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We present a theoretical and numerical stability analysis for a piston-driven planar
shock against two-dimensional perturbations. The results agree with the well-established
theory for isolated planar shocks: in the range of hc < h < 1 + 2M2, where h is the
D’yakov–Kontorovich (DK) parameter related to the slope of the Rankine–Hugoniot
curve, hc is its critical value corresponding to the onset of the spontaneous acoustic
emission (SAE) and M2 is the downstream Mach number, non-decaying oscillations
of shock-front ripples occur. The effect of the piston is manifested in the presence
of additional frequencies occurring by the reflection of the sonic waves on the piston
surface that can reach the shock. An unstable behaviour of the shock perturbation is
found to be possible when there is an external excitation source affecting the shock,
whose frequency coincides with the self-induced oscillation frequency in the SAE regime,
thereby being limited to the range hc < h < 1 + 2M2. An unstable evolution of the shock
is also observed for planar shocks restricted to one-dimensional perturbations within
the range 1 < h < 1 + 2M2. Both numerical integration of the Euler equations via the
method of characteristics and theoretical analysis via Laplace transform are employed to
cross-validate the results.

Key words: gas dynamics, shock waves

1. Introduction

Shock waves are mechanical waves that move supersonically with respect to the fluid ahead
of them and across which flow properties change abruptly. They play a dominant role in
most mechanical flow problems characterised by high-rate drive. Their existence has been
observed in a wide range of scales, from microscopic structures to astronomic events and
in the four states of matter (Glass 1974; Krehl 2009; Fortov 2021). A deep understanding

† Email address for correspondence: chuete@ing.uc3m.es

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 964 A33-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

37
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:chuete@ing.uc3m.es
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.373&domain=pdf
https://doi.org/10.1017/jfm.2023.373


A. Calvo-Rivera, A.L. Velikovich and C. Huete

of how these sudden compressions form, evolve and interact with the surrounding flow
and the shocked medium has been pivotal in the progress of many areas, including
aerodynamics, propulsion, detonation science, ballistics, inertial confinement fusion or
astrophysics, to name a few.

In most practical applications that involve high-Mach-number shocks, the flow is seldom
free from disturbances as these perturbations can arise from various sources, including the
inlet conditions, the presence of boundary layers, surface roughness or other imperfections.
Then, it is natural to wonder whether these disturbances can affect the shock front
dynamics and ultimately trigger an instability in the shock evolution, producing a wrinkled
or rippled shock front shape or its decomposition into other flow structures. The shock
fronts in atmospheric air and shock pressures accessible with supersonic projectiles, such
as bullets or shock tubes, turned out to be stable, which means that perturbations of their
shape decay with time. This is evidenced by the remarkably smooth and regular shapes of
observed shock fronts, starting from the earliest images of shock fronts in the air recorded
by Mach & Salcher (1887). This is true even when the supersonic flow producing the
shock wave is very non-uniform, such as the rupture of the diaphragm in a shock tube, see
figure 66 in Glass (1974). Shock stability theoretical studies started in the 1940s (Roberts
1945; Freeman 1955; Zaidel’ 1960; Nikolaev 1965) established that the ripples on a planar
steady shock front driven by a piston into a uniform ideal gas with a constant adiabatic
exponent γ decay with time as t−3/2, or t−1/2 in the strong-shock limit. The consideration
of nonlinear disturbances may lead to different results in what concerns the evolution
of a corrugated planar shock, see Majda & Rosales (1983), Clavin (2013) and Clavin &
Searby (2016). Recent studies, such as those conducted by Lodato, Vervisch & Clavin
(2016) and Shen et al. (2021), have examined planar shocks driven by a weakly nonlinear
corrugated piston moving in an ideal gas. These studies have found that the shock may
undergo a transformation that leads to the formation of triple points, which propagate
in the transverse direction at a phase velocity that is similar to the speed of sound in
the shocked gas. If the initial disturbances are small enough, the linear ideal-fluid theory
remains valid within its applicable range since the emergence time of the Mach stems from
the triple points is inversely proportional to the initial shock corrugation amplitude.

If the shocked material’s equation of state (EoS) differs from that of an ideal gas, then
the stability of the shock front cannot be guaranteed as the shape of the Rankine–Hugoniot
(RH) curve, which sets the stability boundaries, varies according to the EoS, as explained
in the following. The shock-front instability criteria were derived in the pioneering
works of D’yakov (1954) and Kontorovich (1957). They identified two possible kinds of
instability. For one, D’yakov and Kontorovich (DK) predicted an exponential growth of
perturbations, whereas the other featured a neutral stability. The latter is referred to as a
special form of shock wave instability, ‘although there is here no instability in the literal
sense: the perturbation (ripples), once created on the surface, continues indefinitely to
emit waves without being either damped or amplified’ Landau & Lifshitz (1987), and for
this specific property this regime is also coined spontaneous acoustic emission (SAE). As
Landau & Lifshitz (1987) noted, SAE implies that the reflection coefficient of the sonic
waves incident on the shock front from downstream becomes infinite for certain values of
the incidence angle. This is an important aspect to consider as undamped sonic waves that
are reflected from the shock greatly enhance acoustic coupling, leading to a significant
amplification of the supporting mechanism’s influence on shock dynamics.

A necessary but not sufficient condition for the shock stability, which must be
satisfied for any EoS, is that it has to be evolutionary, i.e. the upstream and downstream
Mach numbers in the shock-stationary reference frame must satisfy M1 > 1 (supersonic
upstream) and M2 < 1 (subsonic downstream), respectively. The EoS-dependent stability
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Figure 1. Qualitative example of an arbitrary RH curve. The angles of the RH curve βRH and the
Rayleigh–Michelson line βRM are identified.

criteria are expressed via the DK parameter

h = p2 − p1

V1 − V2

dV2

dp2

∣∣∣∣
RH

= −u2
2
∂ρ2

∂p2

∣∣∣∣
RH

= − tanβRM

tanβRH
(1.1)

that measures the slope of the RH curve (βRH) (later referred to simply as Hugoniot)
relative to the Rayleigh–Michelson straight line (βRM) on the {V, p} plane, as depicted in
figure 1. Here, p, ρ, V = 1/ρ and u denote the pressure, density, specific volume and fluid
velocity with respect to the shock front, respectively, subscripts 1 and 2 refer to pre- and
post-shock states, and the derivatives are calculated along the Hugoniot curve with the
pre-shock pressure and density fixed. For an ideal-gas EoS, h = −1/M2

1, which means
that h is bounded by −1 and 0 in the weak and strong shock limits, respectively. For
different EoS, we refer to the appendix in Huete et al. (2021), where the evaluation of the
function h is done for a van der Waals (vdW) EoS and for the three-term EoS for simple
metals, including aluminium and copper.

Stability of the shock front is predicted if −1 < h < hc, where

hc = 1 − M2
2 (1 + R)

1 − M2
2 (1 − R) , (1.2)

and R = ρ2/ρ1 is the shock density compression ratio. Shock fronts are exponentially
unstable if h < −1 or h > 1 + 2M2. For the range hc < h < 1 + 2M2, shock
perturbations with certain wavevectors are predicted to oscillate at constant amplitude,
generating SAE downstream from the shock front. For an ideal-gas EoS, hc =
−1/(2M2

1 − 1), and the stability criterion is satisfied for any value of γ and any finite
shock strength M1, which is fully consistent with the experimentally established stability
of shock front in air and other gases, see above. In fact, no examples of EoS satisfying
the instability criteria were known at the time of the original DK work, which prompted
Landau & Lifshitz (1959) to note that the shock-front instability ‘can occur only for certain
very special forms of the shock adiabatic, which seem hardly ever to occur in Nature’.

