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The Bochner–Schoenberg–Eberlein
Property and Spectral Synthesis for Certain
Banach Algebra Products

Eberhard Kaniuth

Abstract. Associated with two commutative Banach algebras A and B and a character θ of B is a
certain Banach algebra product A ×θ B, which is a splitting extension of B by A. We investigate
two topics for the algebra A ×θ B in relation to the corresponding ones of A and B. _e ûrst one
is the Bochner–Schoenberg–Eberlein property and the algebra of Bochner–Schoenberg–Eberlein
functions on the spectrum, whereas the second one concerns the wide range of spectral synthesis
problems for A×θ B.

Introduction

Let A and B be commutative Banach algebras with Gelfand spectrum ∆(B) /= ∅ and
let θ ∈ ∆(B). _en the θ-product A ×θ B is the Cartesian product A × B equipped
with themultiplication

(a, b) ⋅ (a′ , b′) = ( aa′ + θ(b)a′ + θ(b′)a, bb′)
and the norm ∥(a, b)∥ = ∥a∥ + ∥b∥. _en A ×θ B is a commutative Banach algebra.
_e algebras A ×θ B are sometimes referred to as Lau products because in [18] they
have been introduced for the special case where B is the predual of a von Neumann
algebra M and the identity of M is a multiplicative linear functional on B. _e gen-
eral deûnition and the ûrst intensive study of these algebras are due to Monfared [19].
_ese algebras can serve as examples or counterexamples to several questions in ab-
stract harmonic analysis. Apart from dealing with several other properties, such as
amenability (see also [20]), [19] was mainly concerned with spectral synthesis prob-
lems for A×θ B, building on an explicit description of the topology on the spectrum
∆(A×θ B) of A×θ B.

One purpose of this paper is a fairly comprehensive investigation of spectral syn-
thesis and weak spectral synthesis for A×θ B, thereby considerably extending results
of [19]. In particular,we obtain characterizations of sets of synthesis and ofweak spec-
tral sets in ∆(A ×θ B) in terms of such sets in ∆(A) and ∆(B). _e second concern
is the study of the Bochner–Schoenberg–Eberlein property for A ×θ B and of the al-
gebra CBSE(∆(A×θ B)) of BSE-functions on ∆(A×θ B). We establish necessary and
suõcient conditions, in terms of A and B, for A×θ B to be a BSE-algebra. Moreover,
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we describe BSE-functions on ∆(A ×θ B) by means of such functions on ∆(A) and
∆(B) and prove a criterion for CBSE(∆(A×θ B)) ∩ C0(∆(A×θ B)) to coincide with
the Gelfand image Â×θ B of A×θ B.
Deûnitions, basic facts and references will be given at the outset of each section.

1 Preliminaries

Let A, B and θ be as in the introduction. Identifying A with A × {0} and B with
{0}×B, A is a closed ideal ofA×θB and B is a closed subalgebra,which is isometrically
isomorphicwithA×θB/A. _usA×θBmay be viewed as a strongly splitting extension
of B by A or twisted product of A and B. If B = C and θ is the identitymap ofC, then
A×θ C coincides with the unitization of A.

_e Banach space dual (A ×θ B)∗ can be identiûed with A∗ × B∗ through
⟨(ϕ,ψ), (a, b)⟩ = ⟨ϕ, a⟩ + ⟨ψ, b⟩, ϕ ∈ A∗, ψ ∈ B∗. _e dual norm on A∗ × B∗ is
themaximum norm ∥(ϕ,ψ)∥ = max{∥ϕ∥, ∥ψ∥}.

Proposition 1.1 ([19, _eorem 3.1]) Let A and B be commutative Banach algebras
and let θ ∈ ∆(B).
(i) A×θ B is semisimple if and only if A and B are semisimple.
(ii) If A and B are semisimple, then A ×θ B is regular if and only both A and B are

regular.

Concerning regularity, it is worth mentioning the following very general result.
If C is a commutative Banach algebra and I is a closed ideal of C, then C is regular
if (and only if) both I and A/I are regular (see [12, _eorem 4.3.8]). _e following
explicitdescription of the topology on∆(A×θB)will be substantiallyused throughout
this paper. Note that the topology of ∆(A ×θ B) is the induced w∗-topology from
A∗ × B∗, which in turn equals the product of the w∗-topologies of A∗ and B∗.

Proposition 1.2 ([19, Propostion 2.4]) Deûne subsets Φ and Ψ of ∆(A×θ B) by
Φ = {(ϕ, θ) ∶ ϕ ∈ ∆(A)} and Ψ = {(0,ψ) ∶ ψ ∈ ∆(B)}.

_en ∆(A×θ B) = Φ ∪Ψ, and the following hold:
(i) Ψ is closed in ∆(A×θ B) and Φ ∪ {(0, θ)} is compact.
(ii) _e sets U×{θ},whereU is a neighbourhoud of ϕ in∆(A), form a neighbourhood

base at (ϕ, θ).
(iii) For any ψ ∈ ∆(B), ψ /= θ, the sets {0} × V , where V is a neighbourhood of ψ not

containing θ, form a neighbourhood base at (0,ψ).
(iv) _e sets (U ∩∆(A))×{θ}∪{0}×W , whereW is a neighbourhood of θ in ∆(B)

and U is a neighbourhood of 0 in A∗, form a neighbourhood base at (0, θ).

Note that the codimension one ideal k((0, θ)) ofA×θB is isometrically isomorphic
to the direct product of A and k(θ). _is simple fact will be used later.
A bounded net (eα)α in A is called a bounded ∆-weak approximate identity if it

satisûes ⟨eα , γ⟩→ 1 for every γ ∈ ∆(A). Such approximate identities were introduced
in [8], where it was shown that they need not be bounded approximate identities.
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_e question of when A×θ B possesses a bounded approximate identity was already
clariûed in [19, Proposition 2.3].

Lemma 1.3 A ×θ B has an approximate identity (a bounded approximate identity,
a bounded ∆-weak approximate identity) if and only if B has the respective kind of ap-
proximate identity.

Proof Recall that, for (a, b), (u, v) ∈ A×θ B,

∥(a, b)(u, v) − (a, b)∥ = ∥au + θ(b)u + θ(v)a − a∥ + ∥bv − b∥.

It follows that if (uα , vα)α is an approximate identity of any of the three types for
A ×θ B, then (vα)α is an approximate identity of the corresponding type for B (note
that θ /= 0).
Conversely, let (vα)α be an approximate identity for B of any of the three types.

_en, taking into account that, for ϕ ∈ ∆(A) and ψ ∈ ∆(B),

(ϕ, θ)(0, vα) = θ(vα)→ 1 and (0,ψ)(0, vα) = ψ(vα)→ 1,

it is immediate that (0, vα)α forms an approximate identity of the respective type for
A×θ B.

2 BSE-functions on ∆(A×θ B)
Let A be a commutative Banach algebra with Gelfand spectrum ∆(A). A bounded
continuous function σ on∆(A) is called a BSE-function if there exists a constantC > 0
such that for any ûnitely many elements ϕ1 , . . . , ϕn of ∆(A) and complex numbers
c1 , . . . , cn the inequality

∣
n

∑
j=1
c jσ(ϕ j)∣ ≤ C ⋅ ∥

n

∑
j=1
c jϕ j∥

A∗

holds. _e BSE-norm of σ , ∥σ∥BSE, is deûned to be the inûmum of all such con-
stants C. Let CBSE(∆(A)) denote the set of all BSE-functions. With the norm ∥ ⋅∥BSE,
CBSE(∆(A)) forms a semisimple Banach algebra [25, Lemma 1]. A bounded contin-
uous function σ on ∆(A) is a BSE-function if and only if there exists a bounded net
(aα)α in A such that âα(ϕ) → σ(ϕ) for every ϕ ∈ ∆(A). _is extremely useful crite-
rion was shown in [25,_eorem 4]. Clearly, for every a ∈ A, the Gelfand transform â
belongs to CBSE(∆(A)) ∩ C0(∆(A)) and satisûes ∥â∥∞ ≤ ∥â∥BSE ≤ ∥a∥.

