A NOTE ON A SQUARE TYPE FUNCTIONAL EQUATION

BY
SHIGERU HARUKI

The following square functional equation
(1) $f(x+v, y+\nu)+f(x+v, y-v)+f(x-v, y+\nu)+f(x-\nu, y-v)=4 f(x, y)$
was considered (for example [1]-[9]) previously.
It is known [4] that (a) the square functional equation (1), or alternatively

$$
\left(X^{\nu} Y^{\nu}+X^{\nu} Y^{-\nu}+X^{-v} Y^{\nu}+X^{-\nu} Y^{-\nu}\right) f(x, y)=4 f(x, y)
$$

has the harmonic polynomials

$$
\begin{equation*}
f(x, y)=\operatorname{Re}\left(i \alpha_{4} z^{4}+a_{3} z^{3}+a_{2} z^{2}+a_{1} z+a_{0}\right) \tag{2}
\end{equation*}
$$

as the only measurably bounded solutions (bounded on a set of positive measure), where $X^{v} f(x, y)=f(x+v, y), Y^{v} f(x, y)=f(x, y+v) ; f(x, y)$ is a real-valued function of two real variables x, y in the plane R^{2}, v is real, α_{4} is real, and $a_{j}, j=0,1,2,3$ are complex constants.

Further, (b) (1) and

$$
\begin{equation*}
\left(X^{v}+X^{-v}+Y^{v}+Y^{-v}\right) f(x, y)=4 f(x, y) \tag{3}
\end{equation*}
$$

are equivalent without any regularity assumptions ([2], [4]).
We shall consider the following functional equation

$$
\begin{align*}
\left(X^{-v} Y^{-v}+Y^{-p v}+X^{v} Y^{-v}+X^{S C_{v}}+X^{v} Y^{v}+Y^{S C_{v}}+\right. & X^{-v} Y^{v} \tag{4}\\
& \left.+X^{-S C_{v}}\right) f(x, y)=8 f(x, y)
\end{align*}
$$

for some arbitrary real number $S C$.
Theorem. The only measurably bounded solutions of equation (4) for arbitrary fixed $p(|p| \neq \sqrt{2})$ are the harmonic polynomials of the form (2).

Proof. We may assume that $f(x, y)$ is of class C^{∞} by the results in [1]. The equation (4) in the plane R^{2} yields, by repeatedly differentiating both sides with respect to v for $\nu=0$,

$$
\begin{gather*}
f_{x x}+f_{y y}=0 \tag{5}\\
\left(2+p^{4}\right) f_{x x x x}+\left(2+p^{4}\right) f_{y y y y}+12 f_{x x y y}=0 \tag{6}\\
443
\end{gather*}
$$

From equation (5) it follows that

$$
\begin{equation*}
f_{x x x x}+f_{x x y y}=0, \quad f_{x x y y}+f_{y y y y}=0 \tag{7}
\end{equation*}
$$

and substituting (7) into (6) yields $\left(4-p^{4}\right) f_{x x y y}=0$. Since $|p| \neq \sqrt{2}$ we obtain

$$
\begin{equation*}
f_{x x y y}=0, \tag{8}
\end{equation*}
$$

which with (7) implies

$$
\begin{equation*}
f_{x x x x}=0, \quad f_{y y y y}=0 \tag{9}
\end{equation*}
$$

The equations (5), (8), (9) yield the form (2). Conversely, by substituting (2) into (4), one verifies that (2) satisfies equation (4). Q.E.D.

Remark 1. For the case $|p|=\sqrt{2}$, the equation (4) implies a regular octagonal functional equation whose solutions are known [4] to be polynomials of degree 8 ; in particular, (2) is such a solution.

Corollary. If (4) is satisfied, for fixed $|p| \neq \sqrt{2}$, by a measurably bounded function $f(x, y)$, then this function satisfies (4) for all p.

Remark 2. By the corollary, for measurably bounded solutions, the equation (4), for various values of $|p| \neq \sqrt{2}$ are equivalent. This does not seem to be true for the general solutions of (4).

Similar to equation (1) (c.f. [2], [4], [8], [9], [10]), equation (4) also has some geometric interpretation. For example, the case $p=0$ yields the square functional equation.

Remark 3. The square functional equation implies the equation (4) for all p. This may readily be verified in view of (b).

Acknowledgement. The author would like to sincerely thank Professor M. A. McKiernan for his valuable suggestions and understanding guidance.

References

1. M. A. McKiernan, Boundedness on a set of positive measure and the mean value property characterizes polynomials on a space V^{n}, Aequationes Math. 4 (1970), 31-36.
2. -, On Haruki's functional equation, Aequationes Math. 1 (1968), p. 143.
3. -_, Difference and mean value type functional equations, C.I.M.E., Roma, (1971), 259-286.
4. J. Aczél, H. Haruki, M. A. McKiernan, and G. N. Sakovič, General and regular solutions of functional equations characterizing harmonic polynomials, Aequationes Math. 1 (1968), 37-53.
5. H. Swiatak, On the regularity of the distributional and continuous solutions of the functional equations $\sum_{i=1}^{k} a_{i}(x, t) f\left(x+\phi_{i}(t)\right)=b(x, t)$, Aequationes Math. 1 (1968), 6-19.
6. -_, A generalization of the Haruki functional equation, Ann. Polon. Math. 22 (1970), 370-376.
7. - On some applications of the theory of distributions in functional equations, Prace Mat. 14 (1970), 35-36.
8. H. Haruki, On a relation between the "square" functional equation and the "square" meanvalue property, Canad. Math. Bull. (2) 14 (1971), 161-165.
9. - On an application of the "square" functional equation to a geometric characterization of quadratic functions from the standpoint of conformal-mapping properties, Aequationes Math. 6 (1971), 36-38.
10. S. Haruki, A note on a Pentomino functional equation, Ann. Polon. Math., (to appear).

University of Waterloo,
Waterloo, Ontario

