_{j} a_{j}\right\|_{H^{p}(\mathbb{R}^{n}, \nu, A)} \leq C \left\|\sum_{j=0}^{k} \lambda_{j} \chi_{x_{j}+B_{\ell_{j}}}\right\|_{L^{p}(\mathbb{R}^{n}, \nu)}$$

Standard arguments allow us to finish the proof of this property.

From Lemma 4.6 we can deduce the following.

Lemma 4.7 Assume that $p, q \in \mathbb{P}_0$, $p_0 \in (0, \infty)$, $q_0 > \max\{1, p_0\}$ and $v \in \mathcal{A}_1(\mathbb{R}^n, A) \cap RH_{(q_0/p_0)'}(\mathbb{R}^n, A)$. Suppose that, for every $k \in \mathbb{N}$, $\lambda_k > 0$ and a_k is a $(p(\cdot), q(\cdot), q_0, N_1)$ -atom associated with $x_k \in \mathbb{R}^n$ and $\ell_k \in \mathbb{Z}$, satisfying that

$$\Big\|\sum_{k\in\mathbb{N}}\lambda_k\|\chi_{x_k+B_{\ell_k}}\|_{p(\cdot),q(\cdot)}^{-1}\chi_{x_k+B_{\ell_k}}\Big\|_{L^{p_0}(\mathbb{R}^n,\nu)}<\infty.$$

Here, N_1 *is the one defined in Lemma* 4.6*.*

Then the series $f = \sum_{k \in \mathbb{N}} \lambda_k a_k$ converges in $H^{p_0}(\mathbb{R}^n, v, A)$ and

$$\|f\|_{H^{p_0}(\mathbb{R}^n,\nu,A)} \leq C \| \sum_{k \in \mathbb{N}} \lambda_k \| \chi_{x_k + B_{\ell_k}} \|_{p(\cdot),q(\cdot)}^{-1} \chi_{x_k + B_{\ell_k}} \|_{L^{p_0}(\mathbb{R}^n,\nu)}^{-1}$$

Here C does not depend on $\{\lambda_k\}_{k \in \mathbb{N}}$ *and* $\{a_k\}_{k \in \mathbb{N}}$.

Proof It is sufficient to note that, for every $k \in \mathbb{N}$, $a_k \| \chi_{x_k + B_{\ell_k}} \|_{p(\cdot),q(\cdot)}$ is a (q_0, N_1) -atom and v is doubling with respect to anisotropic balls.

Proof of Proposition 4.3 We choose $\alpha > 1$ such that $\alpha p, \alpha q \in \mathbb{P}_1$, so we have $(\alpha p)', (\alpha q)' \in \mathbb{P}_1$. We recall that the dual space $(\mathcal{L}^{\alpha p(\cdot), \alpha q(\cdot)}(\mathbb{R}^n))^*$ of $\mathcal{L}^{\alpha p(\cdot), \alpha q(\cdot)}(\mathbb{R}^n)$ is $\mathcal{L}^{(\alpha p(\cdot))', (\alpha q(\cdot))'}(\mathbb{R}^n)$ and the maximal operator M_{HL} is bounded from $\mathcal{L}^{(\alpha p(\cdot))', (\alpha q(\cdot))'}(\mathbb{R}^n)$ into itself (Proposition 2.1).

In the sequel our argument is (as in [15]) supported in Rubio de Francia iteration algorithm. Given a function h we define $M_{HL}^0(h) = |h|$ and, for every $i \in \mathbb{N}$, $i \ge 1$,

 \oplus

 \oplus

 \oplus

 \oplus

1	Anisotropic Hardy–Lorentz Spaces with Variable Exponents 125	53
2 3	$M_{HL}^{i}(h) = M_{HL} \circ M_{HL}^{i-1}(h)$. We consider	
3 <u> </u>		
5 6 7 8	$R(h) = \sum_{i=0}^{\infty} \frac{M_{HL}^{i}(h)}{2^{i} \ M_{HL}\ _{(\alpha p(\cdot))', (\alpha q(\cdot))'}^{i}}.$	
9	Ma have that	
10	We have that $(1) = I + c P(I)$	
11	 (i) h ≤ R(h); (ii) <i>R</i> is bounded from L^{(αp(·))',(αq(·))'}(ℝⁿ) into itself and 	
12 13	(ii) R is bounded from $\mathcal{L}^{(arc)}$ (\mathbb{R}^{a}) into itself and	
14		
15	$\ R(h)\ _{(\alpha p(\cdot))',(\alpha q(\cdot))'} \leq 2\ h\ _{(\alpha p(\cdot))',(\alpha q(\cdot))'};$	
16		
17	(iii) $R(h) \in \mathcal{A}_1(\mathbb{R}^n, A)$ and $[R(h)]_{\mathcal{A}_1(\mathbb{R}^n, A)} \leq 2 \ M_{HL}\ _{(\alpha p(\cdot))', (\alpha q(\cdot))'}$. Hence, the	re
18 19	exists $\beta_0 > 1$ such that $R(h) \in RH_{\beta_0}(\mathbb{R}^n, A)$.	i e
20	We choose $r > \max\{1, q_+\}$ such that $R(h) \in RH_{(r\alpha)'}(\mathbb{R}^n, A)$. It is sufficient to tak	<u>ce</u>
21	$r > \max\{1, q_+, \beta_0/(\alpha(\beta_0 - 1))\}.$	
22	Suppose that $k \in \mathbb{N}$ and, for every $j \in \mathbb{N}$, $j \leq k$, $\lambda_j > 0$ and a_j is	а
23	$(p(\cdot), q(\cdot), r, N_1)$ -atom associated with $x_j \in \mathbb{R}^n$ and $\ell_j \in \mathbb{Z}$. Here, N_1 is the or	
24	defined in Lemma 4.6. We define $f_k = \sum_{j=0}^k \lambda_j a_j$. According to Proposition 4.	2,
25	$f_k \in H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A).$	
26 27	By $R(h) \in \mathcal{A}_1(\mathbb{R}^n, A) \cap RH_{(r\alpha)'}(\mathbb{R}^n, A)$ and Lemma 4.7, $f_k \in H^{1/\alpha}(\mathbb{R}^n, R(h), A)$	1)
28	and	
29		
30		
31	(4.7) $ f_k _{H^{1/\alpha}(\mathbb{R}^n, R(h), A)} \le C \sum_{i=0}^{\kappa} \lambda_j \chi_{x_j + B_{\ell_j}} _{p(\cdot), q(\cdot)}^{-1} \chi_{x_j + B_{\ell_j}} _{L^{1/\alpha}(\mathbb{R}^n, R(h))}.$	
32	j=0	
33		
34	Let $\varphi \in S(\mathbb{R}^n)$. By using [15, Lemma 2.3] and [24, Lemma 2.7], we can write	
35 36		
37	$\ \mathbf{x}_{\alpha}(\boldsymbol{\zeta})\ ^{1/\alpha} \ \ (\mathbf{x}_{\alpha}(\boldsymbol{\zeta}))^{1/\alpha}\ $	
38	$\ M_{\varphi}(f_{k})\ _{p(\cdot),q(\cdot)}^{1/\alpha} = \ (M_{\varphi}(f_{k}))^{1/\alpha}\ _{\alpha p(\cdot),\alpha q(\cdot)}$	
39	$\leq C \sup_{h} \int_{\mathbb{R}^n} (M_{\varphi}(f_k)(x))^{1/\alpha} h(x) dx,$	
40	$h \int \mathbb{R}^n$	
41		
42	where the supremum is taken over all the functions $0 \le h \in \mathcal{L}^{(\alpha p(\cdot))', (\alpha q(\cdot))'}(\mathbb{R}^n)$	1)
43 44	such that $\ h\ _{(\alpha p(\cdot))', (\alpha q(\cdot))'} \le 1.$)
44	By the above properties (i), (ii), and (iii) and (4.7), for every	
46		
47		
48	$0 \le h \in \mathcal{L}^{(\alpha p(\cdot))', (\alpha q(\cdot))'}(\mathbb{R}^n)$	

Page 1254 Sheet 36 of

1254

1____

2____

3___ 4___ 5___ 6___ 7___ 8___ 9___ 10____ 11___ 12___ 13___ 14___ 15___ 16___ 17___ 18___ 19___

20___ 21___ 22___ 23___

24___ 25___

26___ 27

28___

29___

30___

31___ 32___

33___ 34___ 35___ 36___

37___

38___

39___

40___ 41___

42___

43___

44___

45___

46___

47___

48___

 \oplus

such that $||h||_{(\alpha p(\cdot))', (\alpha q(\cdot))'} \leq 1$, we get

$$\begin{split} &\int_{\mathbb{R}^{n}} (M_{\varphi}(f_{k})(x))^{1/\alpha} h(x) dx \\ &\leq \int_{\mathbb{R}^{n}} (M_{\varphi}(f_{k})(x))^{1/\alpha} R(h)(x) dx \\ &\leq C \int_{\mathbb{R}^{n}} \Big(\sum_{j=0}^{k} \lambda_{j} \| \chi_{x_{j}+B_{\ell_{j}}} \|_{p(\cdot),q(\cdot)}^{-1} \chi_{x_{j}+B_{\ell_{j}}}(x) \Big)^{1/\alpha} R(h)(x) dx \\ &\leq C \Big\| \Big(\sum_{j=0}^{k} \lambda_{j} \| \chi_{x_{j}+B_{\ell_{j}}} \|_{p(\cdot),q(\cdot)}^{-1} \chi_{x_{j}+B_{\ell_{j}}} \Big)^{1/\alpha} \Big\|_{\alpha p(\cdot),\alpha q(\cdot)} \| R(h) \|_{(\alpha p(\cdot))',(\alpha q(\cdot))'} \\ &\leq C \Big\| \sum_{j=0}^{k} \lambda_{j} \| \chi_{x_{j}+B_{\ell_{j}}} \|_{p(\cdot),q(\cdot)}^{-1} \chi_{x_{j}+B_{\ell_{j}}} \Big\|_{p(\cdot),q(\cdot)}^{1/\alpha} \| h \|_{(\alpha p(\cdot))',(\alpha q(\cdot))'} \\ &\leq C \Big\| \sum_{j=0}^{k} \lambda_{j} \| \chi_{x_{j}+B_{\ell_{j}}} \|_{p(\cdot),q(\cdot)}^{-1} \chi_{x_{j}+B_{\ell_{j}}} \Big\|_{p(\cdot),q(\cdot)}^{1/\alpha} . \end{split}$$

Hence, we obtain

$$\|f_k\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)} \leq C \left\| \sum_{j=0}^k \lambda_j \|\chi_{x_j+B_{\ell_j}}\|_{p(\cdot),q(\cdot)}^{-1} \chi_{x_j+B_{\ell_j}} \right\|_{p(\cdot),q(\cdot)}.$$

We finish the proof by using standard arguments.

5 Finite Atomic Decomposition (Proof of Theorem 1.6)

The proof of this result follows the ideas developed in [6,45]. Here we only show those points where a variable exponent Lorentz space norm appears.

(i) Assume that $r_0 < r < \infty$ and $s \in \mathbb{N}$, $s \ge s_0$, r_0 and s_0 being the parameters appearing in Theorem 1.3(i). By using this result, we get that

$$H_{\text{fin}}^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n,A) \subset H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)$$

and, for every $f \in H_{\text{fin}}^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n, A)$,

$$f\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)} \leq C\|f\|_{H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^{n},A)}$$

We now prove that there exists C > 0 such that $||f||_{H^{p(\cdot),q(\cdot),r,s}_{\text{fin}}(\mathbb{R}^n,A)} \leq C$, provided that

 $f \in H^{p(\cdot),q(\cdot),r,s}_{\mathrm{fin}}(\mathbb{R}^n,A) \quad \text{and} \quad \|f\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)} = 1.$

Let $f \in H_{\text{fin}}^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n, A)$ such that $||f||_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)} = 1$. We have that $f \in L^r(\mathbb{R}^n)$ and supp $f \subset B_{m_0}$ for some $m_0 \in \mathbb{Z}$. For every $j \in \mathbb{Z}$, we define the set $\Omega_j = \{x \in \mathbb{R}^n : M_N(f)(x) > 2^j\}$, where $N \in \mathbb{N}$, $N > \max\{N_0, s\}$ (here N_0 is as in Theorem 1.1). According to the proof of Theorem 1.3 and [6, p. 3088], for every $i \in \mathbb{N}$ and $j \in \mathbb{Z}$ there exist $\lambda_{i,j} > 0$ and a $(p(\cdot), q(\cdot), \infty, s)$ -atom $a_{i,j}$ satisfying the following properties:

(a) f = ∑_{i,j} λ_{i,j}a_{i,j}, where the series converges unconditionally in S'(ℝⁿ).
(b) |λ_{i,j}a_{i,j}| ≤ C2^j, i ∈ ℕ and j ∈ ℤ;

(c) $\operatorname{supp}(a_{i,j}) \subset x_{i,j} + B_{\ell_{i,j}+4\omega};$

(d) $\Omega_j = \bigcup_{i \in \mathbb{N}} (x_{i,j} + B_{\ell_{i,j}+4\omega});$

Anisotropic Hardy-Lorentz Spaces with Variable Exponents

and for certain sequences $\{x_{i,j}\}_{i \in \mathbb{N}, j \in \mathbb{Z}} \subset \mathbb{R}^n$ and $\{\ell_{i,j}\}_{i \in \mathbb{N}, j \in \mathbb{Z}} \subset \mathbb{Z}$,

(e) $(x_{i,j} + B_{\ell_{i,j}-2\omega}) \cap (x_{k,j} + B_{\ell_{k,j}-2\omega}) = \emptyset, j \in \mathbb{Z}, i, k \in \mathbb{N}, i \neq k;$

(f) $\left\|\sum_{i\in\mathbb{N}, j\in\mathbb{Z}}\lambda_{i,j}\right\|\chi_{x_{i,j}+B_{\ell_{i,j}+4\omega}}\|_{p(\cdot),q(\cdot)}^{-1}\chi_{x_{i,j}+B_{\ell_{i,j}+4\omega}}\right\|_{p(\cdot),q(\cdot)}$

The constants C in (b) and (f) do not depend on f.