Recall that a bounded linear map T ∶A→ A is called a multiplier of A if it satisûes
T(ab) = aT(b) for all a, b ∈ A. _e set M(A) of all multipliers of A is a closed
subalgebra of the algebra of all bounded linear operators on A. For any T ∈ M(A),
there exists a unique continuous function T̂ on ∆(A) such that T̂(γ)â(γ) = T̂(a)(γ)
for all a ∈ A and γ ∈ ∆(A) [17, _eorem 1.2.2]. For any subset M of M(A), let M̂
or M∧ denote the set of all T̂ , T ∈ M. A Banach algebra A without order (that is,
aA = {0} implies a = 0) is called a BSE-algebra (or is said to have the BSE-property)
if CBSE(∆(A)) = M̂(A).
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_e notion of BSE-algebra and the algebra of BSE-functions were ûrst introduced
and studied by Takahasi andHatori [25] and subsequently by several authors for vari-
ous kinds of Banach algebras ([9], [10], [14], [26], and [27]). BSE-algebras also played
a role in [15] and [28].

_e contraction BSE stands for Bochner–Schoenberg–Eberlein and refers to the
classical theorem, proved by Bochner [3] and Schoenberg [24] for the additive group
of real numbers and by Eberlein [5] for general locally compact Abelian groups G,
stating that, in the above terminology, the group algebra L1(G) is a BSE-algebra
(see [23]). We remind the reader that ∆(L1(G)) is canonically homeomorphic to the
dual group Ĝ of G and themultiplier algebra M(L1(G)) is isometrically isomorphic
to themeasure algebra M(G).

Now let A and B be semisimple commutative Banach algebras and θ ∈ ∆(B). Our
ûrst aim in this section is to describe explicitly the BSE-functions on ∆(A ×θ B) in
terms of those functions on ∆(A) and ∆(B).

Lemma 2.1 Let τ ∈ CBSE(∆(A)) ∩ C0(∆(A)) and let ρ ∈ CBSE(∆(B)). Deûne a
function σ on ∆(A×θ B) by

σ(ϕ, θ) = τ(ϕ) + ρ(θ) and σ(0,ψ) = ρ(ψ)
for ϕ ∈ ∆(A) and ψ ∈ ∆(B). _en σ ∈ CBSE(∆(A×θ B)).

Proof Note that σ is continuous since τ vanishes at inûnity and (0, θ) is the only
possible accumulation point of ∆(A) × {θ} in ∆(A×θ B) ∖ (∆(A) × {θ}).

Since τ ∈ CBSE(∆(A)) and ρ ∈ CBSE(∆(B)), there exist bounded nets (aα)α in A
and (bβ)β in B such that âα(ϕ) → τ(ϕ) for all ϕ ∈ ∆(A) and b̂β(ψ) → ρ(ψ)
for all ψ ∈ ∆(B). _en the bounded product net (aα , bβ)(α ,β) in A ×θ B satisûes
̂(aα , bβ)(0,ψ)→ ρ(ψ) and

̂(aα , bβ)(ϕ, θ) = âα(ϕ) + b̂β(θ)→ τ(ϕ) + ρ(θ) = σ(ϕ, θ).
_is shows that σ ∈ CBSE(∆(A×θ B)).

Lemma 2.2 Let σ ∈ CBSE(∆(A ×θ B)) and deûne functions τ on ∆(A) and ρ on
∆(B) by

τ(ϕ) = σ(ϕ, θ) − σ(0, θ) and ρ(ψ) = σ(0,ψ)
for ϕ ∈ ∆(A) and ψ ∈ ∆(B). _en τ ∈ CBSE(∆(A))∩C0(∆(A)) and ρ ∈ CBSE(∆(B)).

Proof Of course, the functions τ and ρ are both continuous. Moreover, the structure
of the topology on ∆(A×θ B) shows that τ vanishes at inûnity on ∆(A). _ere exists
a bounded net (aα , bα)α in A ×θ B such that ̂(aα , bα)(ω) → σ(ω) for every ω ∈
∆(A×θ B). _us

b̂α(ψ) = ̂(aα , bα)(0,ψ)→ σ(0,ψ)
for each ψ ∈ ∆(B), and therefore also for every ϕ ∈ ∆(A),

âα(ϕ) = ̂(aα , bα)(ϕ, θ) − b̂α(θ)→ σ(ϕ, θ) − σ(0, θ) = τ(ϕ).
It follows that τ ∈ CBSE(∆(A)) and ρ ∈ CBSE(∆(B)).
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Combining Lemma 2.1 and Lemma 2.2, we obtain the following theorem.

_eorem 2.3 _e BSE-functions on ∆(A ×θ B) are precisely the functions σ of the
form

σ(ϕ, θ) = τ(ϕ) + ρ(θ) and σ(0,ψ) = ρ(ψ)
for ϕ ∈ ∆(A) andψ ∈ ∆(B),where τ ∈ CBSE(∆(A))∩C0(∆(A)) and ρ ∈ CBSE(∆(B)).

In passing we observe that the algebra of BSE-functions on ∆(A ×θ B) is also a
twisted product type algebra.

Corollary 2.4 Let δθ ∈ ∆(CBSE(∆(B))) denote the point evaluation at θ ∈ ∆(B).
_en themap Σ∶ (τ, ρ)→ σ of_eorem 2.3 is an isometric isomorphism from

(CBSE(∆(A)) ∩ C0(∆(A))) ×δθ CBSE(∆(B))

onto CBSE(∆(A×θ B)).

Proof It is obvious that Σ is a bijective linearmap. Let τ j ∈ CBSE(∆(A))∩C0(∆(A))
and ρ j ∈ CBSE(∆(B)) and set σ j = Σ((τ j , ρ j)), j = 1, 2, and σ = Σ((τ1 , ρ1)(τ2 , ρ2)) .
_en, for any ϕ ∈ ∆(A),

σ(ϕ, θ) = Σ(( τ1τ2 + ρ1(θ)τ2 + ρ2(θ)τ1 , ρ1ρ2))
= [τ1(ϕ) + ρ1(θ)][τ2(ϕ) + ρ2(θ)]
= σ1(ϕ, θ)σ2(ϕ.θ).

Similarly, σ(0,ψ) = σ1(0, θ)σ2(0, θ) for everyψ ∈ ∆(B). _us Σ is an algebra isomor-
phism. Finally, Σ is isometric. Indeed, using the characterization of BSE-functions
in terms of bounded nets [25, _eorem 4] and the description of the BSE-norm in
[25, Remark, p. 154], it is clear that the assignment σ → (τ, ρ) has the property that
∥σ∥BSE = ∥τ∥BSE + ∥ρ∥BSE.

In [27] the authors were interested in the class of commutative Banach algebras A
for which the given norm coincides with the BSE-norm and they provided a long list
of examples for this to happen. We note here that A ×θ B belongs to this class if and
only if both A and B do so. In fact, if ∥(a, b)∥ = ∥(̂a, b)∥BSE for a ∈ A and b ∈ B, then

∥a∥ + ∥b∥ = ∥(a, b)∥ = ∥(̂a, b)∥BSE = ∥â∥BSE + ∥b̂∥BSE ≤ ∥a∥ + ∥b∥,

and hence ∥a∥ = ∥â∥BSE and ∥b∥ = ∥b̂∥BSE. _e converse follows in the samemanner.
_e following lemma will be used twice in Section 3.

Lemma 2.5 Let σ ∈ CBSE(∆(A×θB)), and let τ ∈ CBSE(∆(A)) and ρ ∈ CBSE(∆(B))
associated with σ as in Lemma 2.2. If σ = Ŝ for somemultiplier S of A×θ B, then τ = T̂
for some T ∈ M(A) and ρ = R̂ for some R ∈ M(B).