The research that followed revealed quite a few examples of realistic EoS satisfying
the instability criteria within specific parameter ranges. In the following, we do not
discuss the exponential instability. As noted by Gardner (1963) and elaborated on by
Menikoff & Plohr (1989) and Kuznetsov (1989), it corresponds to an instant splitting
of a single unstable shock front into a sequence of stable simple waves, typically
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linked to a shock-induced phase transformation. Instead, we focus on the parameter
range corresponding to non-decaying, neutrally stable shock ripple oscillations and SAE.
The first example of a realistic EoS satisfying the neutral instability criterion was
discovered by Bushman (1976) near copper’s liquid–vapour transition. Other examples
have been found since for condensed materials near the liquid–vapour transition, including
water (Kuznetsov & Davydova 1988), a fluid approximated by the vdW EoS (Bates &
Montgomery 2000) and magnesium (Lomonosov et al. 2000; Konyukhov et al. 2009);
for ionising shock waves in inert gases (Mond & Rutkevich 1994; Mond, Rutkevich &
Toffin 1997); for shock waves dissociating hydrogen molecules (Griffiths, Sandeman &
Hornung 1976; Bates & Montgomery 1999); for Gbar and Tbar pressure range shocks in
solid metals, where the shell ionisation affects the shapes of Hugoniot curves (Rutkevich,
Zaretsky & Mond 1997; Das, Bhattacharya & Menon 2011; Wetta, Pain & Heuzé 2018);
for shock fronts producing exothermic reactions, such as a detonation (Huete & Vera 2019;
Huete et al. 2020; Calvo-Rivera, Huete & Velikovich 2022). The latter is found to occur
only when net heat release is positively correlated with the shock intensity or in non-ideal
EoS. If those conditions are not met, for instance, in the case of a regular detonation
travelling at the Chapman–Jouget regime, there is no SAE as the acoustic wave propagates
in the direction parallel to the undisturbed shock, see pages 539–543 in Clavin & Searby
(2016). Analytical examples of non-ideal EoS satisfying the DK instability criteria have
been constructed ad-hoc specifically for theoretical studies of shock instabilities, see Ni,
Sugak & Fortov (1986), Konyukhov, Levashov & Likhachev (2020) and Kulikovskii et al.
(2020).

The isolated-shock stability analysis (D’yakov 1954; Kontorovich 1957; Erpenbeck
1962; Swan & Fowles 1975) assumes that the piston maintaining the shock steadiness
is far away downstream and does not affect the shock-front behaviour. Stability analysis of
a shock wave driven with a rippled piston (Roberts 1945; Freeman 1955; Zaidel’ 1960;
Nikolaev 1965) is formally inconsistent with this assumption because of the acoustic
coupling between the shock and the piston assured by the evolutionarity condition,
M2 < 1. However, in the parameter range identified by DK as exponentially stable, −1 <
h < hc, the presence of a piston does not change the conclusion about the shock-front
stability (Wouchuk & Cavada 2004; Bates 2012, 2015). Similarly, for the exponentially
unstable ranges, h < −1 and h > 1 + 2M2, a single unstable shock wave is not a
meaningful solution to the Riemann (piston) problem (Gardner 1963; Menikoff & Plohr
1989; Kuznetsov 1989), so the conclusion about its instability is not changed either.
Still, the above contradiction has to be resolved for the neutrally stable, SAE range,
hc < h < 1 + 2M2. In this parameter range, a perturbed shock front emits a constant
flux of sonic energy downstream. Whether the shock-driving piston is visualised as a rigid
surface (Roberts 1945; Freeman 1955; Zaidel’ 1960) or a free surface, where a constant
pressure is maintained (Nikolaev 1965), the sonic waves reflected back are incident upon
the shock front. Interaction with these incident sonic waves is not accounted for in the
DK analysis, cf. Landau & Lifshitz (1987), Clavin & Searby (2016) and Fortov (2021).
Can it change the DK conclusion about the neutral stability of the shock front? With the
reflection coefficient diverging for certain incidence angles at h > hc and exceeding unity
for normal incidence at 1 < h < 1 + 2M2, this is at least conceivable.

This problem has been investigated before, and there has yet to be a consensus. On the
one hand, Wouchuk & Cavada (2004), who studied this problem for hc < h < 1 − 2M2

2,
did not find any qualitative difference in the shock-front perturbation behaviour when a
piston is involved. On the other hand, some studies indicate that the piston creates genuine
instability. Fowles & Swan (1973) and Kuznetsov (1984) predicted a power-law instability
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growth for h > 1. Bates (2015) found that the presence of a piston leads to a linear
growth of shock perturbations in the whole range hc < h < 1 + 2M2. For the same range,
Egorushkin (1984) demonstrated that the reflection of spontaneously emitted sonic waves
from entropic and vortical perturbations left downstream leads to an explosive nonlinear
instability of a neutrally stable (in the linear approximation) shock front. Huete et al. (2021)
studied the linear stability of steady accretion shock waves in spherical and cylindrical
geometry, where the centre or axis of symmetry plays the role of a rigid piston, and the
shock steadiness is maintained by the implosion of a pre-shock material at a constant
velocity. We found a power-law growth of shock ripples for hc < h < 1 + 2M2, with the
power index increasing from zero to infinity as the DK parameter h varies from the lower to
the upper boundary of this range. While this study concentrates on steady planar shocks,
we have made an effort to conduct a thorough comparison with steady cylindrical and
spherical shocks throughout the text. To avoid any potential confusion in terminology,
it is important to note that the terms planar, cylindrical and spherical are utilised to
characterise the base-flow configurations. In contrast, one-dimensional is used to describe
perturbations along the shock propagation direction, whereas two- or three-dimensional
disturbances refer to perturbations along coordinates that are perpendicular to the shock
propagation direction.

The present paper revisits the problem in a planar geometry, hoping to put the
controversy to rest. For this purpose, we use three independent approaches for solving the
appropriate initial value problem in the linear regime. First, the linear Euler equations are
numerically integrated with the method of characteristics, providing the spatiotemporal
dependence of all the variables of interest, in particular, the pressure field in the whole
domain. Second, the Euler equations are analytically solved using the Laplace transform
as in Wouchuk & Cavada (2004). This method enables the calculation of both transient
and long-time asymptotic expressions through the inverse Laplace transform and Bessel
series. Third, an analytical solution is obtained through a Taylor series in time, as done
by Velikovich (1996) and Cobos-Campos & Wouchuk (2017), which exhibits excellent
agreement with all analytical and numerical solutions. Based on our analysis, we have
drawn conclusions that are outlined in figure 14 and summarised in the following.

(i) A solid piston does not change qualitatively the character of the oscillatory
solution with two-dimensional perturbations in the whole range hc < h < 1 + 2M2,
although its presence can create additional oscillation frequencies. Resonances may
appear when the piston itself oscillates at a constant frequency, affecting the shock.
This resonant excitation induces a linear growth of the shock ripple amplitude.