 $\leq C \sum_{i \in \mathbb{Z}} \sum_{i \in \mathbb{N}} 2^{j} |x_{i,j} + B_{\ell_{i,j} + 4\omega}|$

By using (b), (c), (d), and (e), we obtain

 $\int_{\mathbb{R}^n} \sum_{i \in \mathbb{Z}} \sum_{i \in \mathbb{N}} |\lambda_{i,j} a_{i,j}(x)| dx$

 $\leq C \|f\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)} = C.$

1___ 2____

3___

19___

20____ 21____

22___ 23___

24___

25___ 26____

27___

28___ 29___

30___

31___ 32___

33___

34___

35___

36___ 37___ 38___ 39___

40___ 41___ 42____ 43___ 44___ 45___ 46___ 47___ 48___

 \oplus

We have that

(5.1)
$$M_N(f)(x) \le C_1 \|\chi_{B_{m_0}}\|_{p(\cdot),q(\cdot)}^{-1}, \quad x \in (B_{m_0+4\omega})^c$$

Indeed, let $x \in (B_{m_0+4\omega})^c$. It was proved in [6, pp. 3092–3093] that

$$M_N(f)(x) \le C \inf_{u \in B_{m_0}} M_N(f)(u)$$

 $\leq C \sum_{i \in \mathbb{Z}} 2^{j} \sum_{i \in \mathbb{N}} |x_{i,j} + B_{\ell_{i,j}-2\omega}| = C \sum_{i \in \mathbb{Z}} 2^{j} \Big| \bigcup_{i \in \mathbb{N}} (x_{i,j} + B_{\ell_{i,j}+4\omega}) \Big|$

 $\leq C \sum_{i \in \mathbb{Z}} 2^{j} |\Omega_{j}| = C \int_{\mathbb{R}^{n}} \sum_{i \in \mathbb{Z}} 2^{j} \chi_{\Omega_{j}}(x) dx \leq C \int_{\mathbb{R}^{n}} M_{N}(f)(x) dx.$

Note that $M_N(f) \in L^1(\mathbb{R}^n)$, because f is a multiple of a (1, r, s)-atom. Let $\pi =$

 $(\pi_1, \pi_2): \mathbb{N} \to \mathbb{N} \times \mathbb{Z}$ be a bijection. We have that $\int_{\mathbb{R}^n} \sum_{m \in \mathbb{N}} |\lambda_{\pi(m)} a_{\pi(m)}(x)| dx < \infty$

 ∞ . Then there exist a monotone function $\mu: \mathbb{N} \to \mathbb{N}$ and a subset $E \subset \mathbb{R}^n$ such

that $\sum_{m\in\mathbb{N}} |\lambda_{\pi(\mu(m))} a_{\pi(\mu(m))}(x)| < \infty$, for every $x \in E$ and $|\mathbb{R}^n \setminus E| = 0$. Hence,

 $\sum_{m \in \mathbb{N}} |\lambda_{\pi(m)} a_{\pi(m)}(x)| < \infty$, for every $x \in E$. Since the last series has positive terms,

we conclude that the series $\sum_{m \in \mathbb{N}} \lambda_{\pi(m)} a_{\pi(m)}(x)$ is unconditionally convergent, for

every $x \in E$, and $\sum_{m \in \mathbb{N}} \lambda_{\pi(m)} a_{\pi(m)}(x) = \sum_{j \in \mathbb{Z}} (\sum_{i \in \mathbb{N}} \lambda_{i,j} a_{i,j}(x)), x \in E$. Moreover,

the arguments in the proof of Theorem 1.3(ii) (see also [6, pp. 3088-3089]) lead us to

 $f(x) = \sum_{i \in \mathbb{N}} \left(\sum_{i \in \mathbb{N}} \lambda_{i,j} a_{i,j}(x) \right), \quad x \in E.$

Then we obtain

$$M_{N}(f)(x) \leq \frac{C}{\|\chi_{B_{m_{0}}}\|_{p(\cdot),q(\cdot)}} \| \inf_{u \in B_{m_{0}}} [M_{N}(f)(u)]\chi_{B_{m_{0}}}\|_{p(\cdot),q(\cdot)}$$

$$\leq \frac{C}{\|\chi_{B_{m_{0}}}\|_{p(\cdot),q(\cdot)}} \|M_{N}(f)\chi_{B_{m_{0}}}\|_{p(\cdot),q(\cdot)}$$

$$\leq \frac{C}{\|\chi_{B_{m_{0}}}\|_{p(\cdot),q(\cdot)}} \|M_{N}(f)\|_{p(\cdot),q(\cdot)}$$

$$\leq C_{1}\|\chi_{B_{m_{0}}}\|_{p(\cdot),q(\cdot)}^{-1}.$$

1255

1____ 2___

3___

4___

5___ 6___

7___ 8___

9____ 10____ 11____ 12____

13___

14___

15____ 16___ 17___ 18___

19___

20____

21___ 22___

23___ 24___ 25___ 26___

27

28___

29___ 30___ 31___ 32___

33___

34___

35____ 36____ 37____ 38____ 39____ 40____ 41____

42___ 43___ 44___ 45___

46___

47___

48___

 \oplus

Page 1256 Sheet 38 of

1256

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Thus, (5.1) is established.

We now choose $j_0 \in \mathbb{Z}$ such that $2^{j_0} < C_1 \|\chi_{B_{m_0+4\omega}}\|_{p(\cdot),q(\cdot)}^{-1} \le 2^{j_0+1}$, where C_1 is the constant appearing in (5.1). We have that

 $\Omega_j \subset B_{m_0+4\omega}, \quad j>j_0.$

By following the ideas developed in [45] (see also [6]), we define

$$h = \sum_{j \le j_0} \sum_{i \in \mathbb{N}} \lambda_{i,j} a_{i,j} \text{ and } \mathfrak{l} = \sum_{j > j_0} \sum_{i \in \mathbb{N}} \lambda_{i,j} a_{i,j}.$$

Note that the series converges unconditionally in $S'(\mathbb{R}^n)$ and almost everywhere. We have that $\bigcup_{j>j_0} \Omega_j \subset B_{m_0+4\omega}$. Then supp $\mathfrak{l} \subset B_{m_0+4\omega}$. Since supp $f \subset B_{m_0+4\omega}$, we also have that supp $h \subset B_{m_0+4\omega}$. As above, we can see that

$$\int_{\mathbb{R}^n}\sum_{j>j_0}\sum_{i\in\mathbb{N}}|\lambda_{i,j}a_{i,j}(x)x^{\alpha}|dx=\int_{B_{m_0+4\omega}}\sum_{j>j_0}\sum_{i\in\mathbb{N}}|\lambda_{i,j}a_{i,j}(x)x^{\alpha}|dx<\infty.$$

Then $\int_{\mathbb{R}^n} \mathfrak{l}(x) x^{\alpha} dx = 0$, for every $\alpha \in \mathbb{N}^n$ and $|\alpha| \leq s$. Since $\int_{\mathbb{R}^n} f(x) x^{\alpha} dx = 0$, for every $\alpha \in \mathbb{N}^n$ and $|\alpha| \leq s$, we also have that $\int_{\mathbb{R}^n} h(x) x^{\alpha} dx = 0$, for every $\alpha \in \mathbb{N}^n$ and $|\alpha| \leq s$.

Moreover, by using (3.3) we get

$$|h(x)| \leq C \sum_{j \leq j_0} 2^j \leq C 2^{j_0} \leq C_2 \|\chi_{B_{m_0+4\omega}}\|_{p(\cdot),q(\cdot)}^{-1}$$

Here C_2 does not depend on f. Hence, h/C_2 is a $(p(\cdot), q(\cdot), \infty, s)$ -atom associated with the ball $B_{m_0+4\omega}$.

As in [6, Step 4, p. 3094], we can see that if

$$F_J = \{(i,j) : i \in \mathbb{N}, j \in \mathbb{Z}, j > j_0 \text{ and } i + |j| \le J\} \text{ and } \mathfrak{l}_J = \sum_{(i,j) \in F_J} \lambda_{i,j} a_{i,j},$$

for every $J \in \mathbb{N}$ such that $J > |j_0|$, then $\lim_{J \to +\infty} \mathfrak{l}_J = \mathfrak{l}$, in $L^r(\mathbb{R}^n)$. Moreover, we can find *J* large enough such that $\mathfrak{l} - \mathfrak{l}_J$ is a $(p(\cdot), q(\cdot), r, s)$ -atom associated with the ball $B_{m_0+4\omega}$. We have that $f = h + \mathfrak{l}_J + (\mathfrak{l} - \mathfrak{l}_J)$ and

$$\begin{split} \|f\|_{H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^{n},A)} &\leq \left\|C_{2}\frac{\chi_{B_{m_{0}+4\omega}}}{\|\chi_{B_{m_{0}+4\omega}}\|_{p(\cdot),q(\cdot)}} \\ &+ \sum_{(i,j)\in F_{J}}\lambda_{i,j}\frac{\chi_{x_{i,j}+B_{\ell_{i,j}+4\omega}}}{\|\chi_{x_{i,j}+B_{\ell_{i,j}+4\omega}}\|_{p(\cdot),q(\cdot)}} + \frac{\chi_{B_{m_{0}+4\omega}}}{\|\chi_{B_{m_{0}+4\omega}}\|_{p(\cdot),q(\cdot)}}\right\|_{p(\cdot),q(\cdot)} \\ &\leq C\Big(C_{2}+1+\Big\|\sum_{(i,j)\in F_{J}}\lambda_{i,j}\frac{\chi_{x_{i,j}+B_{\ell_{i,j}+4\omega}}}{\|\chi_{x_{i,j}+B_{\ell_{i,j}+4\omega}}\|_{p(\cdot),q(\cdot)}}\Big\|_{p(\cdot),q(\cdot)}\Big) \leq C. \end{split}$$

Thus, (i) is established.

(ii) This assertion can be proved by using Theorem 1.3 and by proceeding as in [6, Steps 5 and 6, pp. 3094 and 3095] (see also [45, pp. 2926–2927]).

https://doi.org/10.4153 + I-2016-053-6 Published online by Cambridge University Press

1____ 2___

3___ 4___

5____

6____

7____

8____

9____

10____

11____ 12___

13___

14___

15___

16___ 17___

18___ 19___

20___ 21___ 22___

23

24___

25____ 26____ 27____ 28____ 29___

30___

31___

32____

33___

34___

35___

36___

37___

38____

39___ 40

41___ 42___ 43___ 44___

45___ 46___

47___

48___

 \oplus

Anisotropic Hardy-Lorentz Spaces with Variable Exponents

1257

6 Applications (Proof of Theorem 1.7)

In this section, we present a proof of Theorem 1.7. We have been inspired by some ideas due to Cruz-Uribe and Wang [15], but their arguments have to be modified to adapt them to the anisotropic setting and variable exponent Lorentz spaces.

First of all we formulate the type of operator that we are working with. We consider an operator $T: S(\mathbb{R}^n) \to S'(\mathbb{R}^n)$ that commutes with translations. It is well known that this commuting property is equivalent to both the fact that *T* commutes with convolutions and that there exists $L \in S'(\mathbb{R}^n)$ such that

$$T(\phi) = L * \phi, \quad \phi \in S(\mathbb{R}^n).$$

Assume that:

(i) The Fourier transform \widehat{L} of *L* is in $L^{\infty}(\mathbb{R}^n)$.

This property is equivalent to that the operator *T* can be extended to $L^2(\mathbb{R}^n)$ as a bounded operator from $L^2(\mathbb{R}^n)$ into itself.

We say that *T* is associated with a measurable function $K: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ when, for every $\phi \in L^{\infty}_{c}(\mathbb{R}^n)$, the space of $L^{\infty}(\mathbb{R}^n)$ -functions with compact support,

(6.1)
$$T(\phi)(x) = \int_{\mathbb{R}^n} K(x-y)\phi(y)dy, \quad x \notin \operatorname{supp} \phi.$$

We assume that *K* satisfies the following properties: there exists $C_K > 0$ such that

(ii) $|K(x)| \leq \frac{C_K}{\rho(x)}, x \in \mathbb{R}^n \setminus \{0\},\$

(iii) for some $\gamma > 0$,

$$|K(x-y)-K(x)| \leq C_K \frac{\rho(y)^{\gamma}}{\rho(x)^{\gamma+1}}, \quad b^{2\omega}\rho(y) \leq \rho(x).$$

An operator *T* satisfying the above properties is usually called a *Calderón–Zygmund* singular integral in our anisotropic context. These operators and other ones related with them have been studied, for instance, in [4, 40, 59]. In [59] some sufficient conditions are given in order that a measurable function $K: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ defines by (6.1) a principal value integral tempered distribution having a Fourier transform in $L^{\infty}(\mathbb{R}^n)$.