Proof Note ûrst that themultiplier S maps the ideal I = A× {0} into itself. In fact,
for a ∈ A and ψ ∈ ∆(B), we have Ŝ(a, 0)(0,ψ) = σ(0,ψ)(̂a, 0)(0,ψ) = 0, and hence
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S(a, 0) ∈ k({0} × ∆(B)) = A× {0} since B is semisimple. Deûne T ∶ I → I by

T(a, 0) = [S − ρ(θ)](a, 0), a ∈ A.
It is clear that T is amultiplier. Now, identifying Awith I,

T̂(ϕ)â(ϕ) = T̂(a)(ϕ) = Ŝ(a, 0)(ϕ, θ) − ρ(θ)(̂a, 0)(ϕ, θ)
= Ŝ(ϕ, θ)(̂a, 0)(ϕ, θ) − ρ(θ)(̂a, 0)(ϕ, θ)
= [σ(ϕ, θ) − ρ(θ)]â(ϕ)

for all a ∈ A and ϕ ∈ ∆(A), whence T̂ = τ.
For the second assertion, for any b ∈ Bwrite S(0, b) = (ub , vb) anddeûneR∶B → B

by R(b) = vb . _en R is amultiplier of B since, for b, c ∈ B,
(ubc , vbc) = S(0, bc) = (0, b)S(0, c) = (0, b)(uc , vc)

= (θ(b)uc , bvc),
and hence R(bc) = vbc = bvc = bR(c). Moreover,

R̂(ψ)b̂(ψ) = R̂(b)(ψ) = v̂b(ψ) = ̂(ub , vb)(0,ψ)
= Ŝ(0, b)(0,ψ) = Ŝ(0,ψ)(̂0, b)(0,ψ)
= σ(0,ψ)b̂(ψ)

for all b ∈ B and ψ ∈ ∆(B). _is implies that R̂ = ρ.

We now turn to the second purpose of this section, the question of when the alge-
bra Â×θ B coincides with CBSE(∆(A×θ B)) ∩ C0(∆(A×θ B)).

Proposition 2.6 Let A be a semisimple commutative Banach algebra such that
CBSE(∆(A)) ∩ C0(∆(A)) = Â, and let I be a closed ideal of A such that A/I is semisim-
ple. _en

CBSE(∆(I)) ∩ C0(∆(I)) = Î.

Proof Let τ ∈ CBSE(∆(I)) ∩ C0(∆(I)) and deûne a function σ on ∆(A) by σ(ϕ) =
τ(ϕ) for ϕ ∈ ∆(I) and σ = 0 on ∆(A)∖∆(I). _en σ is continuous, since τ vanishes at
inûnity on the open subset ∆(I) of ∆(A), and hence σ ∈ C0(∆(A)). Moreover, σ is a
BSE-function. In fact, there exists a bounded net (xα)α in I such that x̂α(ϕ)→ τ(ϕ)
for all ϕ ∈ ∆(I), and since x̂α = 0 on ∆(A) ∖ ∆(I), we have x̂α(ρ) → σ(ρ) for every
ρ ∈ ∆(A). Now, by hypothesis, σ = x̂ for some x ∈ A. It suõces to observe that x ∈ I.
However, this follows from the facts that A/I is semisimple and x̂(ψ) = σ(ψ) = 0 for
all ψ ∈ ∆(A) ∖ ∆(I).

_eorem 2.7 For A×θ B the following two conditions are equivalent.
(i) CBSE(∆(A×θ B)) ∩ C0(∆(A×θ B)) = Â×θ B.
(ii) CBSE(∆(A)) ∩ C0(∆(A)) = Â and CBSE(∆(B)) ∩ C0(∆(B)) = B̂.

Proof (i)⇒ (ii) Since (A×θ B)/(A×{0}) = B is semisimple, Proposition 2.6 implies
that CBSE(∆(A)) ∩ C0(∆(A)) = Â.
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Let ρ ∈ CBSE(∆(B)) ∩ C0(∆(B)) and deûne the function σ on ∆(A ×θ B) as in
Lemma 2.1, taking τ = 0. _en σ ∈ CBSE(∆(A×θ B)). Moreover, σ vanishes at inûnity
on∆(A×θB) since ρ ∈ C0(∆(B)) and the subset (∆(A)×{θ})∪{(0, θ)} of ∆(A×θB)
is compact (Proposition 1.2). _en, by hypothesis, σ = (̂a, b) for some (a, b) ∈ A×θ B
and hence, for every ψ ∈ ∆(B),

ρ(ψ) = σ(0,ψ) = (̂a, b)(0,ψ) = b̂(ψ).
(ii) ⇒ (i) Let σ ∈ CBSE(∆(A ×θ B)) ∩ C0(∆(A ×θ B)) and deûne functions τ

on ∆(A) and ρ on ∆(B) as in Lemma 2.2. _en τ ∈ CBSE(∆(A)) ∩ C0(∆(A)) and
ρ ∈ CBSE(∆(B)) ∩ C0(∆(B)). _erefore, τ = â and ρ = b̂ for certain a ∈ A and b ∈ B,
respectively. Now this implies that σ = (̂a, b). In fact, for ϕ ∈ ∆(A),

(̂a, b)(ϕ, θ) = â(ϕ) + b̂(θ) = τ(ϕ) + ρ(θ)
= σ(ϕ, θ) − σ(0, θ) + ρ(θ) = σ(ϕ, θ),

and for every ψ ∈ ∆(B), (̂a, b)(0,ψ) = b̂(ψ) = σ(0,ψ).

3 The BSE Property for A×θ B
In this section,we address the problemof ûnding necessary and suõcient conditions,
in terms of A and B, for A ×θ B to be a BSE-algebra. We start with a simple lemma
which was shown in [10,_eorem 3.4] for unital B.

Lemma 3.1 If A×θ B is a BSE-algebra, then so is B.

Proof Recall that by [25, Corollary 5], for any commutative Banach algebra C, we
have M̂(C) ⊆ CBSE(∆(C)) if and only if C has a bounded ∆-weak approximate iden-
tity. Moreover, ifA×θ B has such an approximate identity, then so does B (Lemma 1.3).
Since A ×θ B is a BSE-algebra, it follows that M̂(B) ⊆ CBSE(∆(B)). To prove the re-
verse inclusion, let ρ ∈ CBSE(∆(B)) and deûne σ on ∆(A ×θ B) by σ(ϕ, θ) = ρ(θ)
for ϕ ∈ ∆(A) and σ(0,ψ) = ρ(ψ) for ψ ∈ ∆(B). By Lemma 2.1 (taking τ = 0),
σ ∈ CBSE(∆(A×θ B)), and hence σ = Ŝ for somemultiplier S of A×θ B. Lemma 2.5
now yields that ρ = R̂ for some R ∈ M(B), as was to be shown.

Let Au denote the unitization of A, and let I = {0} × k(θ), which is a closed ideal
of A ×θ B. Fix e ∈ B such that θ(e) = 1. Using that e2 − e ∈ k(θ), it is easily veriûed
that themap

F∶Au → (A×θ B)/I, a + λu → (a, λe) + I, a ∈ A, λ ∈ C,
is an algebra isomorphism. Moreover, F is a topological isomorphism since both al-
gebras are semisimple and

∥(a, λe) + I∥ ≤ ∥(a, λe)∥ = ∥a∥ + ∣λ∣ ⋅ ∥e∥
≤ ∥e∥(∥a∥ + ∣λ∣) = ∥e∥ ⋅ ∥a + λu∥.

It follows that there is a homeomorphism Γ between ∆(Au) = ∆(A)∪ {ϕ∞}, the one
point compactiûcation of ∆(A), and ∆((A×θ B)/I) = (∆(A) ∪ {0}) × {θ} given by
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Γ(ϕ) = (ϕ, θ) for ϕ ∈ ∆(A) and Γ(ϕ∞) = (0, θ). In the sequel,we shall identify these
two Gelfand spaces accordingly.

Proposition 3.2 Let A be nonunital and suppose that A×θ B is a BSE-algebra. _en
the unitization Au is a BSE-algebra.