(ii) The power law instability at 1 < h < 1 + 2M2 described by Fowles & Swan (1973)
and Kuznetsov (1984) manifests itself only for planar shocks with one-dimensional
perturbations, characterised by sonic waves whose wavenumber vector is aligned
with the shock propagation direction.

The paper is organised as follows. Section 2 presents the problem formulation of the
linearised Euler equations subject to the piston and shock boundary conditions. Section 3
provides the solution of the pressure perturbations at the shock and at the piston surface for
some distinguished cases. Section 4 addresses the initial value problem trough the Laplace
transform technique. Both direct inverse transformation and the solution via Bessel series,
with the solution placed in Appendix A, are obtained and compared with the numerical
results. In some cases, the analytic solution is expanded in Taylor series in time. The
possibility of shock resonance is studied in § 5. Finally, an overall chart of the solutions
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Figure 2. Sketch of the shape-modulated piston driving a rippled shock.

is offered in the conclusions in § 6, which includes the pure one-dimensional problem
analysed in Appendix B.

2. Problem formulation

Let us consider first the case of a piston moving to the right with velocity Up, as sketched
in figure 2, supporting a planar shock that moves with velocity D, both velocities measured
in the laboratory reference frame (xl, t). In the absence of perturbations, the planar shock
changes the uniform upstream properties of the gas (subscript 1) to uniform conditions
downstream (subscript 2), with that change being determined by the RH relationships
given by for the mass, momentum and energy conservation equations, namely

ρ1D = ρ2(D − Up), (2.1a)

p1 + ρ1D2 = p2 + ρ2(D − Up)
2, (2.1b)

E1 + p1

ρ1
+ 1

2
D2 = E2 + p2

ρ2
+ 1

2
(D − Up)

2, (2.1c)

where ρ, p and E refer to density, pressure and internal energy functions, respectively.
In the shock reference frame, the velocities are conveniently denoted by u1 = D and
u2 = D − Up. Assuming that internal energy is a known function of pressure and density
E( p, ρ), and so is the speed of sound c( p, ρ) by the corresponding EoS, the RH equations
determine the post-shock variables on condition that one shock property is known. In the
case of a piston-driven shock, the relevant information is obtained from the piston velocity
Up. However, in different contexts, other parameters may be more appropriate, such as
pressure p2 for blast waves or D for steady shocks encountering a known supersonic free
stream. Regardless of the case, some dimensionless parameters that characterise the flow
can be identified: the upstream Mach number M1 = u1/c1 > 1, post-shock Mach number
M2 = u2/c2 < 1, the density jump R = ρ2/ρ1 and the pressure jump P = p2/p1.

Let us now consider a corrugated piston in the form ψp( y) = ψp0 cos(ky), where k =
2π/λ is the perturbation wavenumber and ψp0 is the perturbation amplitude. Under the
linear theory, the small parameter ε = ψp0k � 1 determines the order of magnitude of
the perturbations at the shock front and those in the compressed gas. Then, the shock
perturbation amplitude can be defined as ψs(t, y) = ψs(t) cos(ky), where ψs(t) measures
the deviation from planarity of the shock front. Similarly, the streamwise and transverse
velocity components in the post-shock gas reference frame, the post-shock pressure and

964 A33-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

37
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.373


On the stability of piston-driven planar shocks

density are expanded to first order in ε as

u(x, y, t) = εc2ū(x, t) cos(ky), (2.2a)

v(x, y, t) = εc2v̄(x, t) sin(ky), (2.2b)

p(x, y, t) = p2 + ερ2c2
2p̄(x, t) cos(ky), (2.2c)

ρ(x, y, t) = ρ2 + ερ2ρ̄(x, t) cos(ky), (2.2d)

respectively, with ū, v̄, p̄ and ρ̄ representing the dimensionless order-of-unity fluctuations.
Variables are evaluated in the reference frame moving with the post-shock gas x = xl −
Upt.

The linearised Euler conservation equations of mass, streamwise momentum, transverse
momentum and energy read as

∂ρ̄

∂τ
+ ∂ ū
∂ x̄

+ v̄ = 0, (2.3a)

∂ ū
∂τ

+ ∂ p̄
∂ x̄

= 0, (2.3b)

∂v̄

∂τ
− p̄ = 0, (2.3c)

∂ p̄
∂τ

= ∂ρ̄

∂τ
. (2.3d)

In this notation, the space and time coordinates have been non-dimensionalised with the
perturbation wavenumber and the post-shock speed of sound to give

x̄ = kx, ȳ = ky, τ = kc2t, (2.4a–c)

so that the linear Euler equations become parameter free. The continuity, momentum
conservation and energy conservation equations can be combined into a single,
two-dimensional periodically symmetric wave equation for the post-shock pressure
fluctuations, namely

∂2p̄
∂τ 2 = ∂2p̄

∂ x̄2 − p̄. (2.5)

Equation (2.5), also known as the Klein–Gordon/telegraphist equation, is integrated for
τ ≥ 0 within the spatiotemporal domain bounded by the piston surface, x̄ = 0, and the
shock front moving to the right x̄ = M2τ , as depicted in figure 2.

The boundary conditions at the shock front are obtained from the linearised RH jump
equations that read as

dξs

dτ
= R (1 + h)

2M2 (R − 1)
p̄s, (2.6a)

ūs = 1 − h
2M2

p̄s, (2.6b)

v̄s = M2 (R − 1) ξs, (2.6c)

ρ̄s = − h

M2
2

p̄s, (2.6d)

where h is the DK parameter defined in (1.1). In (2.6) ξs = kψs/ε is the order-of-unity
dimensionless shock displacement, whereas p̄s, ρ̄s, ūs and v̄s are, respectively, the
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dimensionless fluctuations of pressure, density, streamwise velocity and transverse
velocity immediately downstream of the shock front. The corresponding boundary
condition at the piston surface is simply given by ū(x = 0, t) = 0. Note that two other
canonical boundary conditions associated with the free surface and the isolated shock
cases could be easily adopted. The former is simply given by considering p̄(x = 0, t) = 0,
as there is no force exerted on the free surface. The latter, on the other hand, changes the
integration domain bounded by the leading reflected sonic wave travelling downstream,
x̄ = −τ , and the shock x̄ = M2τ , where the isolated shock assumption reduces to
neglecting the effect of the acoustic waves reaching the shock front from behind.

To solve the initial value problem described above for any EoS, three different methods
will be employed. First, we numerically integrate the post-shock flow using the method
of characteristics with the moving boundary condition at the shock. Second, an analytical
approach is used, involving the transformation of the differential equations into algebraic
equations in the Laplace variable space. The goal is to obtain the temporal evolution
through the corresponding inverse Laplace transform, as demonstrated by Wouchuk &
Cavada (2004). In addition, a linear stability analysis is conducted by expanding the
self-similar solution associated with the one-dimensional perturbations to a planar shock
case. This approach is particularly useful for determining shock stability when h > 1.

