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A NOTE ON A SQUARE TYPE 
FUNCTIONAL EQUATION 

BY 

SHIGERU HARUKI 

The following square functional equation 

(1) f(x+v, y+v)+f(x+v9 y-v)+f(x-v, y+v)+f(x-v, y-v) = 4/(x, y) 

was considered (for example [l]-[9]) previously. 
It is known [4] that (a) the square functional equation (1), or alternatively 

(XvYv+XvY~v+X-vYv+X-vY-y)f(x, y) = 4/(x, y) 

has the harmonic polynomials 

(2) / (x , y) = Re(ia4z4+fl3z3+a2z2+0iZ+%) 

as the only measurably bounded solutions (bounded on a set of positive measure), 
where Xvf(x,y)=f(x+v, y), Yyf(x, y)=f(x, y+v); f(x, y) is a real-valued func
tion of two real variables x, y in the plane R2, v is real, a4 is real, and aj9j=0, 1,2,3 
are complex constants. 

Further, (b) (1) and 

(3) (Xy+X~y+ Yy+ Y~v)/(x, y) = 4f(x, y) 

are equivalent without any regularity assumptions ([2], [4]). 
We shall consider the following functional equation 

(4) 
/y—vy-v I y -pv I yvy—v i ySCv i v v y v i y^SCv i y—vyv 

+X-sc")f(x, y) = 8/(x, y), 
for some arbitrary real number SC. 

THEOREM. The only measurably bounded solutions of equation (4) for arbitrary 

fixed p (\P\T£\J2) are the harmonic polynomials of the form (2). 

Proof. We may assume tha t / (x , y) is of class C00 by the results in [1]. The 
equation (4) in the plane R2 yields, by repeatedly differentiating both sides with 
respect to v for ?=0 , 

(5) fXX+fyy = 0, 

(6) (2+P*)fxxxx + (2 + P*)fvvvy+l2fxxvv = °-
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From equation (5) it follows that 

\') JxxxxiJxxvv ^» Jxxvv>~Jyyyy ^> 

and substituting (7) into (6) yields (4—p*)fxxyy=0. Since \p\^\jl we obtain 

(8) fxxyy — 0> 

which with (7) implies 

VV Jxxxx V9 J yyyy ^ . 

The equations (5), (8), (9) yield the form (2). Conversely, by substituting (2) into 
(4), one verifies that (2) satisfies equation (4). Q.E.D. 

REMARK 1. For the case [p |=v2 , the equation (4) implies a regular octagonal 
functional equation whose solutions are known [4] to be polynomials of degree 8 ; 
in particular, (2) is such a solution. 

COROLLARY. If (4) is satisfied, for fixed \p\^yJ29 by a measurably bounded 

function f(x,y), then this function satisfies (4) for all p. 

REMARK 2. By the corollary, for measurably bounded solutions, the equation 
(4), for various values of \p\j£\l2 are equivalent. This does not seem to be true for 
the general solutions of (4). 

Similar to equation (1) (cf. [2], [4], [8], [9], [10]), equation (4) also has some 
geometric interpretation. For example, the case/?=0 yields the square functional 
equation. 

REMARK 3. The square functional equation implies the equation (4) for all p. 
This may readily be verified in view of (b). 
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