Proof Since the Banach algebrasAu and (A×θB)/I are topologically isomorphic,we
can consider whichever is convenient. Since for any commutative Banach algebra C,
M̂(C) ⊆ CBSE(∆(C)) if and only if C has a bounded ∆-weak approximate identity
[25, Corollary 5], it is clear that M̂(Au) ⊆ CBSE(∆(Au)).
Conversely, let τ ∈ CBSE(∆(Au)). _en, by [14, Lemma 4.6(i)],

τ∣∆(A) − τ(ϕ∞)1∆(A) ∈ CBSE(∆(A)) ∩ C0(∆(A)).
Let ρ be constantly equal to τ(ϕ∞) on ∆(B), and deûne σ on ∆(A×θ B) by

σ(ϕ, θ) = τ(ϕ) − τ(ϕ∞) + ρ(θ) and σ(0,ψ) = ρ(θ),
for ϕ ∈ ∆(A), ψ ∈ ∆(B). Since B has a bounded ∆-weak approximate identity
(Lemma 1.3), ρ ∈ CBSE(∆(B)), and hence σ ∈ CBSE(∆(A×θ B)) by Lemma 2.1. Since
A ×θ B is a BSE-algebra, σ = Ŝ for some S ∈ M(A ×θ B). It is easily veriûed that
S(I) ⊆ I and hence S deûnes amultiplier S̃ of (A×θ B)/I by S̃(x + I) = S(x) + I for
x ∈ A×θ B. Let T = F−1 S̃F∶Au → Au , where F is the above isomorphism between Au
and (A×θ B)/I. Clearly, T is amultiplier of Au .

It remains to show that T̂ = τ. Now, for any a ∈ A, λ ∈ C and ϕ ∈ ∆(Au) such that
ϕ /= ϕ∞,

T̂(ϕ)⟨a + λu, ϕ⟩ = ⟨T(a + λu), ϕ⟩ = ⟨F−1 S̃F(a + λu), ϕ⟩
= ⟨ S̃((a, λe) + I) , (F−1)∗(ϕ)⟩
= ⟨S((a, λe)) , (ϕ, θ)⟩ = σ(ϕ, θ)( â(ϕ) + λ)
= τ(ϕ)⟨a + λu, ϕ⟩.

_is shows that T̂ ∣∆(A) = τ∣∆(A). Similarly, it is veriûed that

T̂(ϕ∞)⟨a + λu, ϕ∞⟩ = τ(ϕ∞)⟨a + λu, ϕ∞⟩,
thus completing the proof.

_eorem 3.3 For A×θ B the following two conditions are equivalent.
(i) A×θ B is a BSE-algebra.
(ii) CBSE(∆(A)) ∩ C0(∆(A)) = Â and B is a BSE-algebra.

Proof (i)⇒ (ii) By Lemma 3.1, B is a BSE-algebra. _e same is true for the uniti-
zation of A by Proposition 3.2. _en _eorem 4.8 of [14] shows that CBSE(∆(A)) ∩
C0(∆(A)) = Â provided that A is nonunital.

Now assume that A is unital and let τ ∈ CBSE(∆(A)). Since then ∆(A) × {θ} is
open and closed in ∆(A×θ B), we can deûne a continuous function σ on ∆(A×θ B)
by σ(ϕ, θ) = τ(ϕ) for ϕ ∈ ∆(A) and σ(0,ψ) = 0 for ψ ∈ ∆(B). _en σ ∈
CBSE(∆(A×θ B)) by Lemma 2.2 and hence σ = Ŝ for some multiplier S of A×θ B.

https://doi.org/10.4153/CJM-2014-028-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-028-4


Bochner–Schoenberg–Eberlein Property and Spectral Synthesis 835

Lemma 2.5 shows that T ∈ M(A) = A. _us CBSE(∆(A)) ⊆ Â and hence
CBSE(∆(A)) ∩ C0(∆(A)) = Â.

(ii)⇒ (i) Since B is a BSE-algebra, B has a bounded ∆-weak approximate identity.
By Lemma 1.3, the same is true for A×θ B, and hence

M(A×θ B)∧ ⊆ CBSE(∆(A×θ B)).
To prove the reverse inclusion, let σ ∈ CBSE(∆(A ×θ B)) be given and deûne τ ∈
CBSE(∆(A))∩C0(∆(A)) and ρ ∈ CBSE(∆(B)) as in Lemma 2.2. _en by hypothesis,
ρ = R̂ for some R ∈ M(B) and τ = â0 for some a0 ∈ A. Now deûne S∶A×θ B → A×θ B
by

S((a, b)) = ( a0a + θ(b)a0 + ρ(θ)a, R(b)) .
Clearly, S is a bounded linear map. For a ∈ A and b ∈ B we have

S((a, 0)(0, b)) = (θ(b)a0a + ρ(θ)b̂(θ)a, 0)

= (θ(b)a0a + R̂(b)(θ)a, 0)
= (a, 0)(θ(b)a0 , R(b)) = (a, 0)S((0, b))

(3.1)

and

S((0, b)(0, c)) = (θ(bc)a0 , R(bc)) = (θ(b)θ(c)a0 , bR(c))
= (0, b)(θ(c)a0 , R(c)) = (0, b)S((0, c)).

(3.2)

Equations (3.1) and (3.2) together with the fact that the restriction of S to the ideal
I = A× {0} is amultiplier of I, imply that S is amultiplier of A×θ B.

It remains to verify that σ = Ŝ. For all (a, b) ∈ A×θ B and ϕ ∈ ∆(A),

Ŝ(ϕ, θ)(̂a, b)(ϕ, θ) = âoa(ϕ) + θ(b)â0(ϕ) + ρ(θ)â(ϕ) + R̂(b)(θ)
= τ(ϕ)[â(ϕ) + θ(b)] + ρ(θ)[â(ϕ) + b̂(θ)]
= [τ(ϕ) + ρ(θ)][â(ϕ) + b̂(θ)]
= σ(ϕ, θ)(̂a, b)(ϕ, θ).

Similarly, we see that Ŝ(0,ψ)(̂a, b)(0,ψ) = σ(0,ψ)(̂a, b)(0,ψ) for every ψ ∈ ∆(B).
Since A×θ B is semisimple, it follows that Ŝ = σ .

In passingwe remind the reader that a commutativeBanach algebra is calledTaube-
rian if the ideal consisting of all x ∈ C such that x̂ has compact support in ∆(C) is
dense in C. Note that A ×θ B is Tauberian if and only if B is Tauberian because if
(a, b) ∈ A ×θ B and b̂ has compact support, then (̂a, b) has compact support. _e
next lemma generalizes Corollary 4.9 of [14]. _e proof, however, is similar.

Lemma 3.4 Let A be a semisimple commutative Banach algebra such that

CBSE(∆(A)) ∩ C0(∆(A)) = Â.
In addition, suppose that A is Tauberian and has a bounded ∆-weak approximate iden-
tity. _en A is a BSE-algebra.
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Proof Since A has a bounded ∆-weak approximate identity, M̂(A) ⊆ CBSE(∆(A)).
To verify the reverse inclusion, let C0

BE(∆(A)) denote the subalgebra of CBSE(∆(A))
introduced in [9, Deûnition 3.5] and note that C0

BE(∆(A)) ⊆ C0(∆(A)). _en, by
hypothesis and since A is Tauberian,

Â ⊆ C0
BE(∆(A)) ⊆ CBSE(∆(A)) ∩ C0(∆(A)) = Â

by [9, Proposition 4.1]. _us Â = C0
BE(∆(A)) and hence CBSE(∆(A)) ⊆ M̂(A) by

[9, Proposition 4.3].

As an immediate consequence of _eorem 3.3 and Lemma 3.4 we obtain the fol-
lowing.

Corollary 3.5 Suppose that A is Tauberian and has a bounded ∆-weak approximate
identity. If A×θ B is a BSE-algebra, then both A and B are BSE-algebras. Conversely, if
A and B are BSE-algebras and A is unital, then A×θ B is a BSE-algebra.

For any semisimple commutative Banach algebra C, consider the following two
properties, which we have studied for C = A×θ B.
(1) C is a BSE-algebra;
(2) CBSE(∆(C)) ∩ C0(∆(C)) = Ĉ.

In concluding this section we point out that neither (1) nor (2) implies the other.
Actually, examples can even be foundwithin the class of Fourier and Fourier–Stieltjes
algebras of locally compact groups [6] (Example 3.6 below). Further examples arepro-
vided by certain algebras of Lipschitz functions (compare [14, Example 6.2] and [9]).