3. Numerical resolution by the method of characteristics

The linearised Euler equations in (2.3) can be rewritten in characteristic form as follows:

∂ j̄+

∂τ
+ ∂ j̄+

∂ x̄
= −m̄, (3.1a)

∂ j̄−

∂τ
− ∂ j̄−

∂ x̄
= −m̄, (3.1b)

∂m̄
∂τ

= j̄+ − j̄−

2
, (3.1c)

where j̄± = ū ± p̄ correspond to the Riemann invariants and m̄ = (∂v)/(∂ ȳ)(εc2)
−1

measures the transverse derivative of the lateral velocity perturbation. In (3.1a)–(3.1c),
we have made use of the periodic symmetry of the flow when writing m̄, since v =
εc2v̄(x̄, τ ) sin(ȳ). Similarly, the right-hand side in (3.1c) that includes the transverse
pressure derivative yields p̄ = (j̄+ − j̄−)/2. It is worth noting that unlike one-dimensional
flow, the values of j̄+ and j̄− cannot be considered invariant functions due to the presence
of transverse velocity perturbations m̄ in the flow. The first two equations dictate that the
functions j± evolve along the trajectories x̄ ± τ = constant, proportionally to the lateral
velocity function m̄, which also evolves by the corresponding transverse pressure gradient
along the trajectory x̄ = 0. The aftermath is that pressure perturbations can decay as they
move away from the shock, in contrast to the one-dimensional case.

The integration of (3.1a)–(3.1c), which must be initiated with the conditions j+0 = j−0 =
0 and m̄0 = M2(R − 1) at τ = 0, calls for the corresponding boundary conditions, which
take the form

j̄− = −j̄+ (3.2)
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x− = constant

x− 

x− = constant

x−  =
 M

2
τ

x−  =
 M

2
τ

Isolated shock Piston-driven shock

x− + τ = constant x− + τ = constant
x− – τ = constant

τ τ

x− 
=

 0

x− = –τ

x− 

(b)(a)

Figure 3. Sketch of the modulated piston driving a rippled shock.

at the piston x̄ = 0 and

j̄− = Rsj̄+, (3.3a)

dm̄
dτ

= Ts(j̄+ − j̄−) (3.3b)

at the shock front evaluated along the trajectory x̄ = M2τ . The coefficients read as

Rs = 1 − (1 − h)/(2M2)

1 + (1 − h)/(2M2)
and Ts = R1 + h

4
, (3.4a,b)

with the former standing for the reflection coefficient for an acoustic wave normally
incident on the shock front from behind. This reflection coefficient has also been studied
in the field of magnetohydrodynamics (MHD) by Rutkevich & Mond (1992) in § 5. For
h = 1, we have Rs = 1. If 1 < h < 1 + 2M2, we have Rs > 1, so acoustic waves are
amplified upon reflection from the shock front, indicating instability for planar geometry,
in agreement with Fowles & Swan (1973) and Kuznetsov (1984).

The consideration of a free surface modifies the boundary condition in (3.2), where the
equation must be simply changed to j̄− = j̄+ along the x̄ = 0 trajectory. For the isolated
shock case, the equation reduces to j+ = 0 along the trajectory x̄ = −τ . A sketch of the
integration domain and the characteristics trajectories is offered in figure 3, where the
absence of a supporting mechanism in the isolated shock case translates into omitting the
effect of the reflected waves moving along the trajectory x̄ − τ = constant.

Direct numerical integration of the characteristic equations provides the results
displayed in figure 4 for the particular case of R = 3 and M2 = 1/2 (that renders
hc = 0), and for different values of h corresponding to the following cases: h = −0.25
(figure 4a,b), h = 0 (figure 4c,d), h = 0.25 (figure 4e, f ), h = 0.75 (figure 4g,h), h = 1.25
(figure 4i,j) and h = 1.75 (figure 4k,l). Both pressure disturbances at the shock p̄s(τ ) =
p̄(x̄ = M2τ, τ ) (panels on the left) and at the piston p̄p(τ ) = p̄(x̄ = 0, τ ) (panels on the
right) are computed.

Two primary conclusions can be drawn from the computations presented in figure 4.
First, the shock dynamics can involve more than one frequency, depending on the value of
h. Second, the condition h > hc does not necessarily result in the growth of perturbations,
even in cases where h > 1. Note also that the slope of the pressure perturbations at τ → 0
grows with h in figure 4(a–j). On the other hand, the initial slope turns positive for the
largest h considered, see figure 4(k,l). This can be theoretically anticipated with use made
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Figure 4. Numerical solution of the pressure evolution at the shock front p̄s(τ ) and at the piston surface p̄p(τ )

for R = 3 and M2 = 1/2. The DK parameter in each panel is (a,b) h = −0.25, (c,d) h = 0, (e, f ) h = 0.25,
(g,h) h = 0.75, (i,j) h = 1.25 and (k,l) h = 1.75.
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of (2.3) and (2.6) evaluated at the instant τ = 0+ to give

b0 = dp̄s(τ )

dτ

∣∣∣∣
τ=0

= dp̄p(τ )

dτ

∣∣∣∣
τ=0

= 2M3
2(R − 1)

h − 1 − 2M2
2
, (3.5)

which diverges for

h = hm = 1 + 2M2
2, (3.6)

corresponding to h = 1.5 for M2 = 1/2. Note that this value is smaller than the limit
h = 1 + 2M2, one of the values that indicates an absolutely unstable range h > 1 + 2M2,
the other is h < −1, for which the exponential growth of shock-front perturbations
is associated with conditions that render multivalued (Erpenbeck 1962; Kuznetsov
1984) or multiwave (Kuznetsov 1989; Menikoff & Plohr 1989) solutions of the planar
Riemann/piston problem. The outcome of the numerical computations is a result of the
acoustic reverberation and the two-dimensional character of the perturbation field. A more
comprehensive explanation of the shock behaviour is presented in the following, with the
assistance of corresponding theoretical analysis.

4. Resolution via the Laplace transform

To gain a deeper understanding of the initial value problem, we can utilise the Laplace
transform method, similar to the approach taken by Wouchuk & Cavada (2004).
Manipulation of the linearised RH equations leads to the following system of equations
for the shock boundary conditions:

dξs

dτ
= σap̄s (4.1)

and

(σb + M2)
∂ p̄s

∂τ
+ (σbM2 + 1)

∂ p̄
∂x

∣∣∣∣
x=M2τ

= −M2
2 (R − 1) ξs, (4.2)

to be employed when integrating the Euler equations in the compressed gas. The factors
accompanying the pressure perturbation in (4.1) and (4.2) are conveniently expressed in
terms of the parameters

σa = R
R − 1

1 + h
2M2

and σb = 1 − h
2M2

. (4.3a,b)

Following the same mathematical treatment as employed originally by Zaidel’ (1960),
the following hyperbolic transformation

x = r sinhχ, τ = r coshχ (4.4a,b)

is employed, which serves to stretch out the integration domain in the origin, thereby
transforming the initial value problem into a boundary value problem. The linearised RH
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equations are rewritten as

dξs

dr
= σa√

1 − M2
2

p̂s, (4.5a)

l̂s = −σb
∂ p̄s

∂r
+ σdξs (4.5b)

in these new coordinates r, χ , with the auxiliary function

l̂s = 1
r
∂ p̄
∂χ

∣∣∣∣
χs

(4.6)

that accounts for the pressure gradient being evaluated at the shock front. The initial
tangential velocity created behind the shock at τ = 0 is measured with the auxiliary
function

σd = −M2
2(R − 1)√
1 − M2

2

. (4.7)

Applying (4.4a,b) to the sound wave (2.5) gives

r
∂2p̄
∂r2 + ∂ p̄

∂r
+ rp̄ = ∂ l̄

∂χ
. (4.8)