If *T* is an anisotropic Calderón–Zygmund singular integral, *T* can be extended from $L^2(\mathbb{R}^n) \cap L^p(\mathbb{R}^n, v)$ to $L^p(\mathbb{R}^n, v)$ as a bounded operator from $L^p(\mathbb{R}^n, v)$ into itself, for every $1 and <math>v \in \mathcal{A}_p(\mathbb{R}^n, A)$, and as a bounded operator from $L^1(\mathbb{R}^n, v)$ into $L^{1,\infty}(\mathbb{R}^n, v)$, for every $v \in \mathcal{A}_1(\mathbb{R}^n, A)$. Also, anisotropic Calderón– Zygmund singular integrals satisfy the following Kolmogorov type inequality.

Proposition 6.1 Let T be an anisotropic Calderón–Zygmund singular integral. If $v \in A_1(\mathbb{R}^n, A)$ and 0 < r < 1, there exists C > 0 such that, for every $x_0 \in \mathbb{R}^n$ and $\ell \in \mathbb{Z}$,

$$\int_{x_0+B_{\ell}} |Tf(x)|^r v(x) dx \le C v(x_0+B_{\ell})^{1-r} \Big(\int_{\mathbb{R}^n} |f(x)| v(x) dx \Big)^r, \quad f \in L^1(\mathbb{R}^n, v).$$

Here, $C = C([v]_{\mathcal{A}_1(\mathbb{R}^n, A)}, r).$

Proof This property can be proved by taking into account that the operator *T* is bounded from $L^1(\mathbb{R}^n, v)$ into $L^{1,\infty}(\mathbb{R}^n, v)$, provided that $v \in \mathcal{A}_1(\mathbb{R}^n, A)$. Indeed, let

Page 1258 Sheet 40 of

1258

4____ 5____ 6____ 7____ 8____ 9____ 10___ 11 12____ 13___ 14___ 15___ 16____ 17___ 18____ 19 20____ 21____ 22___ 23 24___ 25 26____ 27

28

29___

30___

31___

32___ 33___ 34___

35___

36___ 37___ 38___ 39___

40___ 41___ 42___ 43___ 44___

45___

46___

47___

48___

 \oplus

1____

2____

3___

 $v \in \mathcal{A}_{1}(\mathbb{R}^{n}, A) \text{ and } 0 < r < 1. \text{ For every } f \in L^{1}(\mathbb{R}^{n}, v), \text{ we have that}$ $\int_{a+B_{\ell}} |Tf(x)|^{r} v(x) dx$ $= r \int_{0}^{\infty} \lambda^{r-1} v(\{x \in a + B_{\ell} : |Tf(x)| > \lambda\}) d\lambda$ $\leq C \int_{0}^{\infty} \lambda^{r-1} \min \left\{ v(a + B_{\ell}), \frac{\|f\|_{L^{1}(\mathbb{R}^{n}, v)}}{\lambda} \right\} d\lambda$ $\leq C \left(v(a + B_{\ell}) \int_{0}^{\frac{\|f\|_{L^{1}(\mathbb{R}^{n}, v)}}{v(a+B_{\ell})}} \lambda^{r-1} d\lambda + \|f\|_{L^{1}(\mathbb{R}^{n}, v)} \int_{\frac{\|f\|_{L^{1}(\mathbb{R}^{n}, v)}}{v(a+B_{\ell})}}^{\infty} \lambda^{r-2} d\lambda \right)$ $\leq C v(a + B_{\ell})^{1-r} \left(\int_{\mathbb{R}^{n}} |f(x)| v(x) dx \right)^{r}.$

In order to study Calderón–Zygmund singular integrals in Hardy spaces it is usual to require on the kernel *K* more restrictive regularity conditions than the above ones (ii) and (iii).

As in [4, p. 61] (see also [35]) we say that the anisotropic Calderón–Zygmund singular integral *T* associated with the kernel *K* is of order *m* when $K \in C^m(\mathbb{R}^n \setminus \{0\})$ and there exists $C_{K,m} > 0$ such that for every $x, y \in \mathbb{R}^n, x \neq y$,

(6.2)
$$|(\partial_y^{\alpha}\widetilde{K})(x,A^{-k}y)| \leq \frac{C_{K,m}}{\rho(x-y)} = C_{K,m}b^{-k}, \quad \alpha \in \mathbb{N}^n, \ |\alpha| \leq m,$$

where k is the unique integer such that $x - y \in B_{k+1} \setminus B_k$. Here \widetilde{K} is defined by

 $\widetilde{K}(x, y) = K(x - A^k y), \quad x, y \in \mathbb{R}^n, \ x - y \in B_{k+1} \setminus B_k.$

As it can be seen in [4, p. 61] this property reduces to the usual condition in the isotropic setting.

In order to prove Theorem 1.7 we need to consider weighted finite atomic anisotropic Hardy spaces as follows.

Let $p, q \in \mathbb{P}_0, r > 1, s \in \mathbb{N}, p_0 \in (0, 1)$ and $v \in \mathcal{A}_1(\mathbb{R}^n, A)$. The space

$$H_{p_0,v,fin}^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n,A)$$

consists of all finite sums of multiple of $(p(\cdot), q(\cdot), r, s)$ -atoms and it is endowed with the norm $\|\cdot\|_{H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n, A)}$ defined as follows: for every

$$f \in H^{p(\cdot),q(\cdot),r,s}_{p_0,v,fin}(\mathbb{R}^n,A),$$

 $\|f\|_{H^{p(\cdot),q(\cdot),r,s}_{p_0,v,fin}(\mathbb{R}^n,A)}$

$$= \inf \left\{ \left\| \sum_{j=1}^{k} \lambda_{j}^{p_{0}} \| \chi_{x_{j}+B_{\ell_{j}}} \|_{p(\cdot),q(\cdot)}^{-p_{0}} \chi_{x_{j}+B_{\ell_{j}}} \right\|_{L^{1}(\mathbb{R}^{n},\nu)}^{1/p_{0}} : f = \sum_{j=1}^{k} \lambda_{j}a_{j} \right\},$$

where the infimum, as usual, is taken over all the possible finite decompositions. Note that according to Proposition 4.2, if $\max\{1, q_+\} < r < \infty$ and $s \ge s_0$, being s_0 the same as in Proposition 4.2, then $H_{p_0,v,fin}^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n, A) = H_{fin}^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n, A)$ as sets.

The following property will be useful in the sequel.

Anisotropic Hardy-Lorentz Spaces with Variable Exponents 1____ 2____ *Lemma* 6.2 Let $p, q \in \mathbb{P}_0$, $\max\{1, q_+\} < r < \infty$ and $s \in \mathbb{N}$. There exists $s_0 \in \mathbb{N}$ such 3___ that if $s \ge s_0$, $p_0 < \min\{p_-, q_-\}$ and $v \in \mathcal{A}_1(\mathbb{R}^n, A) \cap \mathcal{L}^{(p(\cdot)/p_0)', (q(\cdot)/p_0)'}(\mathbb{R}^n)$ we 4___ can find C > 0 such that, for every $f \in H^{p(\cdot),q(\cdot),r,s}_{p_0,v,fin}(\mathbb{R}^n, A)$, 5____ 6___ $\|f\|_{H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n,A)} \leq C \|f\|_{H^{p_0}(\mathbb{R}^n,\nu,A)}.$ 7____ 8____ 9___ Proof The proof of this property follows the same ideas as in the proof of Theorem 1.6. Let s_0 be as in Proposition 4.2 and let $f \in H^{p(\cdot),q(\cdot),r,s}_{p_0,v,fin}(\mathbb{R}^n, A)$, with $s \ge s_0$. 10____ 11 Then $f \in H_{\text{fin}}^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n, A)$ and there exists $m_0 \in \mathbb{Z}$ such that $\sup f \subset B_{m_0}$. Also, $f \in L^r(\mathbb{R}^n)$ and, as we proved in (5.1), $M_N(f)(x) \leq C_1 \|\chi_{B_{m_0}}\|_{p(\cdot),q(\cdot)}^{-1}$ when 12___ 13___ $x \in (B_{m_0+4\omega})^c$. 14___ Assume that $||f||_{H^{p_0}(\mathbb{R}^n, \nu, A)} = 1$. Our objective is to see that 15___ 16____ $\|f\|_{H^{p(\cdot),q(\cdot),r,s}(\mathbb{R}^n,A)} \leq C,$ 17___ 18___ for some C > 0 that does not depend on f. 19 A careful reading of the proof of [6, Lemma 5.4] allows us to see that there exist a 20____ sequence $\{x_{i,k}\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathbb{R}^n$, a sequence $\{\ell_{i,k}\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathbb{Z}$, and a bounded sequence 21____ $\{b_{i,k}\}_{i\in\mathbb{N},k\in\mathbb{Z}}$ such that 22___ (i) $f = \sum_{k \in \mathbb{Z}} \left(\sum_{i \in \mathbb{N}} 2^k b_{i,k} \right),$ 23 24___ where the convergence is unconditional in $S'(\mathbb{R}^n)$ and almost everywhere of \mathbb{R}^n ; 25 for a certain $s_1 \in \mathbb{N}$, $\int_{\mathbb{R}^n} b_{i,k}(x) x^{\alpha} dx = 0$, $\alpha \in \mathbb{N}^n$ and $|\alpha| \leq s_1$; (ii) 26____ (iii) $\operatorname{supp}(b_{i,k}) \subset x_{i,k} + B_{\ell_{i,k}+4\omega}, k \in \mathbb{Z} \text{ and } i \in \mathbb{N};$ 27 (iv) $\Omega_k \coloneqq \{x \in \mathbb{R}^n : M_N(f)(x) > 2^k\} = \bigcup_{i \in \mathbb{N}} (x_{i,k} + B_{\ell_{i,k} + 4\omega}), k \in \mathbb{Z};$ 28 (v) there exists $L \in \mathbb{N}$ for which $\sharp \{j \in \mathbb{N} : (x_{i,k} + B_{\ell_{i,k}+2\omega}) \cap (x_{j,k} + B_{\ell_{j,k}+2\omega}) \neq \emptyset \} \leq L$, 29___ $i \in \mathbb{N}$ and $k \in \mathbb{Z}$. 30___ We define, for every $k \in \mathbb{Z}$ and $i \in \mathbb{N}$, 31___ 32____ $\lambda_{i,k} = 2^k \| \chi_{x_{i,k}+B_{\ell_{i,k}}} \|_{p(\cdot),q(\cdot)} \quad \text{and} \quad a_{i,k} = b_{i,k} \| \chi_{x_{i,k}+B_{\ell_{i,k}}} \|_{p(\cdot),q(\cdot)}^{-1}.$ 33___ 34___ There exists $C_0 > 0$ such that $C_0 a_{i,k}$ is a $(p(\cdot), q(\cdot), \infty, s_1)$ -atom, for every $k \in \mathbb{Z}$ 35___ and $i \in \mathbb{N}$. 36___ We have that 37___ $\sum_{i\in\mathbb{N}}\lambda_{i,k}^{p_0}\frac{\chi_{x_{i,k}+B_{\ell_{i,k}}}(x)}{\|\chi_{x_{i,k}+B_{\ell_{i,k}}}\|_{p_0^{\ell_{i,k}}}^{p_0}} \leq C2^{kp_0}\chi_{\Omega_k}(x), \quad k\in\mathbb{Z} \text{ and } x\in\mathbb{R}^n.$ 38____ 39___ 40___ Then 41___ 42____ $\left\|\sum_{k\in\mathbb{Z}}\sum_{i\in\mathbb{N}}\lambda_{i,k}^{p_0}\frac{\chi_{x_{i,k}+B_{\ell_{i,k}}}}{\|\chi_{x_{i,k}+B_{\ell_{i,k}}}\|_{p(\cdot),q(\cdot)}^{p_0}}\right\|_{L^1(\mathbb{R}^n,\nu)}$ 43___ 44___ $\leq C \Big\| \sum_{n \neq \infty} 2^{k p_0} \chi_{\Omega_k} \Big\|_{L^1(\mathbb{R}^n, \nu)} \leq C \| M_N(f)^{p_0} \|_{L^1(\mathbb{R}^n, \nu)}$ 45___ 46___ $= C \|M_N(f)\|_{L^{p_0}(\mathbb{R}^n, y)}^{p_0} = C \|f\|_{H^{p_0}(\mathbb{R}^n, y, A)}^{p_0}.$ 47___ 48___

Page 1260 Sheet 42 of

1260

1____

2____

3___

4___ 5___ 6___

7___

8____

9___

10____

11___

12___ 13___ 14___

15___

28___

29___ 30___ 31___

32___ 33___

34<u></u> 35_

36___

37___

38___

39___

40

41___ 42___ 43___

44___ 45___ 46___ 47___

48___

 \oplus

V. Almeida, J. J	. Betancor, and	L. Rodríguez-Mesa
------------------	-----------------	-------------------

We now choose $k_0 \in \mathbb{Z}$ such that $2^{k_0} \leq \|\chi_{B_{m_0}}\|_{p(\cdot),q(\cdot)}^{-1}$. We define, as in the proof of Theorem 1.6,

$$h = \sum_{k \le k_0} \sum_{i \in \mathbb{N}} \lambda_{i,k} a_{i,k} \text{ and } \mathfrak{l} = \sum_{k > k_0} \sum_{i \in \mathbb{N}} \lambda_{i,k} a_{i,k},$$

where the convergence of the two series is unconditional in $S'(\mathbb{R}^n)$ and almost everywhere of \mathbb{R}^n . We have that:

(i) There exists $C_1 > 0$ independent of f such that h/C_1 is a $(p(\cdot), q(\cdot), \infty, s_1)$ -atom;

(ii) By defining, for every $J \in \mathbb{N}$, F_J and l_J as in the proof of Theorem 1.6, there exists $J_1 \in \mathbb{N}$ such that $l - l_{J_1}$ is a $(p(\cdot), q(\cdot), r, s_1)$ -atom;