Example 3.6 (a) We ûrst give an example satisfying (2), but not (1). Let G be a
connected, noncompact simple Lie group with ûnite centre. Let B0(G) = B(G) ∩
C0(G), the so-calledRajchman algebra associatedwithG. _en, as shown byCowling
[4, _eorem], ∆(B0(G)) = G = ∆(A(G)) (equivalently, B0(G)/A(G) is a radical
Banach algebra).

We claim that this fact implies that B0(G) satisûes condition (2). To see this, let
σ ∶G → C be a BSE-function for B0(G). _en, by [25, _eorem 4], there exists a
bounded net (uα)α in B0(G) such that uα(x) → σ(x) for all x ∈ G. _e following
argument is also used in [16]. Consider the functions uα as functions on Gd , the
groupG endowedwith the discrete topology. _en (uα)α is a boundednet in B(Gd) =
C∗(Gd)∗. Let u be a w∗-cluster point of this net in B(Gd). Of course, then u(x) =
σ(x) for all x ∈ G. _us σ ∈ B(Gd) and hence σ ∈ B(G) since σ is continuous
[6, Corollaire 2.24]. _is shows that

CBSE(∆(B0(G))) ∩ C0(∆(B0(G))) ⊆ B̂0(G),
the converse inclusion being trivial. On the other hand, it is shown in [16] that for any
locally compact group G, B0(G) cannot be a BSE-algebra unless G is amenable.

(b) Let G be an amenable, second countable, locally compact group whose regular
representation is not completely reducible, that is, not unitarily equivalent to the di-
rect sumof irreducible representations. _en, as shown in [7] and [2], B(G)∩C0(G) /=
A(G). Moreover, the Fourier algebra A(G) is a BSE-algebra, and M(A(G)) = B(G),
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the Fourier–Stieltjes algebra ofG (see [14,_eorem 5.1] and[22, Corollary 19.2]). _us,
identifying ∆(A(G)) with G [6],

CBSE(G) ∩ C0(G) = M(A(G)) ∩ C0(G) = B(G) ∩ C0(G) /= A(G).

Example 3.6 (b) also shows that the converse of Corollary 3.5 may fail to be true
even when A has a bounded approximate identity, but A is not unital.

4 Sets of Synthesis and Ditkin Sets for A×θ B
Let A be a regular and semisimple commutative Banach algebra. For any subset M
of A, the hull h(M) of M is deûned by

h(M) = {ϕ ∈ ∆(A) ∶ ϕ(M) = {0}} .

Associated with each closed subset E of ∆(A) are two distinguished ideals with hull
equal to E, namely

k(E) = {a ∈ A ∶ â(ϕ) = 0 for all ϕ ∈ E}

and
j(E) = {a ∈ A ∶ â has compact support disjoint from E}.

If E is a singleton, say {ϕ}, we simply write k(ϕ) and j(ϕ) rather than k({ϕ})
and j({ϕ}).

_en k(E) is the largest idealwith hull E and j(E) is the smallest such ideal. Recall
that E is a spectral set (or set of synthesis) if k(E) = j(E) (equivalently, k(E) is the only
closed ideal with hull equal to E). Note that A is Tauberian if and only if ∅ is a set of
synthesis. We say that spectral synthesis holds for A if every closed subset of ∆(A) is
a spectral set. Moreover, E is a Ditkin set if a ∈ a j(E) for every a ∈ k(E). Finally, A is
said to satisfy Ditkin’s condition at inûnity if ∅ is a Ditkin set.

Let A and B be regular and semisimple commutative Banach algebras and θ ∈
∆(B). Our main purpose is to describe sets of synthesis for A ×θ B in terms of such
sets for A and B. In particular, we aim at a criterion for when spectral synthesis holds
for A×θ B. _e crucial step towards solving these problems is the following theorem.

_eorem 4.1 Let F be a closed subset of ∆(A) and G a closed subset of ∆(B).
(i) If F is compact, then F × {θ} is a set of synthesis for A×θ B if and only if F is a set

of synthesis for A.
(ii) Suppose that F is noncompact. If F × {θ} is a set of synthesis for A×θ B, then F is

a set of synthesis for A, and the converse holds when {(0, θ)} is a Ditkin set.
(iii) If {0}×G is a set of synthesis for A×θ B, then G is a set of synthesis for B, and the

converse holds whenever A is Tauberian.

Proof (i) Suppose ûrst that F is a set of synthesis for A and let (a, b) ∈ k(F × {θ}).
Since A is regular, and hence normal [12, Corollary 4.2.9], and F is compact, there
exists y ∈ A such that ŷ(ϕ) = b̂(θ) for all ϕ in a relatively compact neighbourhood U
of F in ∆(A). Now, given є > 0, since F is a spectral set and a + y ∈ k(F), there exists
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x ∈ A such that ∥x−(a+ y)∥ ≤ є and x̂ vanishes on an open subsetV with F ⊆ V ⊆ U .
_en ∥(x − a, b)−(a, b)∥ = ∥x −(a+ y)∥ ≤ є and, by the choice of y, for every ϕ ∈ V ,

(x − y, b)∧(ϕ, θ) = − ŷ(ϕ) + b̂(θ) = 0.

Since V × {θ} is open in ∆(A×θ B) and є > 0 was arbitrary, this shows that F × {θ}
is a set of synthesis for A×θ B.
Conversely, assume that F × {θ} is a spectral set for A ×θ B and let a ∈ k(F) and

є > 0 be given. Choose y ∈ A such that ŷ = 1 on a neighbourhood U of F is ∆(A).
Since (a, 0) ∈ k(F × {θ}), there exists (u, v) ∈ A ×θ B such that û(ϕ) + v̂(θ) =
(̂u, v)(ϕ, θ) = 0 for all ϕ in a neighbourhood V of F and

∥a − u∥ + ∥v∥ = ∥(a, 0) − (u, v)∥ ≤ є
1 + ∥y∥ .

Now, let x = u + v̂(θ)y ∈ A. _en x̂(ϕ) = û(ϕ) + v̂(θ) ŷ(ϕ) = 0 for all ϕ ∈ V ∩U and

∥x − a∥ ≤ ∥u − a∥ + ∣v̂(θ)∣ ⋅ ∥y∥ ≤ (1 + ∥y∥)(∥u − a∥ + ∥v∥) ≤ є.

Consequently, F is a set of synthesis for A.
(ii) Let F × {θ} be a set of synthesis, and let a ∈ k(F) and є > 0. _en (a, 0) ∈

k(F × {θ}) and hence there exists (u, v) ∈ j(F × {θ}) such that

є ≥ ∥(a, 0) − (u, v)∥ = ∥a − u∥ + ∥v∥.

Since 0 = (̂u, v)(ϕ, θ) = û(ϕ) + v̂(θ) for all ϕ ∈ F and û ∈ C0(∆(A)), wemust have
v̂(θ) = 0 because F is noncompact. _us û = 0 in a neighbourhood of F, as required.
Conversely, suppose that F is a spectral set and {(0, θ)} is a Ditkin set, and let

(a, b) ∈ k(F × {θ}). _en, since (a, b) ∈ k((0, θ)), given є > 0, there exists
(u, v) ∈ A ×θ B such that (̂u, v) = 0 on a neighbourhood of (0, θ) in ∆(A ×θ B)
and ∥(a, b)(u, v) − (a, b)∥ ≤ є. Since F is noncompact, we see as in the preceding
paragraph that b ∈ k(θ) and a ∈ k(F). As F is a set of synthesis, there existsw ∈ j(F)
with ∥a −w∥ ≤ є/∥(u, v)∥. _en

∥(a, b) − (w , b)(u, v)∥ ≤ ∥(a, b) − (a, b)(u, v)∥
+ ∥(a, b)(u, v) − (w , b)(u, v)∥

≤ є + ∥(u, v)∥ ⋅ ∥a −w∥ ≤ 2є.

Finally, (̂w , b) vanishes on aneighbourhood of F×{θ} and (̂u, v) vanishes on aneigh-
bourhood of (0, θ). _e description of the topology on ∆(A ×θ B) (Proposition 1.2)
now shows that (w , b)(u, v) ∈ j(F × {θ}).