The analysis continues by applying the Laplace transform on the functions p̂ and l̂, which
renders

Π =
∫ ∞

0
p̄(r, χ)e−sr dr and Λ =

∫ ∞

0
l̄(r, χ)e−sr dr, (4.9a,b)

respectively. Then, the sound wave equation (4.8) and the function l̂(r, χ) (not evaluated
at the shock) can be written in terms of the variables s = sinh q and χ , namely

∂

∂q
(cosh qΠ)+ ∂Λ

∂χ
= 0, (4.10a)

∂

∂χ
(cosh qΠ)+ ∂Λ

∂q
= 0. (4.10b)

After some straight algebra, the above system of equations can be integrated to provide

Π(χ, q) = F−(q − χ)+ F+(q + χ)

cosh q
, (4.11a)

Λ(χ, q) = F−(q − χ)− F+(q + χ), (4.11b)

where the function F− represents the sound perturbations radiated by the shock backwards
into the compressed gas and F+ indicates the sonic waves impinging on the shock
front from behind. The relationship between the functions F− and F+ arises from the
specific choice of boundary conditions. When a rigid piston pushes the shock wave at
x = 0, the condition F− − F+ = 0 holds. On the other hand, for a free surface at x = 0,
the condition F− + F+ = 0 applies. For isolated shock waves, the boundary condition
reduces to F+ =constant, thereby being defined by the initial condition F+ = 0 since
p̄(τ = 0) = 0.
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In the Laplace variable q, the boundary condition at the shock takes the form

sinh qΛs(q)+ (σb sinh2 q + σc)Πs(q) = σd, (4.12)

where the parameter σc = σaM2
2(R − 1)/(1 − M2

2) has been introduced for convenience.
A simple form to obtain the evolution of the pressure field at the shock, and the

associated shock ripple, is to exploit the solution of the sound wave equation. In particular,
separation of variables yields Bessel functions as the family of solutions that satisfies (4.8),
namely

p̂(r, χ) =
∞∑
ν=0

[Aνeνχ + Bνe−νχ ]Jν(r), (4.13)

provided that Bessel functions of the second type must be excluded to avoid a divergent
behaviour at the origin. At the shock, defining Pν = Aνeνχs + Bνe−νχs , we have

p̂s(r, χ) =
∞∑
ν=0

PνJν(r), (4.14)

where the coefficients Pν must be calculated with the aid of the boundary condition at the
shock. The associated Laplace transform of (4.14) in the variable q, evaluated at the shock
χs, reads as

Πs(q) =
∞∑
ν=0

Pν
e−νq

cosh q
, (4.15)

where coefficients Pν can be expressed as a recurrence relationship using the Laplace
transformΠs(q) obtained below, which requires knowledge of the corresponding boundary
conditions behind the shock.

4.1. Isolated-shock boundary condition
To comprehend the effect of the piston on the evolution of the perturbed shock, it is
convenient to examine first the shock evolution in the absence of the effects of the driving
mechanism, i.e. the isolated shock boundary condition. For an isolated shock, the equation
governing the pressure field at the shock can be expressed explicitly in terms of the Laplace
variable s = sinh q as follows:

Πs(s) = σd

s
√

s2 + 1 + σbs2 + σc
, (4.16)

provided that Λs(q) = cosh qΠs(q) holds when acoustic reverberations do not occur.
The values of the complex Laplace parameter s corresponding to the poles of the

expression (4.16) denoted as s∗ = s∗
R + is∗

I in the complex plane are related by ω′ =
is∗√(1 − M2

2)kc2 to the solutions of ω′ of the dispersion equation obtained through the
normal-mode analysis (i.e. Fourier transform), see (90.10) in Landau & Lifshitz (1987).
The primed symbol ω′, not present in Landau & Lifshitz (1987) formulation, is used here
to avoid confusion with the dimensionless ω function defined below.

The isolated case is useful to determine the shock fundamental frequencies, which are
determined by the nature of the poles. In particular, the value of σb relative to σc defines
the distinguished limits. The acoustic nature of the post-shock field is responsible for the
term

√
s2 + 1 in (4.16), which introduces a branch cut in the complex plane of the Laplace
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+1 s1

sI

sR

h–1 < h <hd

hd < h <hc

h = hc

hc < h < 1 + 2M2

Figure 5. Sketch of the poles in the complex plane s∗ = sR + ±isI .

variable s. As a direct consequence, not all purely imaginary poles that are roots of this
equation are translated into undamped oscillations on the long time scale (Clavin & Searby
2016). The condition that sets the limits for stable oscillations is s = ±i, which occurs
when σb = σc. This condition, which is equivalent as saying that h = hc, reduces the
dispersion relationship to

√
s2 + 1(s + σb

√
s2 + 1) = 0. The physical implication is that

shock perturbations decay in the form τ−1/2 (Fraley 1986), instead of the regular decay
rate τ−3/2 found for h < hc (or σb > σc). There exist, as noted in Bates (2004), Clavin &
Searby (2016) and Huete & Vera (2019), two distinguished scenarios for the regular decay
case σb > σc: when σb > σc + 1/(4σc) (or h < hd), the shock ripple undergoes a faster
decay towards planarity than that occurring for σc + 1/(4σc) > σb > σc, or hd < h < hc,
where

hd = −RM2
2 + (1 − M2

2)
3/2

√
1 − R−1

1 + M2
2 (R − 1)

(4.17)

stands for DK parameter delimiting the highly damped oscillation regime h < hd, which
corresponds to the limit presented in (12.1.28) in Clavin & Searby (2016). It is important
to note that while the long-time decay of the oscillations follows a τ−3/2 pattern, the initial
damping is primarily exponential.

A simpler form to picture the role of the poles in the stability analysis is offered in
the sketch of figure 5. It depicts the poles in (4.16) by choosing the positive value s∗

I of
the actual pair of conjugates that the dispersion relationship yields. In the regular decay
regime s∗

R = 0, while s∗
R < 0 is only found for h < hd. Regardless the case, for h < hc

the amplitude of the oscillations decay with time but the frequency of the oscillation is
constant, and its branch point given by

√
s∗ 2 + 1 = 0 or s∗ = ±i. It actually refers to the

shock fundamental oscillation frequency, s0 = 1 in the r domain, or ω0 = √
(1 − M2

2) in
the temporal domain measured in a reference frame moving with the shock front tanhχs =
M2. This frequency can be estimated by measuring the time required for an acoustic
wave to travel a distance equal to one wavelength in the transverse direction. Since the
sonic wave moves at velocity c2 and the shock moves with velocity D − Up = u2 < c2,
the distance needed to travel a λ unit along the transverse direction is c2�t, while the
shock moves frontwards a distance vs�t. We have λ2 = (�t)2(c2

2 − u2
2) by construction,

that finally renders λ/(c2�t) = √
(1 − M2

2).
Permanent oscillations at the shock front occur when h > hc (or σb < σc), that is, when

the imaginary poles in (4.16) lie outside the branch cut, i.e. s∗
I > 1. It corresponds to the

first non-decaying oscillating mode, whose frequency in the r-temporal domain is given
by

s∗
I = s1 = 1

2

[√
q1 + 1√

q1

]
, (4.18)
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Piston Shock
Reflected
right-travelling wave