(iii)
$$f = C_1 \frac{n}{C_1} + (\mathfrak{l} - \mathfrak{l}_{J_1}) + \mathfrak{l}_{J_1}.$$

Then for $s \ge \max\{s_0, s_1\}$, we can write

$$\begin{split} \|f\|_{H^{p(\cdot),q(\cdot),r,s}_{p_{0},v,fin}} &\|f\|_{H^{p(\cdot),q(\cdot),r,s}_{p_{0},v,fin}} \\ &\leq \left\|C_{1}^{p_{0}} \frac{\chi_{B_{m_{0}}}}{\|\chi_{B_{m_{0}}}\|_{p(\cdot),q(\cdot)}^{p_{0}}} + \frac{\chi_{B_{m_{0}}}}{\|\chi_{B_{m_{0}}}\|_{p(\cdot),q(\cdot)}^{p_{0}}} \\ &+ \sum_{(i,k)\in F_{l_{1}}} \lambda^{p_{0}}_{i,k} \frac{\chi_{x_{i,k}+B_{\ell_{i,k}+4\omega}}}{\|\chi_{x_{i,k}+B_{\ell_{i,k}+4\omega}}\|_{p(\cdot),q(\cdot)}^{p_{0}}}\right\|_{L^{1}(\mathbb{R}^{n},v)} \\ &\leq C\Big(1 + \frac{\nu(B_{m_{0}})}{\|\chi_{B_{m_{0}}}\|_{p(\cdot),q(\cdot)}^{p_{0}}}\Big) = C\Big(1 + \frac{\nu(B_{m_{0}})}{\|\chi_{B_{m_{0}}}\|_{p(\cdot)/p_{0},q(\cdot)/p_{0}}}\Big) \\ &\leq C\Big(1 + \|v\|_{(p(\cdot)/p_{0})',(q(\cdot)/p_{0})'}\Big). \end{split}$$

The last inequality follows, because $\mathcal{L}^{(p(\cdot)/p_0)',(q(\cdot)/p_0)'} = (\mathcal{L}^{p(\cdot)/p_0,q(\cdot)/p_0})'$ (see [24]), since $p_0 < \min\{p_-, q_-\}$, and then

$$v(B_{m_0}) = \int_{\mathbb{R}^n} \chi_{B_{m_0}}(x) v(x) dx \le \|\chi_{B_{m_0}}\|_{p(\cdot)/p_0,q(\cdot)/p_0} \|v\|_{(p(\cdot)/p_0)',(q(\cdot)/p_0)'}$$

Hence, $\|f\|_{H^{p(\cdot),q(\cdot),r,s}_{p_0,v,fin}(\mathbb{R}^n,A)} \leq C$, where *C* does not depend on *f*.

We now prove a general boundedness result for sublinear operators.

Proposition 6.3 Assume that $p, q \in \mathbb{P}_0$, p(0) < q(0), $0 < p_0 < \min\{p_-, q_-, 1\}$, $\max\{1, q_+, \} < r$, and $s \in \mathbb{N}$. There exist $s_0 \in \mathbb{N}$ and $r_0 > 1$ such that if $s \ge s_0$, $r > r_0$ and T is a sublinear operator defined on span $\{a : a \text{ is } a (p(\cdot), q(\cdot), r, s)\text{-atom}\}$, then the following hold.

(i) *T* has a (unique) extension on $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ as a bounded operator from $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ into $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, provided that for each

$$v \in \mathcal{A}_1(\mathbb{R}^n, A) \cap RH_{(r/p_0)'}(\mathbb{R}^n, A)$$

there exists $C = C([v]_{\mathcal{A}_1(\mathbb{R}^n,A)}, [v]_{RH_{(r/P_0)'}(\mathbb{R}^n,A)}) > 0$ such that

$$||Ta||_{L^{p_0}(\mathbb{R}^n,\nu)} \leq C \frac{\nu(x_0 + B_{\ell_0})^{1/p_0}}{||\chi_{x_0 + B_{\ell_0}}||_{p(\cdot),q(\cdot)}}$$

for every $(p(\cdot), q(\cdot), r/p_0, s)$ -atom a associated with $x_0 \in \mathbb{R}^n$ and $\ell_0 \in \mathbb{Z}$.

1___

1261

2____ 3___ 4___ 5____ 6___ 7___ 8____ 9___ 10____ 11 12_ 13___ 14___ 15___ 16____ 17___ 18___ 19___ 20____ 21___ 22___ 23 24___ 25____ 26____ 27___ 28___ 29___ 30___ 31___ 32____ 33___ 34 35___ 36___ 37___ 38____ 39___ 40___ 41____ 42____ 43___ 44___ 45___ 46___ 47___

Anisotropic Hardy–Lorentz Spaces with Variable Exponents

(ii) *T* has a (unique) extension on $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ as a bounded operator from $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ into itself, provided that for each $v \in \mathcal{A}_1(\mathbb{R}^n, A) \cap RH_{(r/p_0)'}(\mathbb{R}^n, A)$ there exists $C = C([v]_{\mathcal{A}_1(\mathbb{R}^n, A)}, [v]_{RH_{(r/p_0)'}(\mathbb{R}^n, A)}) > 0$ such that

$$\|Ta\|_{H^{p_0}(\mathbb{R}^n,\nu,A)} \le C \frac{\nu(x_0 + B_{\ell_0})^{1/p_0}}{\|\chi_{x_0 + B_{\ell_0}}\|_{p(\cdot),q(\cdot)}}$$

for every $(p(\cdot), q(\cdot), r/p_0, s)$ -atom a associated with $x_0 \in \mathbb{R}^n$ and $\ell_0 \in \mathbb{Z}$.

Proof (i) Suppose that for every $v \in A_1(\mathbb{R}^n, A) \cap RH_{(r/p_0)'}(\mathbb{R}^n, A)$ there exists C > 0 such that, for every $(p(\cdot), q(\cdot), r/p_0, s)$ -atom *a* associated with $x_0 \in \mathbb{R}^n$ and $\ell_0 \in \mathbb{Z}$,

(6.3)
$$||Ta||_{L^{p_0}(\mathbb{R}^n,\nu)} \leq C \frac{\nu(x_0 + B_{\ell_0})^{1/p_0}}{||\chi_{x_0 + B_{\ell_0}}||_{p(\cdot),q(\cdot)}}$$

Here, *C* can depend on $[v]_{\mathcal{A}_1(\mathbb{R}^n, A)}$ and $[v]_{RH_{(r/p_0)'}(\mathbb{R}^n, A)}$.

The set $H_{\text{fin}}^{p(\cdot),q(\cdot),r/p_0,s}(\mathbb{R}^n, A)$ is dense in $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ (see Theorem 1.6). Hence, in order to see that there exists an extension \widetilde{T} of T to $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ as a bounded operator from $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n, A)$ into $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, it is sufficient to prove that, there exists C > 0 such that

$$||T(f)||_{p(\cdot),q(\cdot)} \le C ||f||_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}, \quad f \in H^{p(\cdot),q(\cdot),r/p_{0},s}(\mathbb{R}^{n},A)$$

Let $f \in H_{\text{fin}}^{p(\cdot),q(\cdot),r/p_0,s}(\mathbb{R}^n, A)$. As in the proof of Proposition 4.3, Rubio de Francia's iteration algorithm allows us to write,

$$\|T(f)\|_{p(\cdot),q(\cdot)}^{p_0} = \|(Tf)^{p_0}\|_{p(\cdot)/p_0,q(\cdot)/p_0} \le \sup \int_{\mathbb{R}^n} |Tf(x)|^{p_0} Rh(x) dx,$$

where the supremum is taken over all the functions $h \in \mathcal{L}^{(p(\cdot)/p_0)',(q(\cdot)/p_0)'}(\mathbb{R}^n)$ such that $||h||_{(p(\cdot)/p_0)',(q(\cdot)/p_0)'} \leq 1$. Also, there exists $r_1 > 1$ such that if $r > r_1$, we can find C > 0 such that for every $h \in \mathcal{L}^{(p(\cdot)/p_0)',(q(\cdot)/p_0)'}(\mathbb{R}^n)$,

$$Rh \in \mathcal{A}_1(\mathbb{R}^n, A) \cap RH_{(r/p_0)'}(\mathbb{R}^n, A) \quad \text{and} \quad [Rh]_{\mathcal{A}_1(\mathbb{R}^n, A)} + [Rh]_{RH_{(r/p_0)'}(\mathbb{R}^n, A)} \leq C.$$

Let $h \in \mathcal{L}^{(p(\cdot)/p_0)',(q(\cdot)/p_0)'}(\mathbb{R}^n)$ such that $||h||_{(p(\cdot)/p_0)',(q(\cdot)/p_0)'} \leq 1$. We are going to estimate $||T(f)||_{L^{p_0}(\mathbb{R}^n,Rh)}$. As it was mentioned above

$$H_{\text{fin}}^{p(\cdot),q(\cdot),r/p_{0},s}(\mathbb{R}^{n},A) = H_{p_{0},Rh,fin}^{p(\cdot),q(\cdot),r/p_{0},s}(\mathbb{R}^{n},A).$$

We write $f = \sum_{j=1}^{k} \lambda_j a_j$, where for every $j \in \mathbb{N}$, $j \leq k$, $\lambda_j > 0$ and a_j is a $(p(\cdot), q(\cdot), r/p_0, s)$ -atom associated with $x_j \in \mathbb{R}^n$ and $\ell_j \in \mathbb{Z}$. Since $0 < p_0 < 1$

48____

Page 1262 Sheet 44 of

1262 V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa 1___ 2____ and T is sublinear, from (6.3) we deduce that 3___ 4___ $\|T(f)\|_{L^{p_0}(\mathbb{R}^n,Rh)}^{p_0} = \int_{\mathbb{R}^n} |T(f)(x)|^{p_0} Rh(x) dx \le \sum_{i=1}^k \lambda_j^{p_0} \int_{\mathbb{R}^n} |Ta_j(x)|^{p_0} Rh(x) dx$ 5____ 6____ $\leq C \sum_{j=1}^{k} \lambda_{j}^{p_{0}} \frac{Rh(x_{j} + B_{\ell_{j}})}{\|\chi_{x_{j} + B_{\ell_{j}}}\|_{p(\cdot), q(\cdot)}^{p_{0}}}$ 7____ 8____ 9____ $= C \bigg\| \sum_{j=1}^{k} \lambda_{j}^{p_{0}} \frac{\chi_{x_{j}+B_{\ell_{j}}}}{\|\chi_{x_{j}+B_{\ell_{i}}}\|_{p(\cdot),q(\cdot)}^{p_{0}}} \bigg\|_{L^{1}(\mathbb{R}^{n},Rh)}.$ 10____ 11 12_{-} As established in the proof of Proposition 4 13___ $Rh \in \mathcal{A}_1(\mathbb{R}^n, A) \cap \mathcal{L}^{(p(\cdot)/p_0)', (q(\cdot)/p_0)'}(\mathbb{R}^n).$ 14___ 15___ According to Lemma 6.2, the arbitrariness of the representation of f leads to 16____ $||T(f)||_{L^{p_0}(\mathbb{R}^n,Rh)} \leq C ||f||_{H^{p_0}(\mathbb{R}^n,Rh,A)}.$ 17___ Since *R* is bounded from $\mathcal{L}^{(p(\cdot)/p_0)',(q(\cdot)/p_0)'}(\mathbb{R}^n)$ into itself, we can write 18___ 19___ $\|T(f)\|_{L^{p_0}(\mathbb{R}^n,Rh)}$ 20____ $\leq C \|f\|_{H^{p_0}(\mathbb{R}^n, Rh, A)} \leq C \int_{\mathbb{R}^n} (M_N(f)(x))^{p_0} Rh(x) dx$ 21___ 22___ $\leq C \| (M_N(f))^{p_0} \|_{p(\cdot)/p_0,q(\cdot)/p_0} \| Rh \|_{(p(\cdot)/p_0)',(q(\cdot)/p_0)'}$ 23 $\leq C \| (M_N(f))^{p_0} \|_{p(\cdot)/p_0,q(\cdot)/p_0} = C \| M_N(f) \|_{p(\cdot),q(\cdot)}^{p_0} = C \| f \|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^n,A)}^{p_0},$ 24___ 25___ provided that $h \in \mathcal{L}^{(p(\cdot)/p_0)',(q(\cdot)/p_0)'}(\mathbb{R}^n)$ and $\|h\|_{(p(\cdot)/p_0)',(q(\cdot)/p_0)'} \leq 1$. 26____ We conclude that 27 28___ $||T(f)||_{p(\cdot),q(\cdot)} \leq C ||f||_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)},$ 29___ and the proof of (i) is finished. 30___ (ii) We proceed in a similar way as in the proof of (i). Assume that $\varphi \in S(\mathbb{R}^n)$ 31___ such that $\int \varphi dx \neq 0$. Let $f \in H_{\text{fin}}^{p(\cdot),q(\cdot),r/p_0,s}(\mathbb{R}^n, A)$, with $s \geq s_0$, and s_0 as before. 32___ We have that 33___ $\|T(f)\|_{H^{p(\cdot),q(\cdot)}(\mathbb{R}^{n},A)}^{p_{0}} \leq C \|M_{\varphi}^{0}(Tf)\|_{p(\cdot),q(\cdot)}^{p_{0}} = C \|(M_{\varphi}^{0}(Tf))^{p_{0}}\|_{p(\cdot)/p_{0},q(\cdot)/p_{0}}$ 34 35___ $\leq C \sup \int_{\mathbb{T}^n} (M^0_{\varphi}(Tf)(x))^{p_0} Rh(x) dx$ 36___ 37___ $\leq C \sup \|T(f)\|_{H^{p_0}(\mathbb{R}^n, Bh, A)}^{p_0},$ 38____ 39___ where the supremum is taken over all the functions $h \in \mathcal{L}^{(p(\cdot)/p_0)',(q(\cdot)/p_0)'}(\mathbb{R}^n)$ 40___ such that $||h||_{(p(\cdot)/p_0)', (q(\cdot)/p_0)'} \leq 1$. 41____ We now finish the proof in the same way as (i) provided that, for every $v \in$ 42____ $\mathcal{A}_1(\mathbb{R}^n, A) \cap RH_{(r/p_0)'}(\mathbb{R}^n, A)$ there exists C > 0 such that 43___ $\|Ta\|_{H^{p_0}(\mathbb{R}^n,\nu,A)} \le C \frac{\nu(x_j + B_{\ell_j})^{1/p_0}}{\|\chi_{x_i + B_{\ell_j}}\|_{p(\cdot),q(\cdot)}}$ 44___ 45___ 46___ for every $(p(\cdot), q(\cdot), r/p_0, s)$ -atom *a* associated with $x_j \in \mathbb{R}^n$ and $\ell_j \in \mathbb{Z}$. Here, the 47___

constant *C* can depend on $[v]_{\mathcal{A}_1(\mathbb{R}^n,A)}$ and $[v]_{RH_{(r/p_0)'}(\mathbb{R}^n,A)}$.