(iii) Let I = A × {0} and recall that B is isometrically isomorphic to the quotient
algebra (A ×θ B)/I, where I = A × {0}. By the injection theorem for spectral sets of
general regular and semisimple commutative Banach algebras [12,_eorem 5.2.7], if
{0} × G is of synthesis for A ×θ B, then G is a spectral set for B, and the converse
holds provided that the hull h(I) is a spectral set for A ×θ B. To see that this latter
condition is satisûed, let (a, b) ∈ k(h(I)) and є > 0 be given. _en b = 0 because
b̂(ψ) = (̂a, b)(0,ψ) = 0 for all ψ ∈ ∆(B) and B is semisimple. Since A is Tauberian,
there exists u ∈ A such that ∥u − a∥ ≤ є and û has compact support, say C, in ∆(A).
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_en ∥(u, 0)− (a, b)∥ ≤ є and (̂u, 0) vanishes outside the compact subset C × {θ} of
∆(A×θ B), which is disjoint from {0} ×G. _us (u, 0) ∈ j({0} ×G).

Remark 4.2 (1) _e preceding theorem considerably extends _eorem 3.5 of [19],
which is one of the main results of [19], in several respects. In [19, _eorem 3.5],
B was assumed to be the Fourier algebra of a locally compact group, A was required
to be unital and only singletons in ∆(A×θ B) were considered.

(2) _e proof of part (i) of_eorem 4.1 also shows that F = ∅ is a set of synthesis
for A if and only if the singleton {(0, θ)} is a set of synthesis for A×θ B. _is does not
only cover [19, Proposition 3.3], but also proves its converse.

_e ûrst one of the following three corollaries is an immediate consequence of
_eorem 4.1.

Corollary 4.3 If spectral synthesis holds for A×θ B, then it also holds for A and B.

It is obvious, and apparent from _eorem 4.1, that the nature of the topology on
∆(A×θ B) indicates that the point (0, θ) plays a special role if ∆(A) is noncompact.

Corollary 4.4 Let E be a closed subset of ∆(A×θ B) and let

F = {ϕ ∈ ∆(A) ∶ (ϕ, θ) ∈ E} and G = {ψ ∈ ∆(B) ∶ (0,ψ) ∈ E}.

Suppose that F and G are sets of synthesis for A and B, respectively. _en E is a set of
synthesis for A×θ B provided that one of the following two conditions is fulûlled.
(i) _e singleton {(0, θ)} is a Ditkin set.
(ii) A is unital and B satisûes Ditkin’s condition at inûnity.

Proof Assuming ûrst that (i) holds, since {(0, θ)} is a Ditkin set, it follows from
_eorem 4.1(i) and (ii) that E1 = F × {θ} is a set of synthesis for A ×θ B. Moreover,
as A is Tauberian (compare Lemma 4.7 below), E2 = {0} × G is of synthesis by _e-
orem 4.1(iii). Now, E = E1 ∪ E2 and E1 ∩ E2 = {(0, θ)}, which is a Ditkin set by
hypothesis. _is implies that E is a set of synthesis [12,_eorem 5.2.5].

Now assume that (ii) holds and note that∅ is a Ditkin set for A×θ B since ∆(A) is
compact and B satisûesDitkin’s condition at inûnity. _e proof then proceeds analo-
gously to that in case (i), using [12,_eorem 5.2.5] again and the facts that F is compact
and E is the disjoint union of the two spectral sets F × {θ} and {0} ×G.

From Corollary 4.4 we conclude at once with the following.

Corollary 4.5 Suppose that spectral synthesis holds for A and B and that one of con-
ditions (i) and (ii) of Corollary 4.4 is fulûlled. _en spectral synthesis holds for A×θ B.

As exempliûed by the above results, it is important to know when A×θ B satisûes
Ditkin’s condition at inûnity, and when the singleton {(0, θ)} is a Ditkin set. _e
following three lemmas deal with these questions.
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Lemma 4.6 Suppose that Ahas an approximate identity, B satisûesDitkin’s condition
at inûnity and the ideal k(θ) has an approximate identity. _en A×θ B satisûesDitkin’s
condition at inûnity.

Proof Let (a, b) ∈ A×θ B and є > 0 be given, and assume ûrst that θ(b) /= 0. Since∅
is a Ditkin set for B, there exists v ∈ B such that v̂ has compact support and

∥vb − b∥ ≤ min{є, є∣θ(b)∣}.
It then follows that

∣θ(v) − 1∣ = ∣θ(vb) − θ(b)∣ ⋅ ∣θ(b)∣−1 ≤ ∥vb − b∥ ⋅ ∣θ(b)∣−1 ≤ є

and therefore

∥(a, b)(0, v) − (a, b)∥ = ∥θ(v)a − a, vb − b)∥
≤ ∣θ(v) − 1∣ ⋅ ∥a∥ + ∥vb − b∥
≤ є(∥a∥ + 1).

Clearly, (̂0, v) has compact support.
Now, assume that b ∈ k(θ). _en, again using that B satisûes Ditkin’s condition

at inûnity, there exists w1 ∈ B such that ∥w1b − b∥ ≤ є and ŵ1 has compact support
in ∆(B). Moreover, since k(θ) has an approximate identity, there exists w2 ∈ k(θ)
with ∥w2(w1b) −w1b∥ ≤ є. _en v = w1w2 ∈ k(θ) satisûes

∥vb − b∥ ≤ ∥w2(w1b) −w1b∥ + ∥w1b − b∥ ≤ 2є,

and v̂ has compact support in ∆(B). Next, since A has an approximate identity, there
exists u ∈ A such that ∥ua − a∥ ≤ є. _en

∥(a, b)(u, v) − (a, b)∥ = ∥(au − a, bv − b)∥ = ∥au − a∥ + ∥vb − b∥ ≤ 3є.

Finally, (̂u, v) has compact support in ∆(A ×θ B) since (̂u, v)(0,ψ) = v̂(ψ), v̂ has
compact support in ∆(A) and ∆(A) × {0} ∪ {(0, θ)} is compact.

_is completes the proof.

Most likely, the hypotheses on θ and B in Lemma 4.6 do not imply that {θ} is a
Ditkin set for B. However, as we shall see next, the converse conclusion is true.

Lemma 4.7 _e singleton {(0, θ)} is a Ditkin set for A ×θ B if and only if ∅ is a
Ditkin set for A and {θ} is a Ditkin set for B.

Proof Suppose ûrst that {(0, θ)} is a Ditkin set for A ×θ B. It then follows from
[12,_eorem 5.2.7(i)] that {θ} is a Ditkin set for B. To see that also ∅ is a Ditkin set
for A, let a ∈ A and є > 0 be given. Since (a, 0) ∈ k((0, θ)) and {(0, θ)} is a Ditkin
set, there exist (x , y) ∈ A×θ B and an open subsetV of ∆(A×θ B) such that (0, θ) ∈ V ,
V has compact complement and

є ≥ ∥(a, 0) − (a, 0)(x , y)∥ = ∥a − ax + θ(y)∥ = ∥a − ax∥.

Herewehaveused that ŷ(θ) = (̂x , y)(0, θ) = 0. For any ϕ ∈ V ,wehave (̂x , y)(ϕ, θ) =
x̂(ϕ) + ŷ(θ) = x̂(ϕ). So x̂ vanishes on the open subset U = V ∩ (∆(A) × {θ}) of
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∆(A) × {θ}. Furthermore, U has compact complement since

(∆(A) × {θ}) ∖U = [∆(A) × {θ} ∪ {(0, θ)}] ∖U
and (∆(A) × {θ}) ∪ {(0, θ)} is closed in ∆(A×θ B). Since a and є are arbitrary, this
shows that ∅ is a Ditkin set for A.
Conversely, assume that {θ} is a Ditkin set for B and ∅ is a Ditkin set for A, and

let (a, b) ∈ k((0, θ)) and є > 0 be given. _en b̂(θ) = 0 and hence there exists v ∈ B
such that ∥bv − b∥ ≤ є and v̂ has compact support K disjoint from {θ}. Also there
exists u ∈ A such that ∥au − a∥ ≤ є and û has compact support, say C, in ∆(A). _en,
since b, v ∈ k(θ),

∥(a, b)(u, v) − (a, b)∥ = ∥au − a∥ + ∥bv − b∥ ≤ 2є.