Radiated
left-travelling wave

êx êx

si
n
θ a

l

si
n
θ a

l

π – θal
θal

– cosθal
cosθal

1 1

M2

(b)(a)

Figure 6. Sketch of the acoustic wave radiated from the shock and reflected from the piston with the DK
frequency.

where

q1 = 2σc − σb + √
1 + 4σc (σc − σb)

1 + σb
, (4.19)

as shown in Wouchuk & Cavada (2004) and Huete & Vera (2019). These two values, which
tend to unity in the limit h → hc, can be used to compute the first DK frequency in the
τ -temporal domain: ω1 = s1

√
(1 − M2

2). The dispersion relationship of the sound wave
equation ω2

a1 = k2
a1 + 1 and the compatibility condition at the shock ω1 = ωa1 − M2ka1

allow us to write

ka1 =
ω1M2 −

√
ω2

1 − 1 + M2
2

1 − M2
2

and ωa1 =
ω1 − M2

√
ω2

1 − 1 + M2
2

1 − M2
2

(4.20a,b)

for the longitudinal wavenumber and frequency of the acoustic perturbations in the
shocked gas reference frame.

Understanding of the fundamental frequency is crucial as it appears even when there
is a supporting mechanism such as a solid piston involved in the shock evolution. For
instance, if ω1 > 1, it implies that ka1 < 0, which means that waves travel backwards in
the compressed gas reference frame and could reach the potential piston. The reflected
waves could then propagate back towards the shock, inducing additional frequencies. It is
also convenient to define now the angle between the shock propagation direction êx and
the acoustic wavevector k̂a = (cos θa1, sin θa1), namely

cos θa1 =
ω1M2 −

√
ω2

1 − 1 + M2
2

ω1 − M2

√
ω2

1 − 1 + M2
2

, (4.21)

as depicted in figure 6. It is seen that the acoustic wave will move backwards when
cos θa1 < 0, i.e. when ω1 > 1, as deduced previously. Note that the angle of the shock
fundamental frequency, given by substituting ω1 for ω0 in (4.21), is cos θa0 = M2,
thereby indicating that the streamwise component of the sound wave velocity equals the
shock velocity relative to the compressed gas, corresponding to evanescent emission as
anticipated. The role of the acoustic angle with the shock–piston coupling is discussed in
the following.

For completeness, the temporal evolution of the shock front is discussed in the
following. One option to obtain it is by computing the pressure perturbations at the shock
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with the aid of the Bessel series. When (4.16) is rewritten in the variable q, the following
recurrence relationship for the coefficients Pν in (4.15) is obtained:

Pν = 2σb − σc

1 + σb
Pν−2 + 1 − σb

1 + σb
Pν−4, (4.22)

which is initiated with only two initial values: P1 = 2/(1 + σb) and P3 = P1 + P2
1(2σb −

σc). Then, Pν can be used in (4.14) to get p̄s(τ ). However, Bessel series are not advisable
for τ 	 1 when h > hc, since they exhibit a very slow convergence. Alternatively, one
may proceed by performing the inverse Laplace transform of (4.16), namely

p̄s(r) = 1
2πi

∫ c+i∞

c−i∞
Πs(s)esr ds, (4.23)

where c is a real number to the right of the singularities of Πs and i = √−1 is
the imaginary unit. The branch-point singularities s = ±i represent the generation of
evanescent sound wave perturbations that decay asymptotically in time in much the same
way as Bessel functions. It finally renders

p̄s(τ ) = 2
π

∫ 1

0
Im

[
Πs(−iz) sin(z

√
1 − M2

2τ)

]
dz + Residues [Πs(s)] (4.24)

that involves the evaluation of the poles in the complex plane. The second term on
the right-hand side only appears for h > hc and it corresponds to the non-decaying
contribution associated with the imaginary poles placed outside of the branch cut, namely

lim
s→is1

(s − is1)Π
+
s (s)e

sr + lim
s→−is1

(s + is1)Π
−
s (s)e

−sr = p̄∞
s sin(s1r) = p̄∞

s sin(ω1τ),

(4.25)

where the superscript in Π±
s denotes the sign of the root determination ±√

s2 + 1 that
depends on the position of the pole in the complex plane. The advantage of this method is
that we can provide the long-time pressure perturbation amplitude in explicit form, namely

p̄∞
s = σd

σbs2
1 − s1

√
s2

1 − 1 − σc

s1
√

1 + 4σc(σc − σb)
, (4.26)

which can be used, along with (4.5a), to get the associated asymptotic shock ripple
amplitude.

4.2. The piston-driven shock front
When the shock boundary condition at x̄ = 0 (or χ = 0) is a driving piston, the final
expression for the Laplace transform of the pressure at the shock corresponds to the
functional equation

Πs(q) = α(q)+ β(q)Πs(q + 2χs), (4.27)

whose explicit solution is still unknown. It dictates that the value of the pressure
Laplace function at the shock depends on the value of the pressure Laplace function
with a translation of +2χs units in the frequency q variable, demonstrating the
Doppler shift effect between the shock and the reverberating surface. It is important
to note that the majority of functional equations, even those that are linear, cannot be
solved analytically. However, linear functional equations that are homogeneous and have
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continuous coefficients can often be solved analytically, such as in the case where α =
β − 1 = 0, where (4.27) indicates that Πs(q) becomes periodic. In our current situation,
the coefficients involved are complicated functions in the form of

α(q) = σd

sinh(q + 2χs)

sinh(q + 2χs)+ sinh q

σb sinh2 q + σc + cosh q sinh q
, (4.28a)

β(q) = sinh q
sinh(q + 2χs)

cosh(q + 2χs) sinh(q + 2χs)− σb sinh2(q + 2χs)− σc

σb sinh2 q + σc + cosh q sinh q
. (4.28b)

Assuming that obtaining an analytical solution is not feasible, it may be possible to
make some rearrangements to extract meaningful insights. For instance, if the functional
equation allows for a translation in the independent frequency variable q → q + 2nχs,
namely

Πs(q + 2nχs) = α(q + 2nχs)+ β(q + 2nχs)Πs[q + 2(n + 1)χs]. (4.29)

Equation (4.27) can be alternatively written as an iterative sequence to give

Πs(q) = α(q)+
∞∑

n=1

α(q + 2nχs)

n−1∏
j=0

β(q + 2jχs)+
∞∏

j=0

β(q + 2jχs) lim
q→∞

α(q)
1 − β(q)

,

(4.30)

that corresponds to a particular solution of (4.27). The limit in the last term on the
right-hand-side actually corresponds to Πs(q 	 1), which is found to be zero, even if
β → 1, as occurs for h → 1 − 2M2

2, since the function α(q) dominates the decay.