48___

 \oplus

Đ

Æ

Anisotropic Hardy-Lorentz Spaces with Variable Exponents 1263 1___ 2___ We now prove Theorem 1.7 by applying the criteria established in Proposition 6.3. 3___ 4___ **Proof of Theorem 1.7(i)** Assume that *a* is a $(p(\cdot), q(\cdot), r/p_0, s)$ -atom associated 5____ with $x_0 \in \mathbb{R}^n$ and $\ell_0 \in \mathbb{Z}$, and $v \in \mathcal{A}_1(\mathbb{R}^n, A) \cap RH_{(r/p_0)'}(\mathbb{R}^n, A)$. Here, p_0, r , and s 6___ are as in Proposition 6.3. We can write 7___ $\|Ta\|_{L^{p_0}(\mathbb{R}^n,v)}^{p_0} = \int_{x_0+B_{\ell_0+w}} |T(a)(x)|^{p_0}v(x)dx + \int_{(x_0+B_{\ell_0+w})^c} |T(a)(x)|^{p_0}v(x)dx$ 8___ 9___ $= I_1 + I$ 10____ According to Proposition 6.1 there exits C > 0 such that 11 12___ $I_1 \le C v (x_0 + B_{\ell_0 + w})^{1 - p_0} \Big(\int_{\mathbb{R}^n} |a(x)| v(x) dx \Big)^{p_0}$ 13___ 14___ $\leq C v (x_0 + B_{\ell_0})^{1-p_0} |B_{\ell_0}|^{p_0}$ 15___ $\times \left[\left(\frac{1}{|B_{\ell_0}|} \int_{x_0+B_{\ell_0}} |a(x)|^{r/p_0} dx \right)^{p_0/r} \left(\frac{1}{|B_{\ell_0}|} \int_{x_0+B_{\ell_0}} v(x)^{(r/p_0)'} dx \right)^{1/(r/p_0)'} \right]^{p_0}.$ 16___ 17___ 18___ We have used that *v* is a doubling measure. 19___ Taking into account that *a* is a $(p(\cdot), q(\cdot), r/p_0, s)$ -atom and $v \in RH_{(r/p_0)'}(\mathbb{R}^n, A)$, 20____ we obtain 21___ $I_{1} \leq C \nu (x_{0} + B_{\ell_{0}+w})^{1-p_{0}} |B_{\ell_{0}}|^{p_{0}} \Big(\frac{1}{\|Y_{x_{0}+B_{\ell}}\|_{p(\cdot),q(\cdot)} |B_{\ell_{0}}|} \int_{x_{0}+B_{\ell_{0}}} \nu(x) dx \Big)^{p_{0}}$ 22___ 23 $\leq C \frac{\nu(x_0 + B_{\ell_0})}{\|\chi_{x_0 + B_{\ell_0}}\|_{p(\cdot), q(\cdot)}^{p_0}}$ 24___ 25___ 26___ Note that $C = C([\nu]_{A_1(\mathbb{R}^n, A)}, [\nu]_{RH_{(r/p_0)'}(\mathbb{R}^n, A)}).$ 27 Since a is a $(p(\cdot), q(\cdot), r/p_0, s)$ -atom associated with $x_0 \in \mathbb{R}^n$ and $\ell_0 \in \mathbb{Z}$, by 28 using the condition (6.2) and by proceeding as in [4, pp. 64–65] we deduce that for 29___ every $x \in (x_0 + B_{\ell_0+w+\ell+1}) \setminus (x_0 + B_{\ell_0+w+\ell})$, with $\ell \in \mathbb{N}$, 30___ $|Ta(x)| \le Cb^{-\ell_0-\ell} \sup_{z\in B_{-\ell}} |z|^m \int_{x_0+B_{\ell_0}} |a(y)| dy$ 31___ 32____ 33___ $\leq Cb^{-\ell_0-\ell} (\lambda_{-}^{-\ell})^m |B_{\ell_0}|^{1/(r/p_0)'} ||a||_{r/p_0}$ 34___ $\leq Cb^{-\ell_0}b^{-\ell(\delta+1)}b^{\ell_0/(r/p_0)'}\|a\|_{r/p_0}$ 35___ 36___ $\leq Cb^{-\ell_0 p_0/r} (\rho(x-x_0)b^{-\ell_0-w})^{-(\delta+1)} \|a\|_{r/p_0},$ 37___ 38___ where $\delta = m \ln \lambda_{-} / \ln b$. 39___ Then $\begin{aligned} |Ta(x)| &\leq C \frac{b^{\ell_0(\delta+1)}}{\rho(x-x_0)^{\delta+1}} b^{-\ell_0 p_0/r} \frac{|B_{\ell_0}|^{p_0/r}}{\|\chi_{x_0+B_{\ell_0}}\|_{p(\cdot),q(\cdot)}} \\ &= C \frac{|B_{\ell_0}|^{\delta+1}}{\rho(x-x_0)^{\delta+1} \|\chi_{x_0+B_{\ell_0}}\|_{p(\cdot),q(\cdot)}}, \quad x \notin x_0 + B_{\ell_0+w}. \end{aligned}$ 40___ 41___ 42 43___ 44___ 45___ Thus, 46___ $I_{2} \leq C \frac{|B_{\ell_{0}}|^{p_{0}(\delta+1)}}{\|\chi_{x_{0}+B_{\ell_{0}}}\|_{p_{0}(\delta+1)}^{p_{0}}} \int_{(x_{0}+B_{\ell_{0}+w})^{c}} \frac{\nu(x)}{\rho(x-x_{0})^{p_{0}(\delta+1)}} dx.$ 47___ 48___

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Since

1___ 2___

3___ 4___ 5___ 6___ 7___

8___ 9___ 10___ 11___ 12___ 13___ 14___ 15___ 16___ 17___ 18___ 19___ 20____ 21___ 22___ 23___ 24___

25___

26___

27___ 28___ 29___ 30___

31___

32___ 33___ 34___ 35___

36___ 37___

38___ 39___

40___

41___

42___

43___

44___ 45___ 46___

47___ 48___

 \oplus

$$(x_0 + B_{\ell_0 + w})^c = \bigcup_{i=0}^{\infty} (x_0 + B_{\ell_0 + w + i + 1}) \setminus (x_0 + B_{\ell_0 + w + i}),$$
$$b^{\ell_0 + w + i} \le \rho(x - x_0) \le b^{\ell_0 + w + i + 1},$$

for every $x \in (x_0 + B_{\ell_0+w+i+1}) \setminus (x_0 + B_{\ell_0+w+i}), i \in \mathbb{N}$, we have that

$$\begin{split} &\int_{(x_0+B_{\ell_0+w})^c} \frac{v(x)}{\rho(x-x_0)^{p_0(\delta+1)}} dx \\ &= \sum_{i=0}^{\infty} \int_{(x_0+B_{\ell_0+w+i+1})\smallsetminus (x_0+B_{\ell_0+w+i})} \frac{v(x)}{\rho(x-x_0)^{p_0(\delta+1)}} dx \\ &\leq \sum_{i=0}^{\infty} b^{-(\ell_0+w+i)p_0(\delta+1)} \int_{x_0+B_{\ell_0+w+i+1}} v(x) dx \\ &\leq [v]_{A_1(\mathbb{R}^n,A)} \sum_{i=0}^{\infty} b^{-(\ell_0+w+i)p_0(\delta+1)} |B_{\ell_0+w+i+1}| \underset{x\in x_0+B_{\ell_0}+w+i+1}{\operatorname{ess\,inf}} v(x) \\ &\leq b[v]_{A_1(\mathbb{R}^n,A)} \sum_{i=0}^{\infty} b^{-(\ell_0+w+i)(p_0(\delta+1)-1)} \underset{x\in x_0+B_{\ell_0}}{\operatorname{ess\,inf}} v(x) \\ &\leq b[v]_{A_1(\mathbb{R}^n,A)} \frac{1}{|B_{\ell_0}|} \int_{x_0+B_{\ell_0}} v(z) dz \sum_{i=0}^{\infty} b^{-i(p_0(\delta+1)-1)} b^{-(\ell_0+w)(p_0(\delta+1)-1)} \\ &= b[v]_{A_1(\mathbb{R}^n,A)} \frac{1}{b^{\ell_0}} \frac{b^{-(\ell_0+w)(p_0(\delta+1)-1)}}{1-b^{-p_0(\delta+1)+1}} v(x_0+B_{\ell_0}). \end{split}$$

Note that $p_0 > 1/(\delta + 1)$.

We get

$$I_{2} \leq C[\nu]_{A_{1}(\mathbb{R}^{n},A)} \frac{\nu(x_{0} + B_{\ell_{0}})}{\|\chi_{x_{0} + B_{\ell_{0}}}\|_{p(\cdot),q(\cdot)}^{p_{0}}}$$

where C does not depend on v.

Hence, for a certain $C = C([v]_{A_1(\mathbb{R}^n, A)}, [v]_{RH_{(1/p_0)'}(\mathbb{R}^n, A)}),$

$$\|Ta\|_{L^{p_0}(\mathbb{R}^n,\nu)}^{p_0} \le C \frac{\nu(x_0 + B_{\ell_0})}{\|\chi_{x_0 + B_{\ell_0}}\|_{p(\cdot),q(\cdot)}^{p_0}}$$

We complete the proof by applying Proposition 6.3(i).

Before proving Theorem 1.7(ii), we establish the following auxiliary result.

Lemma 6.4 Let $\phi \in S(\mathbb{R}^n)$ such that $\sup \phi \subset B_0$ and $\int \phi(x) dx \neq 0$. Assume that $L \in S'(\mathbb{R}^n)$ and that T_L is a Calderón–Zygmund singular integral of order m. Then for every $\ell \in \mathbb{Z}$, the operator $S_{(\ell)} = T_{\phi_\ell} \circ T_L$ is a Calderón–Zygmund singular integral of order m. Moreover, if $S_{(\ell)}$ is associated with the kernel K_ℓ , there exists C > 0 such that

$$\sup_{\ell\in\mathbb{N}}\left\{\|\widehat{S_{(\ell)}}\|_{\infty}, C_{K_{\ell}}, C_{K_{\ell},m}\right\} \leq C.$$

Proof Let $\ell \in \mathbb{Z}$. For every $\psi \in S(\mathbb{R}^n)$ we have that

$$S_{(\ell)}(\psi) = T_{\phi_{\ell}}(T_L(\psi)) = \phi_{\ell} * (L * \psi) = (L * \phi_{\ell}) * \psi.$$

1____ 2____

3___

4___

5___ 6___

7___ 8___

9___

10____

11___ 12___ 13___

14___

15___

16___ 17___ 18___ 19___

20____

21____

22___ 23___ 24___ 25___ 26___ 27___ 28___

29___ 30___ 31___

32___

33___

34___

35___

36___ 37___

38___ 39___ 40___

41___

42____ 43___ 44___ 45___

46___ 47___ 48___

 \oplus

for every $\psi \in S(\mathbb{R}^n)$,

 $L_k \in S'(\mathbb{R}^n)$ as follows:

Anisotropic Hardy–Lorentz Spaces with Variable Exponents Hence, $S_{(\ell)} = T_{L*\phi_{\ell}}$. Since $|\widehat{\phi_{\ell}}| \le \|\phi\|_1$, the interchange formula leads to $\|\widehat{S_{(\ell)}}\|_{\infty} =$ $\|\widehat{L}\widehat{\phi_{\ell}}\|_{\infty} \leq \|\widehat{L}\|_{\infty} \|\phi\|_{1}$. According to [53, p. 248], $L * \phi_{\ell}$ is a multiplier for $S(\mathbb{R}^{n})$ and, $S_{(\ell)}(\psi)(x) = \int_{\mathbb{D}^n} (L * \phi_{\ell})(x - y)\psi(y)dy, \quad x \in \mathbb{R}^n.$ Note that this integral is absolutely convergent for every $x \in \mathbb{R}^n$. Then $S_{(\ell)}$ is associated with the kernel $L * \phi_{\ell}$ which is in $C^{\infty}(\mathbb{R}^n)$. We define, for every $k \in \mathbb{Z}$,

$$\langle L_k, \psi \rangle = \langle L, \psi(A^k \cdot) \rangle, \quad \psi \in \mathcal{S}(\mathbb{R}^n).$$

It is not hard to see that, for every $k \in \mathbb{Z}$, $(L * \phi_{\ell})_k = L_k * \phi_{\ell+k}$. Then $(L * \phi_{\ell})_{-\ell} =$ $L_{-\ell} * \phi.$

Suppose that T_L is associated with the kernel *K*, that is, for every $\psi \in S(\mathbb{R}^n)$,

$$(L*\psi)(x) = \int_{\mathbb{R}^n} K(x-y)\psi(y)dy, \quad x \notin \operatorname{supp} \psi,$$

and K satisfies (ii) and (iii) after (6.1).