Moreover, (̂u, v)(ϕ, θ) = û(ϕ) = 0 on (∆(A) ∖ C) × {θ} and (̂u, v)(0,ψ) = v̂(ψ) =
0 for all ψ ∈ ∆(B) ∖ K. _us (̂u, v) has compact support not containing {(0, θ)}.
Consequently, {(0, θ)} is a Ditkin set for A×θ B.

_e following lemma might be folklore. However, being unaware of a reference,
we include the short proof.

Lemma 4.8 Let C be a regular commutative Banach algebra such that, for some
ω ∈ ∆(C), {ω} is a Ditkin set. _en ∅ is a Ditkin set.

Proof By regularity of C, there exists e ∈ C such that ê(ω) = 1 and ê has compact
support in ∆(C). Now, let x ∈ C and є > 0 be given. _en y = x − ex ∈ k(ω), and
hence we ûnd v ∈ k(ω) such that ∥yv − y∥ ≤ є and v̂ has compact support disjoint
from {ω}. _en the element u = v + e − ev of C satisûes

∥xu − x∥ = ∥(x − ex)v − (x − ex)∥ ≤ є
and û has compact support in ∆(C).

5 Weak Spectral Sets for A×θ B
In connection with the union problem, that is the question of whether the union of
two sets of synthesis is again a set of synthesis,Warner [30] introduced and studied the
following more general concept. A closed subset E of ∆(A) is called a weak spectral
set or set of weak synthesis if there exists n ∈ N such that an ∈ j(E) for each a ∈
k(E). As shown in [30, _eorem 1.2] and [1, footnote 7, p. 885], this is equivalent to
k(E)/ j(E) being nilpotent. Adopting the notation of [30], we let ξ(E) denote the
smallest such number n and call it the characteristic of E. So E is a spectral set if and
only if ξ(E) = 1. We say that weak spectral synthesis holds for A if every closed subset
of ∆(A) is a weak spectral set. _e interest in and relevance of weak spectral sets and
weak spectral synthesis arises from the fact that there exist severalBanach algebras for
which weak spectral synthesis holds, whereas spectral synthesis fails. For examples,
see [11, Section 1]. Also, the sphere Sn−1 ⊆ Rn , n ≥ 3, L. Schwartz’s classical example
of a nonspectral set for L1(Rn) (see [23, 7.3.1 and 7.3.2]), is a weak spectral set with
characteristic ξ(Sn−1) = ⌊ n+1

2 ⌋ [29,_eorem 3]. Another important feature of the class
of weak spectral sets is that it is closed under the formation of ûnite unions. Actually,
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for any two weak spectral sets E and F, ξ(E ∪ F) ≤ ξ(E) + ξ(F) [30, _eorem 2.2]
(see [21, Corollary 3.11] for a diòerent approach).

In this sectionwe investigateweak spectral sets in the spectrumof products A×θ B,
where we continue to suppose throughout that A and B are semisimple and regular
commutative Banach algebras.
As with sets of synthesis, our aim is to describe sets of weak synthesis for A ×θ B

through sets of weak synthesis for A and B and to establish relations between the
respective characteristics. _emain results are_eorems 5.5 and 5.7 below. However,
the estimates for the characteristics of weak spectral sets in ∆(A×θ B) are not sharp
enough to subsume the results of Section 4 on sets of synthesis. We start with some
kind of analogue of Lemma 4.7 for weak spectral sets.

Lemma 5.1 _e singleton {(0, θ)} is a set of weak synthesis for A ×θ B if and only
if {θ} is a set of weak for synthesis for B and ∅A, the empty set of ∆(A), if of weak
synthesis for A. In this case,

max{ ξ(∅A), ξ({θ})} ≤ ξ({(0, θ)}) ≤ ξ(∅A)ξ({θ}).

Proof To prove the lemma, we apply the injection theorem [11, _eorem 2.2] to
A×θ B and the ideal I = A× {0}.

Suppose ûrst that {(0, θ)} is aweak spectral set for A×θ B and let n = ξ({(0, θ)}) .
_en, since B = A ×θ B/I, {θ} is a weak spectral set for B and ξ({θ}) ≤ n [11, _e-
orem 2.2(i)]. To see that also ξ(∅A) ≤ n, let a ∈ A and є > 0 be given. _en
(a, 0) ∈ k((0, θ)) and hence there exists (x , y) ∈ j((0, θ)) such that

є ≥ ∥(a, 0)n − (x , y)∥ = ∥an − x∥ + ∥y∥.

Moreover, x̂ has compact support in ∆(A) since, for ϕ ∈ ∆(A),

x̂(ϕ) = x̂(ϕ) + (̂x , y)(0, θ) = x̂(ϕ) + ŷ(θ) = (̂x , y)(ϕ, θ),

and the set {ϕ ∈ ∆(A) ∶ (ϕ, θ) ∈ supp (̂x , y)} is compact.
For the ’if part’ of the lemma, assume that n = ξ({θ}) <∞ and m = ξ(∅A) <∞.

Notice that then ξ(h(I)) ≤ m. Indeed, since k(h(I)) = k({0} × ∆(B)) = I, we get

k(h(I))m = Am × {0} ⊆ j(∅A) × {0}
= j(∅I) = j({0} × ∆(B))
= j(h(I)),

where the second last equation follows from the fact that the set ∆(A) × {θ} is open
in ∆(A ×θ B). Now [11, _eorem 2.2(ii)] implies that {(0, θ)} is a weak spectral set
for A×θ B and ξ({(0, θ)}) ≤ nm.

Lemma 5.1 generalizes Proposition 3.3 of [19].

Lemma 5.2 Let C be a regular and semisimple commutative Banach algebra and E
a closed subset of ∆(C). Let ω ∈ ∆(C) and I = k(ω), and suppose that {ω} is a weak
spectral set for C.
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(i) If E is a weak spectral set for C, then E ∩ ∆(I) is a weak spectral set for I and
ξ(E ∩ ∆(I)) ≤ ξ(E) + ξ({ω}). If, in addition, ∅ is a Ditkin set for C, then
conversely ξ(E ∩ ∆(I)) ≥ ξ(E).

(ii) If E ∩ ∆(I) is a weak spectral set for I and ∅ is a Ditkin set for C, then E is weak
spectral set for C with ξ(E) ≤ ξ(E ∩ ∆(I)).

Proof Observe that for any closed subset E of ∆(C),

(5.1) k(E ∪ {ω}) = k(E ∩ ∆(I)) and j(E ∪ {ω}) = j(E ∩ ∆(I)).

_e ûrst equation in (5.1) and j(E ∪ {ω}) ⊆ j(E ∩ ∆(I)) being clear, consider any
x ∈ j(E ∩ ∆(I)). _en the support K of x̂∣∆(I) is compact in ∆(C) and satisûes
K ∩ (E ∩ ∆(I)) = ∅. _en ∆(C) ∖ K is open in ∆(C) and contains E ∪ {ω}, and x̂
vanishes on ∆(A) ∖ K. Consequently, x ∈ j(E ∪ {ω}).

Now (5.1) implies that E ∩∆(I) is a weak spectral set for I if and only if E ∪ {ω} is
a weak spectral set for C, and in this case ξ(E ∪ {ω}) = ξ(E ∩ ∆(I)).

Turning to the proof of (i), suppose that E is a weak spectral set for C. _en, since
{ω} is a weak spectral set, so is the union E ∪ {ω} and ξ(E ∪ {ω}) ≤ ξ(E)+ ξ({ω}).
_e ûrst part of the proof implies that E ∩ ∆(I) is a weak spectral set for I and

ξ(E ∩ ∆(I)) = ξ(E ∪ {ω}) ≤ ξ(E) + ξ({ω}).

Moreover, if in addition ∅ is a Ditkin set for C, then ξ(E) ≤ ξ(E ∪ {ω}) by [11,
Corollary 2.3], since E is open and closed in E ∪ {ω}. _is completes the proof of (i).