4.2.1. Asymptotic frequency analysis
By examining (4.30), it is easy to investigate whether there may be additional frequencies
present in the shock front. The first DK shock oscillation frequency is that observed in
isolated-shock conditions, q1. Any additional frequency must be also a pole (4.30), which
translates into finding the zeros in σb sinh2(q + 2nχs)+ σc + cosh(q + 2nχs) sinh(q +
2nχs) = 0. The resulting solutions are as follows:

qn = qn−1D
−2
s = q1D

−2n
s , (4.31)

that includes the Doppler shift factor

Ds = 1 + M2

1 − M2
> 1. (4.32)

Note that it lowers the value of the subsequent frequencies: qn < qn−1. In the original
Laplace variable, they read as

sn = 1
2

[√
qn + 1√

qn

]
= 1

2

[√
q1

Dn
s

+ Dn
s√
q1

]
, (4.33)

and, correspondingly, ωn = sn
√
(1 − M2

2) in the dimensionless temporal domain τ . The
corresponding values of the DK parameter h at which the additional frequencies appear at
the shock front correspond to those satisfying sn = 1:√

q1(hcn)

Dn
s

+ Dn
s√

q1(hcn)
= 2, (4.34)

where q1(h) is given by (4.19), provided that σb and σc are explicit functions of h. The first
threshold n = 1 corresponds to the SAE boundary hc1 = hc.
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The physical explanation for multifrequency shock behaviour is as follows. The piston
receives constant-amplitude sonic radiation only when cos θan < 0. For the first mode,
imposing cos θa1 < 0 is demanding the presence of left-travelling constant-amplitude
sonic waves by the DK frequency ω1. However, the condition for an additional frequency
ωn+1 to appear in the shock is harder to meet: the downstream radiated sound wave
must be able to reach the shock after reflection from the piston wall, which requires
| cos θan| >M2. This is readily seen with the aid of figure 6. Since wall reflection is
symmetric, a left-travelling sound wave moving backwards at a velocity of vax/c2 =
−M2êx (streamwise projection) will reflect upwards with the same velocity projection
and opposite sense. This sonic wave could then catch up to the shock from behind.

To illustrate the role of acoustic coupling, let us begin the analysis by gradually
increasing the value of h from h = hc = hc1 , where the relationship between cos θa
and s1(h) determines the dependence on h. As stated, when h 
 hc the shock radiates
constant-amplitude sonic waves in the same manner as in isolated-shock conditions but
with a different amplitude. The first distinguished case occurs at h = hp1, above which
the constant-amplitude sound waves radiated from the shock can reach the piston. This
value is given by cos θa1(hp1) = 0 associated with a purely transverse acoustic wave in
the piston (or compressed gas) reference frame. At the piston position x̄ = 0, the pressure
perturbation function oscillates with lower frequency by the Doppler shift effect, as stated
in the condition ωp1 = ω1/(1 − M2 cos θa1). The second distinguished scenario arises
when the second oscillation frequency appears at the shock, which occurs at h = hc2. This
condition is determined by cos θa1(hc2) = −M2, where the wave reflected at the piston
reaches the shock. The second oscillation frequency is also determined by the accumulated
Doppler shift effect through

ω2 = ω1
1 + M2 cos θa1

1 − M2 cos θa1
, (4.35)

which agrees with ω2 = s2
√
(1 − M2

2) predicted previously by the poles of the Laplace
transform in (4.33). The effect is repeated as h increases. If the value of h is high enough
to result in high shock oscillation frequencies, the second oscillation frequency at the
shock, ω2, can induce a secondary SAE that can reach the piston when cos θa2(hp2) < 0.
To evaluate this condition, (4.21) must be calculated using ω2. Likewise, the third shock
oscillation mode occurs when cos θa2(hc3) = −M2, and so on. To prove right the validity
of the previous analysis, figure 7 shows the value of the first four frequencies at the shock
(solid lines) and at the piston (dashed), along with the fast Fourier transform (FFT) values
obtained by the numerical integration in figure 4 (circles). Coloured regions identify the
domain with one (blue), two (yellow), three (green) and four (red) frequencies at the shock.
Grey circles refer to the FFT values given by the transient contribution, which corresponds
to the shock/piston fundamental oscillation frequency. Note, however, that h → 1 + 2M2
will be associated with an infinite number of frequencies, a token of the change in the
character of the solution towards an exponential growth. Note that this criterion, which is
equivalent as evaluating the poles in (4.30), makes no use of α(q) nor β(q) explicitly, thus
being a proof of consistency.

4.2.2. Transient evolution
We can use various methods to calculate the temporary changes in the perturbed shock
from τ = 0, as discussed previously in the context of the isolated-shock condition. On
one side, we can make use of the Bessel series through (4.14). The corresponding Pν
values can be obtained with the help of (4.15), (4.27) and (4.28), and their values are
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3.5 Numerical FFT
Incipient shock mode
Incipient piston mode3.0

2.5

2.0

1.5

1.0

0.5
0

hc1 = hc
hp1

ωp0 = 1 ω0 = �1– M 2
2

ω1

ω2

ω3

ω4

ωp1

ωp2

ωp4

ωp3

hc2
hp2

hc3
hp3

hc4

h
0.5 1.0 1.5 2.0

Figure 7. Theoretical prediction of the pressure oscillation frequencies at the shock and at the piston surfaces.
Numerical values are those associated with figure 4.

shown in Appendix A. However, this method has a significant disadvantage: for h > hc,
the slow convergence of (4.15) makes it impractical to use for computing long-time shock
evolution. Hence, the Bessel-series solution can only be used to calculate short-time
transient evolution, as demonstrated below.

Although there is no explicit closed-form equation for Πs(q), we can still obtain an
expression for the transient response by performing an inverse Laplace transform of (4.24).
This expression takes into account the decaying contribution associated with the shock
fundamental frequency, as well as the potential residues related to frequencies such as s1,
s2 and so on. Unlike the isolated-shock case, the functionΠs(q) is not a closed expression,
see (4.30). It is readily seen that neglecting the decaying contribution in the long time
leads to

p̄s(τ 	 1) =
n∑

j=1

[
lim

s→isj
(s − isj)Π

+
s (s)e

sr + lim
s→−isj

(s + isj)Π
−
s (s)e

sr
]

=
n∑

j=1

p̄∞
j sin(ωjτ) = p̄∞

1 sin(ω1τ)+ p̄∞
2 sin(ω2τ)+ · · · , (4.36)

which accounts the amplitudes and frequencies that may appear depending on the value of
h, as depicted in figure 7. For example, for hc < h < hc2 , the asymptotic solution takes the
form of a single-oscillation harmonic, p̄∞

1 sin(ω1τ), much in the same way as the isolated
shock, yet additional modes should be incorporated when h is sufficiently high, as found in
figure 7. Evaluating the residues of (4.27) yields the following expression for the long-time
asymptotic amplitude of the first DK mode:

p̄∞
1 = σd√

1 + 4σc(σc − σb)

⎧⎨
⎩ 1

s1
+ 1

s1 coshχs +
√

s2
1 − 1 sinhχs

+
[√

s2
1 − 1 coshχs + s1 sinhχs − σb

(
s1 coshχs +

√
s2

1 − 1 sinhχs

)

+ σc

(
s1 coshχs +

√
s2

1 − 1 sinhχs

)−1
]
Πs

[
q = ln

(
i
(

s1 +
√

s2
1 − 1

))
+ 2χs

]}
,

(4.37)
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Figure 8. Theoretical prediction of the first two asymptotic pressure oscillation amplitudes.

where the function Πs can be evaluated from (4.30). Obtaining additional mode
amplitudes p̄∞

2 , p̄∞
3 and so on only demands additional relatively long algebra and

objectively long expressions, so their final formulae are omitted for the sake of brevity.
However, some numerical values are computed in figure 8 for the two first modes: p̄∞

1
and p̄∞

2 . Two different cases have been chosen: the solid line corresponds to R = 3 and
M2 = 1/2 (in agreement with figure 7), and the dot-dashed line corresponds to R = 6
and M2 = 0.378 (corresponding to the strong-shock limit values of air), although the
parameter h is used as a free parameter. Clearly, the use of a specific EoS will interrelate
the three parameters R, M2 and h. The two cases in figure 8 are purposely chosen to give
hc = hc1 = 0 to facilitate the analysis.