Let $k \in \mathbb{Z}$ and $\psi \in S(\mathbb{R}^n)$. We have that

$$(L_k * \psi)(x) = \langle L_k(y), \psi(x - y) \rangle = \langle L(y), \psi(x - A^k y) \rangle$$

= $\langle L(y), \psi(A^k(A^{-k}x - y)) \rangle$
= $(L * \psi(A^k \cdot))(A^{-k}x)$
= $\int_{\mathbb{R}^n} K(A^{-k}x - y)\psi(A^k y)dy, \quad A^{-k}x \notin \operatorname{supp} \psi(A^k \cdot).$

Then

$$(L_k * \psi)(x) = b^{-k} \int_{\mathbb{R}^n} K(A^{-k}(x-y))\psi(y)dy, \quad x \notin \operatorname{supp} \psi$$

We are going to see that there exists C > 0 that does not depend on ℓ such that:

(i) $|(L_{-\ell} * \phi)(x)| \leq C/\rho(x), x \in \mathbb{R}^n \setminus \{0\},\$ and, if $\delta = \min\{\gamma, \ln \lambda_{-} / \ln b\}$, (ii) $|(L_{-\ell} * \phi)(x - y) - (L_{-\ell} * \phi)(x)| \le C\rho(y)^{\delta}/(\rho(x))^{\delta+1}$, when $b^{2w}\rho(y) \le \rho(x)$.

First, we prove (i). We have that $L_{-\ell} * \phi \in L^2(\mathbb{R}^n)$ and $\widehat{L_{-\ell} * \phi} = \widehat{L_{-\ell} \phi} \in L^1(\mathbb{R}^n)$. Then we can write

$$(L_{-\ell} \star \phi)(x) = \int_{\mathbb{R}^n} e^{-2\pi i x \cdot y} \widehat{L_{-\ell}}(y) \widehat{\phi}(y) dy, \quad x \in \mathbb{R}^n.$$

Note that the two sides in the last equalities define smooth functions in \mathbb{R}^n . Since $\|\widehat{L}_{-\ell}\|_{\infty} = \|\widehat{L}\|_{\infty}$, we deduce that

$$|(L_{-\ell} \star \phi)(x)| \leq \|\widehat{L_{-\ell}}\|_{\infty} \int_{\mathbb{R}^n} |\widehat{\phi}(y)| dy, \quad x \in \mathbb{R}^n.$$

We obtain

$$|(L_{-\ell} \star \phi)(x)| \leq \frac{b^{1+w} \|\widehat{L_{-\ell}}\|_{\infty}}{\rho(x)} \int_{\mathbb{R}^n} |\widehat{\phi}(y)| dy, \quad x \in B_{1+w} \setminus \{0\}.$$

https://doi.org/10.4153 + 2016-053-6 Published online by Cambridge University Press

Page 1266 Sheet 48 of

1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___ 10___ 11___ 12___ 13___ 14___ 15___ 16___ 17___ 18___ 19___ 20____ 21___ 22___ 23___ 24___ 25___ 26___ 27___ 28___ 29___ 30___ 31___ 32____ 33___ 34___ 35___ 36___ 37___ 38___

39___ 40___

41___ 42___ 43___ 44___ 45___ 46___ 47___ 48___

 \oplus

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

On the other hand, since $\rho(x + y) \leq b^w(\rho(x) + \rho(y))$, $x, y \in \mathbb{R}^n$, we have that $\rho(x-y) \ge b^{-w}\rho(x) - \rho(y), x, y \in \mathbb{R}^n$. Then if $x \notin B_{1+w}$ and $y \in B_0$, it follows that $\rho(x-y) \ge b^{-w}\rho(x) - b^{-w-1}\rho(x) = b^{-w}(1-b^{-1})\rho(x)$. We can write

$$\begin{aligned} (L_{-\ell} * \phi)(x) &| \le b^{\ell} \int_{B_0} |K(A^{\ell}(x-y))| |\phi(y)| dy \le C_K b^{\ell} \int_{B_0} \frac{|\phi(y)|}{\rho(A^{\ell}(x-y))} dy \\ &\le C_K \int_{B_0} \frac{|\phi(y)|}{\rho(x-y)} dy \le \frac{C_K b^w}{(1-b^{-1})\rho(x)} \int_{B_0} |\phi(y)| dy, \quad x \notin B_{w+1}. \end{aligned}$$

We conclude that $|(L_{-\ell} * \phi)(x)| \le C/\rho(x), x \in \mathbb{R}^n \setminus \{0\}$, where C > 0 is independent of ℓ , and (i) is proved.

We now establish (ii). We can write

$$(L_{-\ell} * \phi)(x - y) - (L_{-\ell} * \phi)(x)$$

= $\int_{\mathbb{R}^n} \left(e^{-2\pi i (x - y) \cdot z} - e^{-2\pi i x \cdot z} \right) \widehat{L_{-\ell}}(z) \widehat{\phi}(z) dz, \quad x, y \in \mathbb{R}^n.$

The mean value theorem leads to

$$|(L_{-\ell} * \phi)(x - y) - (L_{-\ell} * \phi)(x)| \le C|y| \|\widehat{L}\|_{\infty} \int_{\mathbb{R}^n} |z| |\widehat{\phi}(z)| dz, \quad x, y \in \mathbb{R}^n.$$

According to [4, (3.3) p. 11], $|y| \le C\rho(y)^{\ln \lambda_- / \ln b}$, when $\rho(y) \le 1$. Also, by [4, (3.2) p. 11], we get

$$|y| \leq C\rho(y)^{\ln \lambda_+ / \ln b} \leq C\rho(y)^{\ln \lambda_- / \ln b}, \quad 1 \leq \rho(y) \leq b^{4w}.$$

Hence,

$$\begin{aligned} |(L_{-\ell} * \phi)(x - y) - (L_{-\ell} * \phi)(x)| &\leq C\rho(y)^{\ln \lambda_- / \ln b} \\ &\leq C \frac{\rho(y)^{\ln \lambda_- / \ln b}}{\rho(x)^{\ln \lambda_- / \ln b + 1}}, \quad b^{2w}\rho(y) \leq \rho(x) \leq b^{4w}. \end{aligned}$$

Assume that $\rho(x) \ge b^{4w}$ and $b^{2w}\rho(y) \le \rho(x)$. It is clear that $x \notin \text{supp } \phi$. Also, we have that $\rho(x - y) \ge b^{-w}\rho(x) - \rho(y) \ge b^{-w}\rho(x) - b^{-2w}\rho(x) \ge b^{3w} - b^{2w} \ge b$. Then $x - y \notin \operatorname{supp} \phi$. We can write

$$(L_{-\ell} \star \phi)(x-y) - (L_{-\ell} \star \phi)(x) = \int_{\mathbb{R}^n} (K_{-\ell}(x-y-z) - K_{-\ell}(x-z))\phi(z)dz,$$

where $K_{-\ell}(z) = b^{\ell} K(A^{\ell} z), z \in \mathbb{R}^n$.

Suppose that $\rho(y) \leq b^{-6w}\rho(x)$ and $z \in \operatorname{supp} \phi$. Since $\rho(z) \leq b^{-4w}\rho(x)$, we have that $\rho(x-z) \geq b^{-w}\rho(x) - \rho(z) \geq b^{-w}\rho(x) - b^{-4w}\rho(x) \geq b^{6w}(b^{-w} - b^{-4w})\rho(y) =$ $b^{2w}(b^{3w}-1)\rho(y) \ge b^{2w}\rho(y)$. We obtain

$$\begin{split} |(L_{-\ell} \star \phi)(x-y) - (L_{-\ell} \star \phi)(x)| &\leq \int_{B_0} |K_{-\ell}(x-y-z) - K_{-\ell}(x-z)| |\phi(z)| dz \\ &\leq C \int_{B_0} |\phi(z)| \frac{\rho(y)^{\gamma}}{\rho(x-z)^{\gamma+1}} dz \\ &\leq C \frac{\rho(y)^{\gamma}}{\rho(x)^{\gamma+1}} \int_{\mathbb{R}^n} |\phi(z)| dz. \end{split}$$

 \oplus

 \oplus

 \oplus

 \oplus

1	Anisotropic Hardy–Lorentz Spaces with Variable Exponents 1267	
2	Suppose now that $b^{2w}\rho(y) \le \rho(x) \le b^{6w}\rho(y)$. It follows that $\rho(x-y) \ge b^{-w}\rho(x)$ -	
3	Suppose now that $b = \rho(y) \le \rho(x) \le b = \rho(y)$. It follows that $\rho(x-y) \ge b = \rho(x) = \rho(y) \ge (b^{-w} - b^{-2w})\rho(x)$. From (i) we deduce	
4	$p(y) \ge (v - v) p(x)$. From (i) we deduce	
5 6	$ (L_{-\ell}\ast\phi)(x-y)-(L_{-\ell}\ast\phi)(x) \leq C\Big(\frac{1}{\rho(x-\gamma)}+\frac{1}{\rho(x)}\Big)\leq \frac{C}{\rho(x)}\leq C\frac{\rho(y)^{\gamma}}{\rho(x)^{\gamma+1}}.$	
0 <u> </u>		
8	We conclude that, if $\delta = \min\{\gamma, \ln \lambda / \ln b\}$,	
9	$ (L_{-\ell}\ast\phi)(x-y)-(L_{-\ell}\ast\phi)(x) \leq C\frac{\rho(y)^{\delta}}{\rho(x)^{\delta+1}}, b^{2w}\rho(y)\leq\rho(x),$	
10	$ (L_{-\ell} * \varphi)(x - y) - (L_{-\ell} * \varphi)(x) \le C \frac{1}{\rho(x)^{\delta+1}}, b = \rho(y) \le \rho(x),$	
11	where $C > 0$ does not depend on ℓ , and (ii) is proved.	
12	Since $L * \phi_{\ell} = (L_{-\ell} * \phi)_{\ell}$, from (i) and (ii) we infer that	
13	(i) $ (L * \phi_{\ell})(x) \leq C/\rho(x), x \in \mathbb{R}^n \setminus \{0\},$	
14		
15	and, if $\delta = \min\{\gamma, \ln \lambda_{-}/\ln b\},\$	
16	(ii') $ (L * \phi_\ell)(x - y) - (L * \phi_\ell)(x) \le C\rho(y)^{\delta}/(\rho(x))^{\delta+1}$, when $b^{2w}\rho(y) \le \rho(x)$,	
17	and $C > 0$ does not depend on ℓ .	
18	We are going to prove the <i>m</i> -regularity property for the kernel	
19 20	$H_{\ell}(x, y) = (L \star \phi_{\ell})(x - y), x, y \in \mathbb{R}^{n}.$	
20		
22	We have to show that if $\alpha \in \mathbb{N}^n$, $ \alpha \leq m$, and $x, y \in \mathbb{R}^n$, $x - y \in B_{k+1} \setminus B_k$, with	
23	$k \in \mathbb{Z}$, then	
24	$ (\partial_y^{\alpha}\widetilde{H_{\ell}})(x,A^{-k}y) \leq rac{C}{\rho(x-y)} = rac{C}{h^k},$	
25	p())	
26	where $H_{\ell}(x, y) = H_{\ell}(x, A^k y)$ and $C > 0$ is independent of ℓ . In order to prove this,	
27	we proceed as in [4, pp. 66–67].	
28	We have that	
29	$H_\ell(x,y) = \int_{\mathbb{T}^n} \mathbb{K}(x-z,y) \phi_\ell(z) dz, x-y \in B_\ell,$	
30		
31	where $\mathbb{K}(x, y) = K(x - y), x, y \in \mathbb{R}^n \setminus \{0\}.$	
32	Suppose that $x_0, y_0 \in \mathbb{R}^n$ and $x_0 - y_0 \in B_{j+2w+1} \setminus B_{j+2w}$, where $j \in \mathbb{N}, j \ge \ell$. By	
33	[4, (2.11), p. 68] it follows that $x_0 - y_0 - z \notin B_{j+w}$ and $x_0 - y_0 - z \in B_{j+3w+1}$, for every	
34	$z \in B_{\ell}$. By using the regularity of <i>K</i> , we deduce (see [4, (9.29), p. 66]), for every $\alpha \in \mathbb{N}^n$,	
35	$ \alpha \leq m$,	
36	$ (\partial_y^{lpha}[\mathbb{K}(\cdot,A^{j+2w}\cdot)])(x_0-z,A^{-j-2w}y_0) \leq Cb^{-j-2w}, z\in B_\ell.$	
37	Differentiating under the integral sign we get	
38		
39	$ (\partial_y^{lpha}\widetilde{H_\ell})(x_0,A^{-j-2w}y_0) \leq Cb^{-j-2w}, lpha\in\mathbb{N}^n,\; lpha \leq m,$	
40	where $C > 0$ does not depend on $\{\ell, j\}$.	
41 42	Assume that $x_0, y_0 \in \mathbb{R}^n$, and $x_0 - y_0 \in B_{j+1} \setminus B_j$, is $j < \ell + 2w$. Let $\alpha \in \mathbb{N}^n$, $ \alpha \le m$.	
42 <u>4</u> 43 <u>4</u>	We can write	
43 <u></u> 44 <u></u>	$\widetilde{H_{\ell}}(x,y) = \int_{\mathbb{R}^n} e^{-2\pi i z \cdot (x-A^j y)} \widehat{L}(z) \widehat{\phi_{\ell}}(z) dz$	
45	$\int_{\mathbb{R}^n} C = \int_{\mathbb{R}^n} D(z) \psi(z) uz$	
46	$= \int_{\mathbb{T}^n} e^{-2\pi i z \cdot (x-A^j y)} \widehat{L}(z) \widehat{\phi}((A^*)^{\ell} z) dz, x, y \in \mathbb{R}^n,$	
47		
48	where A^* denotes the adjoint matrix of A .	