(ii) If E ∩ ∆(I) is a weak spectral set for I, then E ∪ {ω} is one for C, and
ξ(E ∪{ω}) = ξ(E ∩∆(I)) by the ûrst part of the proof. Finally, if ω ∉ E then, since∅
is a Ditkin set, by [13,_eorem 2.4] E is ofweak synthesis and ξ(E) ≤ ξ(E∪{ω}).

Combining (i) and (ii) of the preceding lemma, we obtain the following.

Corollary 5.3 Let C be a regular and semisimple commutative Banach algebra and
let ω ∈ ∆(C) and I = k(ω). Suppose that {ω} is a set of synthesis and that∅ is a Ditkin
set. _en, for any closed subset E of ∆(C), E is a weak spectral set for C if and only if
E ∩ ∆(I) is a weak spectral set for I, and in this case

ξ(E) = ξ(E ∩ ∆(I)) ≤ ξ(E) + 1.

_e direct product A1 × A2 of two Banach algebras, A1 and A2 is deûned to be
the Cartesian product of A1 and A2 with componentwise operations and the norm
∥(a1 , a2)∥ = ∥a1∥ + ∥a2∥. _en

∆(A1 × A2) = (∆(A1) × {0}) ∪ ({0} × ∆(A2)),

which is homeomorphic to the topological sum of ∆(A1) and ∆(A2).

Lemma 5.4 Let A1 and A2 be regular and semisimple commutative Banach algebras,
and for i = 1, 2, let E i be a closed subset of ∆(A i). Suppose that A1 ×A2 satisûesDitkin’s
condition at inûnity. _en E1 ∪ E2 is a weak spectral set for A1 × A2 if and only if E i is
a weak spectral set for A i , i = 1, 2, and then ξ(E1 ∪ E2) = max{ξ(E1), ξ(E2)}.
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Proof Since ∆(A1 × A2) is the disjoint union of the two open subsets ∆(A1) and
∆(A2) and ∅ is a Ditkin set for A1 × A2, it follows from [13, _eorem 2.4] and [13,
_eorem 2.8] that

ξ(E1), ξ(E2) ≤ ξ(E1 ∪ E2) ≤ max{ξ(E1), ξ(E2)},
as required.

Lemmas 5.2 and 5.4 and Corollary 5.3 now quickly lead to our ûrst main result on
weak spectral sets for A×θ B.

_eorem 5.5 Let A and B be regular and semisimple commutative Banach algebras
and θ ∈ ∆(B). Suppose that A satisûes Ditkin’s condition at inûnity and that {θ} is a
Ditkin set for B. Let E be a closed subset of ∆(A×θ B) and set, as in Corollary 4.4,

F = {ϕ ∈ ∆(A) ∶ (ϕ, θ) ∈ E} and G = {ψ ∈ ∆(B) ∶ (0,ψ) ∈ E}.
If E is a weak spectral set for A×θ B, then
(i) F is of weak synthesis for A and ξ(F) ≤ ξ(E) + 1;
(ii) G is a weak spectral set for B and ξ(G) ≤ ξ(E) + 1.

Proof We apply Lemma 5.2(i) to the algebra C = A×θ B and its ideal I = A× k(θ) =
k((0, θ)). Since, by Lemma 4.7, {(0, θ)} is a Ditkin set for A ×θ B, it follows from
Corollary 5.3 that E ∩ ∆(I) is a weak spectral set for I and ξ(E ∩ ∆(I)) ≤ ξ(E) + 1.

Note next that I satisûes Ditkin’s condition at inûnity, since both A and k(θ) have
this property, and that

E ∩ ∆(I) = [F × {θ}] ∪ [{0} × (G ∖ {θ})].
_en Lemma 5.4 yields that F and G ∖ {θ} are weak spectral sets for A and k(θ),
respectively, and

max{ ξ(F), ξ(G ∖ {θ})} ≤ ξ(E ∩ ∆(I)) ≤ ξ(E) + 1.

_is in particular proves (i), and applying Lemma 5.2(ii) to C = B and the ideal k(θ),
it follows that G is a weak spectral set and ξ(G) ≤ ξ(G ∖ {θ}) provided that B sat-
isûes Ditkin’s condition at inûnity. However, in the present situation, this is true by
Lemma 4.8 since {θ} is a Ditkin set.

For any commutative Banach algebra C, let ξC ∈ N ∪ {∞} be deûned by
ξC = sup{ξ(E) ∶ E ⊆ ∆(C) closed}.

With this notation, we conclude the following from _eorem 5.5.

Corollary 5.6 Assume A satisûesDitkin’s condition at inûnity and {θ} is a Ditkin set
for B. _en, if weak spectral synthesis holds for A ×θ B, it also holds for A and B, and
max{ξA, ξB} ≤ 1 + ξA×θB .

We continue this section with converses to _eorem 5.5 and Corollary 5.6.

_eorem 5.7 Let E be a closed subset of ∆(A×θ B), and let F ⊆ ∆(A) andG ⊆ ∆(B)
be deûned as in _eorem 5.5. Suppose that F and G are weak spectral sets for A and B,
respectively.
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(i) If (0, θ) ∈ E, then the set E is of weak synthesis for A×θ B and

ξ(E) = max{ξ(F), ξ(G)}.

(ii) Suppose that (0, θ) ∉ E and that {θ} is a weak spectral set for B and that A×θ B
satisûes Ditkin’s condition at inûnity. _en E is of weak synthesis for A×θ B and

ξ(E) ≤ max{ ξ(F), ξ(G), ξ({θ})} .

Proof (i) Note ûrst that for any (a, b) ∈ A ×θ B and n ∈ N, we have (a, b)n =
( an + θ(b)p(a), bn) , where p(a) = 0 if n = 1 and p(a) is a polynomial in a for
any n ≥ 1. Now let n = max{ξ(F), ξ(G)} and assume that (a, b) ∈ k(E). _en
θ(b) = (̂a, b)(0, θ) = 0 as (0, θ) ∈ E, and therefore

(a, b)n = (an , bn) ∈ j(F) × j(G).

_us, given є > 0, there exist x ∈ j(F) and y ∈ j(G) such that ∥an − x∥ ≤ є and
∥bn − y∥ ≤ є, and hence ∥(a, b)n − (x , y)∥ ≤ 2є.

It remains to show that (x , y) ∈ j(E). To that end, letU be an open subset of ∆(A)
such that F ⊆ U , ∆(A) ∖ U is compact and x̂ vanishes on U . Similarly, let V be an
open subset of ∆(B) such that G ⊆ V , ∆(B)∖V is compact and ŷ vanishes on V . Set

W = [U × {θ}] ∪ [{0} × V] ⊆ ∆(A×θ B).

_en, using that θ ∈ V , it is easily veriûed that (̂x , y) vanishes on W . From the
description of the topology on ∆(A×θ B) (Proposition 1.2, in particular (iv)) it follows
thatW is open in ∆(A×θ B). Finally, ∆(A×θ B)∖W is compact since both ∆(A)∖U
and ∆(B)∖V are compact. Since є > 0 was arbitrary, it follows that (a, b)n ∈ j(E) for
all (a, b) ∈ k(E). On the other hand, n is minimal with this property, since k(F) ×
{0} ⊆ k(E) and {0} × k(G) ⊆ k(E). _is completes the proof of (i).

(ii) Consider Ẽ = E ∪ {(0, θ)} and G̃ = G ∪ {θ}. _en ξ(Ẽ) = max{ξ(F), ξ(G̃)}
by (i), and since ∅ is a Ditkin set for B, ξ(G̃) ≤ max{ ξ(G), ξ({θ})} [13, _eo-
rem 2.8]. On the other hand, since A ×θ B satisûes Ditkin’s condition at inûnity,
ξ(E) ≤ ξ(Ẽ) [13, Corollary 2.5]. It follows that

ξ(E) ≤ max{ξ(F), ξ(G̃} ≤ max{ ξ(F), ξ(G), ξ({θ})} ,

as claimed.

Corollary 5.8 Suppose that A×θ B satisûes Ditkin’s condition at inûnity. _en weak
spectral synthesis holds for A×θ B if weak spectral synthesis holds for both A and B. In
this case,

ξA×θB ≤ max{ξA, ξB}.

Proof _e statements are immediate consequences of parts (i) and (ii) of _eo-
rem 5.7.
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