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

1____ 2____ 3___ 4___ 5___ 6____ 7___ 8___ 9___ 10___ 11___ 12___ 13___ 14___ 15___ 16___ 17___ 18___ 19___ 20____ 21____ 22___ 23___ 24___ 25___ 26___ 27___ 28___ 29___ 30___ 31___ 32___ 33___ 34___ 35___ 36___ 37___ 38___ 39___ 40___ 41___ 42___ 43___ 44___ 45___ 46___ 47___ 48___

After making a change of variables, we get

$$\begin{split} \widetilde{H_{\ell}}(x,y) &= b^{-\ell} \int_{\mathbb{R}^n} e^{-2\pi i (A^*)^{-\ell} z \cdot (x-A^j y)} \widehat{L}((A^*)^{-\ell} z) \widehat{\phi}(z) dz \\ &= b^{-\ell} \int_{\mathbb{R}^n} e^{-2\pi i z \cdot (A^{-\ell} x - A^{-\ell+j} y)} \widehat{L}((A^*)^{-\ell} z) \widehat{\phi}(z) dz, \quad x, y \in \mathbb{R}^n. \end{split}$$

Then differentiating under the integral sign, we obtain

$$|\partial_{y}^{\alpha}\widetilde{H_{\ell}}(x,y)| \leq Cb^{-\ell} \int_{\mathbb{R}^{n}} |z|^{\alpha} |\widehat{\phi}(z)| dz, \quad x,y \in \mathbb{R}^{n}, \ x-y \in B_{j+1} \setminus B_{j},$$

because $j - \ell < 2w$. Here, C > 0 does not depend on $\{\ell, j\}$. Hence,

$$|(\partial_{y}^{\alpha}\widetilde{H_{\ell}})(x_{0}, A^{-j}y_{0})| \leq Cb^{-\ell} = Cb^{-\ell+j}b^{-j} \leq Cb^{2w}\rho(x_{0}-y_{0})^{-1}$$

We conclude that there exists C > 0 such that for every $\alpha \in \mathbb{N}^n$, $|\alpha| \le m$, and $x, y \in \mathbb{R}^n$, $x - y \in B_{k+1} \setminus B_k$, $k \in \mathbb{Z}$,

$$|(\partial_y^{\alpha}\widetilde{H_\ell})(x,A^{-k}y)| \leq \frac{C}{\rho(x-y)}.$$

Thus, the proof of the property is finished.

Proof of Theorem 1.7(ii) Consider r, p_0 and s as in Proposition 6.3. Assume that a is a $(p(\cdot), q(\cdot), r/p_0, s)$ -atom associated with $x_0 \in \mathbb{R}^n$ and $\ell_0 \in \mathbb{Z}$, and $v \in \mathcal{A}_1(\mathbb{R}^n, A) \cap RH_{(r/p_0)'}(\mathbb{R}^n, A)$. We take $\varphi \in S(\mathbb{R}^n)$ such that $\int \varphi(x) dx \neq 0$ and $\operatorname{supp} \varphi \subset B_0$. We can write

$$\|Ta\|_{H^{p_0}(\mathbb{R}^n,\nu,A)}^{p_0} \leq C\Big(\int_{x_0+B_{\ell_0+w}} (M^0_{\varphi}(Ta)(x))^{p_0}\nu(x)dx + \int_{(x_0+B_{\ell_0+w})^c} (M^0_{\varphi}(Ta)(x))^{p_0}\nu(x)dx\Big)$$

= $J_1 + J_2.$

The Hardy–Littlewood maximal function satisfies Kolmogorov inequality (see [30, p. 91]). Then since $M_{\varphi}^{0}(Ta) \leq CM_{HL}(Ta)$, we get

$$J_1 \leq Cv(x_0 + B_{\ell_0 + w})^{1 - p_0} \Big(\int_{\mathbb{R}^n} |T(a)(x)| v(x) dx \Big)^{p_0}.$$

Here, $C = C([v]_{A_1(\mathbb{R}^n, A)}) > 0.$

By splitting the last integral in the same way, we obtain

$$\int_{\mathbb{R}^n} |Ta(x)| v(x) dx = \int_{x_0 + B_{\ell_0 + w}} |Ta(x)| v(x) dx + \int_{(x_0 + B_{\ell_0 + w})^c} |Ta(x)| v(x) dx.$$

https://doi.org/10.4153

 \oplus

Æ

 \oplus

 \oplus

Anisotropic Hardy-Lorentz Spaces with Variable Exponents 1269 1___ 2____ Since T is a bounded operator in $L^{r/p_0}(\mathbb{R}^n)$ (see Proposition 6.3) and we have $v \in$ 3___ $RH_{(r/p_0)'}(\mathbb{R}^n, A)$, it follows that 4___ 5___ $\int_{x_0+B_{\ell}} |Ta(x)| v(x) dx$ 6___ 7___ $\leq \left(\int_{x_0+B_{\ell_0+w}} |Ta(x)|^{r/p_0} dx\right)^{p_0/r} \left(\int_{x_0+B_{\ell_0+w}} v(x)^{(r/p_0)'} dx\right)^{1/(r/p_0)'}$ 8____ 9___ $\leq C \|a\|_{r/p_0} |B_{\ell_0+w}|^{1/(r/p_0)'-1} v(x_0+B_{\ell_0+w}) \leq C \frac{v(x_0+B_{\ell_0})}{\|\chi_{x_0+B_{\ell_0}}\|_{p(\cdot),q(\cdot)}}.$ 10____ 11___ 12____ Here, $C = C([v]_{\mathcal{A}_1(\mathbb{R}^n, A)}, [v]_{RH_{(r/p_0)'}(\mathbb{R}^n, A)})$. We have used that v defines a doubling 13___ measure. 14___ Proceeding as in the estimation of I_2 in the proof of Theorem 1.7(i), we get 15___ $\int_{(x_0+B_{\ell_0+w})^c} |Ta(x)| \nu(x) dx \le C \frac{|B_{\ell_0}|^{\delta+1}}{\|\chi_{x_0+B_{\ell_0}}\|_{p(\cdot),q(\cdot)}} \int_{(x_0+B_{\ell_0+w})^c} \frac{\nu(x)}{\rho(x-x_0)^{\delta+1}} dx$ 16____ 17___ $\leq C \frac{|B_{\ell_0}|^{\delta+1}}{\|\chi_{x_0+B_{\ell_0}}\|_{p(\cdot),q(\cdot)}} v(x_0+B_{\ell_0})|B_{\ell_0}|^{-(\delta+1)}$ 18___ 19___ 20____ $= C \frac{\nu(x_0 + B_{\ell_0})}{\|\chi_{x_0 + B_{\ell_0}}\|_{p(\cdot), q(\cdot)}},$ 21___ 22___ 23 where $C = C([v]_{\mathcal{A}_1(\mathbb{R}^n, A)}) > 0$ and $\delta = m \ln \lambda_- / \ln b$. 24___ We conclude that 25___ $J_1 \le C \frac{\nu(x_0 + B_{\ell_0})}{\|\chi_{x_0 + B_{\ell_0}}\|_{p(\cdot)}^{p_0}}.$ 26____ 27 28 Here, $C = C([\nu]_{\mathcal{A}_1(\mathbb{R}^n, A)}, [\nu]_{RH_{(r/p_0)'}(\mathbb{R}^n, A)}) > 0.$ 29___ According to Lemma 6.4, for every $k \in \mathbb{Z}$, the convolution operator S_k defined by 30___ $S_{(k)}(\psi) = \varphi_k * (T\psi), \quad \psi \in \mathcal{S}(\mathbb{R}^n),$ 31___ 32____ is a Calderón–Zygmund singular integral of order *m* and this property is uniformly 33___ in $k \in \mathbb{Z}$; that is, the characteristic constant does not depend on k. 34___ If $k \in \mathbb{Z}$, by proceeding as in the proof of Theorem 1.7(i), we get 35___ $|S_{(k)}(a)| \le C \frac{|B_{\ell_0}|^{\delta+1}}{\rho(x-x_0)^{\delta+1}} \frac{1}{\|\chi_{x_0+B_{\ell_n}}\|_{\rho(\cdot),q(\cdot)}}, \quad x \notin x_0 + B_{\ell_0+w},$ 36___ 37___ 38___ where C > 0 does not depend on k. 39___ Then 40___ $|M_{\varphi}^{0}(Ta)(x)| \leq C \frac{|B_{\ell_{0}}|^{\delta+1}}{\rho(x-x_{0})^{\delta+1}} \frac{1}{\|\chi_{x_{0}+B_{\ell_{0}}}\|_{\rho(\cdot),q(\cdot)}}, \quad x \notin x_{0}+B_{\ell_{0}+w}.$ 41___ 42____ 43___ We conclude that $J_2 \leq C([\nu]_{A_1(\mathbb{R}^n,A)}) \frac{\nu(x_0 + B_{\ell_0})}{\|\chi_{x_0 + B_{\ell_0}}\|_{p(\cdot),q(\cdot)}^{p_0}}.$ 44___ 45___ 46___

The proof of this theorem can be completed by putting together the above estimates.

47___

48___

1____ 2___

3___

4___

5_

6

7____

8____ 9___ 10___ 11

12___ 13___ 14___

15___

16___

17___

18____

19___ 20___

21___ 22___

23___ 24___

25

26____

27___ 28

29___

30___

31_

32___

33

34___

35___ 36___

37___

38__ 39__

40

41___

42

43___

44___

45___

46_

47___

48___

 \oplus

1270

V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa

Remark 6.5 In order to prove the boundedness of an operator *T* defined on Hardy type spaces (or finite atomic Hardy type spaces) and that takes values in a Banach (or quasi-Banach) space, it is usual to add the following condition: *T* is uniformly bounded on atoms. As it can be seen (for instance, in [6, pp. 3096–3097], the last condition implies the boundedness of *T*, roughly speaking, proceeding as follows: if $f = \sum_{j=1}^{k} \lambda_j a_j$, then

(6.4)
$$\|Tf\|_{X} \leq \sum_{j=1}^{k} |\lambda_{j}| \|Ta_{j}\|_{X} \leq C \sum_{j=1}^{k} |\lambda_{j}| \leq C \|f\|_{H^{p}}$$

In our case, for the anisotropic Hardy–Lorentz spaces with variable exponents, we do not know if the last inequality in (6.4) holds. In Theorem 1.3 we establish our atomic quasinorm. The condition in Proposition 6.3 is adapted to the quasinorms on the anisotropic Hardy–Lorentz spaces with variable exponents and they replace the uniform boundedness on atoms condition.

Remark 6.6 As is well known, Lorentz and Hardy–Lorentz spaces appear related with interpolation. Fefferman, Rivière, and Sagher ([25]) proved that if $0 < p_0 < 1$, then $(H^{p_0}(\mathbb{R}^n), L^{\infty}(\mathbb{R}^n))_{\eta,q} = H^{p,q}(\mathbb{R}^n)$, where $1/p = (1 - \eta)/p_0$, $0 < \eta < 1$ and $0 < q \le \infty$. Recently, Liu, Yang, and Yuan ([40, Lemma 6.3])) established an anisotropic version of this result. By using a reiteration argument in [40, Theorem 6.1] the interpolation spaces between anisotropic Hardy spaces are described. Kempka and Vybíral ([36, Theorem 8]) proved that $(L^{p(\cdot)}(\mathbb{R}^n), L^{\infty}(\mathbb{R}^n))_{\theta,q} = L_{\widetilde{p}(\cdot),q}$, where $0 < \theta < 1, 0 < q \le \infty$ and $1/\widetilde{p}(\cdot) = (1 - \theta)/p(\cdot)$. It is clear that a similar property cannot be expected for the Lorentz space $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, since in the definition of $L^{p(\cdot)}(\mathbb{R}^n)$, p is a measurable function defined in \mathbb{R}^n while in the definition of the Lorentz space $\mathcal{L}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, p and q are measurable functions defined in $(0, \infty)$. Then the arguments used in [40] to study interpolation in anisotropic Hardy spaces do not work in our variable exponent setting. New arguments must be developed in order to describe interpolation spaces between our anisotropic Hardy–Lorentz spaces with variable exponents.

Acknowledgments We would like to offer thanks to the referee for his suggestions, which have improved this paper quite a lot.

References

- W. Abu-Shammala and A. Torchinsky, *The Hardy-Lorentz spaces H^{p,q}*(ℝⁿ). Studia Math. 182(2007), no. 3, 283–294. http://dx.doi.org/10.4064/sm182-3-7
- P.] A. Almeida and A. M. Caetano, *Generalized Hardy spaces*. Acta Math. Sin. (Engl. Ser.) 26(2010), no. 9, 1673–1692. http://dx.doi.org/10.1007/s10114-010-8647-9
- [3] C. Bennett and R. Sharpley, *Interpolation of operators*. Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, 1988.
- [4] M. Bownik, Anisotropic Hardy spaces and wavelets. Mem. Amer. Math. Soc. 164(2003), no. 781. http://dx.doi.org/10.1090/memo/0781
- [5] _____, Boundedness of operators on Hardy spaces via atomic decompositions. Proc. Amer. Math. Soc. 133(2005), no. 12, 3535–3542. http://dx.doi.org/10.1090/S0002-9939-05-07892-5

 \oplus

 \oplus

 \oplus

 \ominus

1	Ani	sotropic Hardy–Lorentz Spaces with Variable Exponents	1271
2			
3 4	[6]	M. Bownik, B. Li, D. Yang, and Y. Zhou, <i>Weighted anisotropic Hardy spaces and their applica in boundedness of sublinear operators</i> . Indiana Univ. Math. J. 57(2008), no. 7, 3065–3100.	tions
5 6	[7]	http://dx.doi.org/10.1512/iumj.2008.57.3414 T. A. Bui and X. T. Duong, <i>Hardy spaces associated to the discrete Laplacians on graphs and boundedness of singular integrals.</i> Trans. Amer. Math. Soc. 366 (2014), no. 7, 3451–3485.	
7	[8]	http://dx.doi.org/10.1090/S0002-9947-2014-05915-1 M. J. Carro, J. A. Raposo, and J. Soria, <i>Recent developments in the theory of Lorentz spaces an</i>	d
8 9		weighted inequalities. Mem. Amer. Math. Soc. 187(2007), no. 877. http://dx.doi.org/10.1090/memo/0877	
10	[9]	DC. Chang, S. G. Krantz, and E. M. Stein, H^p theory on a smooth domain in \mathbb{R}^N and elliptic boundary value problems. J. Funct. Anal. 114(1993), no. 2, 286–347.	5
11 12	[10]	http://dx.doi.org/10.1006/jfan.1993.1069 R. R. Coifman, <i>A real variable characterization of H^p</i> . Studia Math. 51(1974), 269–274.	
13		R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces	
14	[12]	homogènes. Lecture Notes in Mathematics, 242, Springer-Verlag, Berlin-New York, 1971. , Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83(1977) no. 4, 569–645. http://dx.doi.org/10.1090/S0002-9904-1977-14325-5),
15 16	[13]	D. Cruz-Uribe, L. Diening, and A. Fiorenza, A new proof of the boundedness of maximal open on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9) 2(2009), no. 1, 151–173.	rators
17	[14]	D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, <i>The boundedness of classical operator</i> variable L^p spaces. Ann. Acad. Sci. Fenn. Math. 31(2006), no. 1, 239–264.	rs on
18 19	[15]	D. Cruz-Uribe and LA. D. Wang, Variable Hardy spaces. Indiana Univ. Math. J. 63(2014), n.	o. 2,
20	[16]	447–493. http://dx.doi.org/10.1512/iumj.2014.63.5232, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans.	
21		Amer. Math. Soc. 369(2017), no. 2, 1205–1235.	
22	[17]	D. V. Cruz-Uribe and A. Fiorenza, <i>Variable Lebesgue spaces</i> . In: Applied and numerical harm analysis, Birkhäuser/Springer, Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-0348-0548-3	
23	[18]	D. V. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, extrapolation and the theory of Rubio	de
24		<i>Francia</i> . Operator Theory: Advances and Applications, 215, Birkhäuser/Springer Basel AG, E 2011. http://dx.doi.org/10.1007/978-3-0348-0072-3	sasel,
25 26	[19]	L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl.	
27	[20]	7(2004), no. 2, 245–253. http://dx.doi.org/10.7153/mia-07-27 L. Diening, P. Harjulehto, P. Hästö, and M. Ružička, <i>Lebesgue and Sobolev spaces with varial</i>	ole
28		<i>exponents</i> . Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18363-8	
29	[21]	P. Dierolf, Some locally convex spaces of regular distributions. Studia Math. 77(1984), no. 4,	
30 31	[22]	393-412. X. T. Duong and J. Li, Hardy spaces associated to operators satisfying Davies-Gaffney estimate	es
32		and bounded holomorphic functional calculus. J. Funct. Anal. 264(2013), no. 6, 1409–1437. http://dx.doi.org/10.1016/j.jfa.2013.01.006	
33	[23]	X. T. Duong and L. Yan, Duality of Hardy and BMO spaces associated with operators with her	at
34		<i>kernel bounds</i> . J. Amer. Math. Soc. 18(2005), no. 4, 943–973. http://dx.doi.org/10.1090/S0894-0347-05-00496-0	
35	[24]	L. Ephremidze, V. Kokilashvili, and S. Samko, Fractional, maximal and singular operators in	
36	[25]	<i>variable exponent Lorentz spaces.</i> Fract. Calc. Appl. Anal. 11(2008), no. 4, 407–420. C. Fefferman, N. M. Rivière, and Y. Sagher, <i>Interpolation between H^p spaces: the real method</i> .	l.
37 38		Trans. Amer. Math. Soc. 191(1974), 75-81. http://dx.doi.org/10.2307/1996982	
39	[26]	C. Fefferman and E. M. Stein, <i>H^p</i> spaces of several variables. Acta Math. 129(1972), no. 3–4, 137–193. http://dx.doi.org/10.1007/BF02392215	
40		R. Fefferman and F. Soria, <i>The space</i> Weak H ¹ . Studia Math. 85(1986), no. 1, 1–16.	
41		J. García-Cuerva, <i>Weighted H^p spaces</i> . Dissertationes Math. (Rozprawy Mat.) 162(1979). A. Gogatishvili and T. Kopaliani, <i>Extensions of Rubio de Francia's extrapolation theorem in</i>	
42		variable Lebesgue space and application. arxiv:1407.5216	
43	[30]	L. Grafakos, <i>Classical and modern Fourier analysis</i> . Pearson Education, Inc., Upper Saddle F	River,
44	[31]	NJ, 2004. L. Grafakos and D. He, <i>Weak Hardy spaces</i> . To appear in a special volume in honor of Profes	sor
45		Shanzhen Lu, Higher Education Press of China. Will be republished by International Press in	n US.
	[32]	D. He, Square function characterization of weak Hardy spaces. J. Fourier Anal. Appl. 20(2014 no. 5, 1083–1110. http://dx.doi.org/10.1007/s00041-014-9346-1),
47		· · · · · · · · · · · · · · · · · · ·	
48			

 \oplus

 \oplus

 \ominus

1	1272	2. V. Almeida, J. J. Betancor, and L. Rodríguez-Mesa
2		
3	[33]	S. Hofmann, G. Lu, D. Mitrea, M. Mitrea, and L. Yan, <i>Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates.</i> Mem. Amer. Math. Soc. 214 (2011),
4	r 1	no.1007. http://dx.doi.org/10.1090/S0065-9266-2011-00624-6
5	[34]	S. Hofmann and S. Mayboroda, <i>Hardy and BMO spaces associated to divergence form elliptic operators</i> . Math. Ann. 344(2009), no. 1, 37–116. http://dx.doi.org/10.1007/s00208-008-0295-3
6 7	[35]	G. Hu, Littlewood-Paley characterization of weighted anisotropic Hardy spaces. Taiwanese J. Math.
8	[36]	17(2013), no. 2, 675–700. http://dx.doi.org/10.11650/tjm.17.2013.1466 H. Kempka and J. Vybíral, <i>Lorentz spaces with variable exponents</i> . Math. Nachr. 287(2014),
9 <u> </u>	[]	no. 8–9, 938–954. http://dx.doi.org/10.1002/mana.201200278
10	[37]	J. Kinnunen, A stability result on Muckenhoupt's weights. Publ. Mat. 42(1998), no. 1, 153–163.
11	[38]	http://dx.doi.org/10.5565/PUBLMAT_42198_08 R. H. Latter, A characterization of $H^p(\mathbb{R}^n)$ in terms of atoms. Studia Math. 62(1978), no. 1, 93–101.
12		J. Lindenstrauss and L. Tzafriri, <i>Classical Banach spaces</i> . II. Function spaces. Ergebnisse der
12		Mathematik und ihrer Grenzgebiete, 97, Springer-Verlag, Berlin-New York, 1979.
	[40]	J. Liu, D. Yang, and W. Yuan, Anisotropic Hardy-Lorentz spaces and their applications. Sci. China
14	[41]	Math. 59(2016), no. 9, 1669–1720. G. G. Lorentz, <i>Some new functional spaces</i> . Ann. of Math. (2) 51(1950), 37–55.
15	[]	http://dx.doi.org/10.2307/1969496
16		, On the theory of spaces Λ . Pacific J. Math. 1(1951), 411–429.
17	[43]	S. Z. Lu, <i>Four lectures on real H^p spaces</i> . World Scientific Publishing Co., Inc., River Edge, NJ, 1995. http://dx.doi.org/10.1142/9789812831194
18	[44]	R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of
19		homogeneous type. Adv. in Math. 33(1979), no. 3, 271-309.
20		http://dx.doi.org/10.1016/0001-8708(79)90013-6
21	[45]	S. Meda, P. Sjögren, and M. Vallarino, On the H^1 - L^1 boundedness of operators. Proc. Amer. Math. Soc. 136(2008), no. 8, 2921–2931. http://dx.doi.org/10.1090/S0002-9939-08-09365-9
22	[46]	Y. Meyer, <i>Wavelets and operators</i> . Cambridge Studies in Advanced Mathematics, 37, Cambridge
23		University Press, Cambridge, 1992.
24	[47]	Y. Meyer, M. H. Taibleson, and G. Weiss, Some functional analytic properties of the spaces B_q
25		generated by blocks. Indiana Univ. Math. J. 34(1985), no. 3, 493–515. http://dx.doi.org/10.1512/jumj.1985.34.34028
26	[48]	E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces.
27		J. Funct. Anal. 262(2012), no. 9,3665-3748. http://dx.doi.org/10.1016/j.jfa.2012.01.004
28	[49]	A. Nekvinda, A note on maximal operator on $l^{\{p_n\}}$ and $L^{p(x)}(\mathbb{R})$. J. Funct. Spaces Appl. 5(2007),
29	[50]	no. 1, 49–88. http://dx.doi.org/10.1155/2007/294367 F. Ricci and J. Verdera, <i>Duality in spaces of finite linear combinations of atoms</i> . Trans. Amer.
30	[50]	Math. Soc. 363(2011), no. 3, 1311–1323. http://dx.doi.org/10.1090/S0002-9947-2010-05036-6
31	[51]	S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and
32		singular operators. Integral Transforms Spec. Funct. 16(2005), no. 5–6, 461–482.
33	[52]	http://dx.doi.org/10.1080/10652460412331320322 Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to
34	[0-]	bounded linear operators. Integral Equations Operator Theory 77(2013), no. 1, 123–148.
35		http://dx.doi.org/10.1007/s00020-013-2073-1
36	[53]	L. Schwartz, <i>Théorie des distributions</i> . Publications de l'Institut de Mathématique de l'Université de Strecheurg, po. IX X. Hermann, Barie, 1966
	[54]	de Strasbourg, no. IX-X, Hermann, Paris, 1966. R. S. Strichartz, <i>The Hardy space H¹ on manifolds and submanifolds</i> . Canad. J. Math. 24(1972),
37	[01]	915–925. http://dx.doi.org/10.4153/CJM-1972-091-5
38	[55]	JO. Strömberg and A. Torchinsky, Weighted Hardy spaces. Lecture Notes in Mathematics, 1381,
39	[=4]	Springer-Verlag, Berlin, 1989. http://dx.doi.org/10.1007/BFb0091154
40		Z. Szmydt, On regular temperate distributions. Studia Math. 44(1972), 309–314. , Characterization of regular tempered distributions. Ann. Polon. Math. 41(1983), no. 3,
41	[07]	255–258.
42	[58]	X. Tolsa, The space H^1 for nondoubling measures in terms of a grand maximal operator. Trans.
43	[50]	Amer. Math. Soc. 355(2003), no. 1, 315–348. http://dx.doi.org/10.1090/S0002-9947-02-03131-8
44	[39]	LA. D. Wang, <i>Multiplier theorems on anisotropic Hardy spaces</i> . Ph.D. Thesis, University of Oregon, 2012.
45	[60]	L. Yan, Classes of Hardy spaces associated with operators, duality theorem and applications. Trans.
46	[61]	Amer. Math. Soc. 360(2008), no. 8, 4383–4408.
47	[61]	D. Yang and Y. Zhou, <i>A boundedness criterion via atoms for linear operators in Hardy spaces</i> . Constr. Approx. 29 (2009), no. 2, 207–218. http://dx.doi.org/10.1007/s00365-008-9015-1
48		

 \oplus

 \oplus

 \oplus

 \oplus

1	Anisotropic Hardy–Lorentz Spaces with Variable Exponents	273
2 3 4 5 6	 [62] C. Zhuo, Y. Sawano, and D. Yang, Hardy spaces with variable exponents in RD-spaces and applications. Dissertationes Math. 520(2016), 1–74. http://dx.doi.org/10.4064/dm744-9-2015 [63] C. Zhuo, D. Yang, and Y. Liang, Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull. Malays. Math. Sci. Soc. 39(2016), no. 4, 1541–1577. http://dx.doi.org/10.1007/s40840-015-0266-2 	th
7 8 9	Departamento de Análisis Matemático, Universidad de la Laguna,, Campus de Anchieta, Avda. trofísico Francisco Sánchez, s/n,, 38271, La Laguna (Sta. Cruz de Tenerife), Spain e-mail: valmeida@ull.es jbetanco@ull.es lrguez@ull.es	As-
10		
11		
12		
13		
14		
15		
16		
17 18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30 31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 <u></u>		
45 46		
40		
48		