The thresholds for the second oscillation mode at the shock are hc2 = 1.059 (solid)
and hc2 = 0.6 (dot-dashed). The qualitative behaviour of the asymptotic amplitudes p̂∞

1
and p̂∞

2 is similar: they grow monotonically up to the vertical asymptote placed at
h = 1 + 2M2, corresponding to h = 2 and h = 1.76 for the solid and dot-dashed cases,
respectively. Another noteworthy observation from figure 8 is that the asymptotic shock
pressure amplitudes do not show any significant qualitative differences for h values greater
than or equal to 1 − 2M2

2 or h ≥ 1. The former is associated with the validity of (4.30),
where the convergence of this expression may not be guaranteed. The second condition
refers to the point at which one-dimensional perturbed planar shocks become unstable
due to the cumulative effect of the acoustic shock–piston reverberations. This happens
when the reflection coefficient at the shock (as indicated by the parameter Rs in (3.4a,b))
exceeds unity. A more detailed explanation is offered in the next section. Figure 8 also
identifies, through the circle and triangle symbols, the conditions at which the complete
temporal solution is given in figure 9.

To complete the analysis based on the Laplace transform method, the evolution of the
shock pressure perturbations is computed in figure 9 via Bessel series (empty circles) and
the inverse Laplace transform (orange dashed lines), and compared with the numerical
integration of the Euler equations (black solid lines). The computations are performed for
the cases of greatest interest, specifically h > hc, as the stable solution in this regime
is well established, see Zaidel’ (1960) and Briscoe & Kovitz (1968). As a general
observation, it can be concluded that the Bessel series method accurately predicts the
short-to-medium time evolution of the shock, but its range of applicability decreases as the
value of h increases. This solution is restricted to the value of τ above which the solution
does not converge. On the other hand, the inverse Laplace transform method provides
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Figure 9. Numerical values (solid black line), theoretical results via inverse Laplace transform (dashed orange
line) and theoretical values through Bessel series (empty circles) of the shock pressure evolution for different
shock conditions.

a solution that agrees perfectly with the numerical solution for the entire time range
considered. For the cases shown in figure 9(a–c), only one asymptotic amplitude/frequency
remains in the long time, while two asymptotic amplitudes/frequencies are found for
cases shown in figure 9(d–f ), in perfect agreement with figures 7 and 8. Although
not shown explicitly, numerical simulations for h = −1 have been also been carried
out and contrasted with the theoretical predictions, and it was found that there is an
initially linear growth followed by an accommodation region towards a constant-pressure
perturbation at the shock. The shock ripple amplitude, as dictated by (2.6a), remains
invariant regardless the shock pressure disturbances for h = −1. For the limiting case h =
1 + 2M2, the solution exhibits singularity due to the divergence of both the fundamental
shock oscillation frequency and the number of frequencies induced by reverberation. For
values of h beyond the indicated limits of h < −1 and h > 1 + 2M2, represented by
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the shaded regions in figure 14, numerical calculations reveal that perturbations exhibit
exponential growth in the long-time regime, consistent with Fourier analysis in the absence
of a piston. However, the presence of the piston results in a retardation of the exponential
growth, with linear growth observed up to τ . Note that, in these ranges, as explained
by Kuznetsov (1989), an unstable single-shock solution of the Riemann/piston problem
evolves into a stable multiwave flow structure, making questionable the validity of linear
analysis.

We have found, with both numerical and analytical methods, that the inclusion of the
driving piston does not modify the character of the instability for h > hc. Moreover,
the solution given by the particular solution of the functional equation (4.30) is in
perfect agreement with the numerical solution in the whole DK neutrally unstable range,
hc < h < 1 + 2M2, thereby extending the stability condition beyond the limiting value
h = 1 − 2M2

2 studied in Wouchuk & Cavada (2004). This result contrasts with Bates
(2015), where it was theoretically argued that small perturbations on the shock front are
unstable for h > hc and h < −1. It is found that the initial value problem associated with
the corrugated planar-geometry case is qualitatively different from that corresponding
to cylindrical and spherical steady expanding shocks associated with the Noh problem,
addressed in Huete et al. (2021) and Calvo-Rivera et al. (2022). There it was found that the
shock exhibits an unstable power-law evolution when h > hc and the perturbation mode
number is sufficiently high. Although the planar piston-driven shocks and the expanding
shocks of the Noh problem are similar in what concerns the steadiness of the shock, the
flat profiles in the base-flow variables behind the shock and the acoustic coupling with
the solid wall (planar), axis of symmetry (cylindrical) or centre (spherical), there exists a
fundamental difference: the formulation of the piston-driven shock demands the inclusion
of an external length, and the associated characteristic time.

Insightful information about the coupling effect between the shock and the piston can
be obtained from the pressure field behind the shock, as observed in figure 10. Results
have been computed with use made of the Bessel series because the analytical treatment is
easier. In particular, the post-shock pressure field can be derived with the aid of (4.14) and
undoing the hyperbolic variable change carried out in (4.4a,b), namely χ = tanh−1(x̄/τ)
and r = √

τ 2 − x̄2, to give

p̄(x̄, τ ) =
∞∑
ν=0

(
τ − x̄
τ + x̄

)ν/2
+

(
τ − x̄
τ + x̄

)−(ν/2)

(
1 − M2

1 + M2

)ν/2
+

(
1 − M2

1 + M2

)−(ν/2)PνJν(
√
τ 2 − x̄2) (4.38)

for the piston-driven shock, and

p̄(x̄, τ ) =
∞∑
ν=0

[
(1 + M2)(τ − x̄)
(1 − M2)(τ + x̄)

]−(ν/2)
PνJν(

√
τ 2 − x̄2) (4.39)

for the isolated shock, where the coefficients for the former are given by (A9) in
Appendix A, and those associated with the isolated case were presented in (4.22).

The computations in figure 10, which have been also contrasted with the numerical
integration of the Euler equations, have been done with R = 6, M2 = 0.378 and h = 0.7
(h > hc2) for two different boundary conditions corresponding to (a) a piston-driven planar
shock and (b) an isolated shock. The upper plots show the spatial pressure distribution at
different times (solid lines) together with the history of the pressure values at the shock
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Figure 10. Pressure field in the compressed gas for R = 6, M2 = 0.378 and h = 0.7 (h > hc2) for two
different boundary conditions corresponding to (a,c) piston-driven planar shock and (b,d) isolated shock. Panels
(a,b) show the spatial pressure distribution at different times (solid lines) along with the shock pressure history
(dashed lines).

along the spatial coordinate representing the shock position (dashed lines). The lower
panels show the two-dimensional pressure field at τ = 29. It is found that the spatial
frequency of the pressure field is much smaller than the frequency associated with the
shock oscillations, as derived previously in (4.20a,b). Note that, unlike the case of the
self-similar accretion shock discussed in Huete et al. (2021) (see figure 11(a,c) there),
the planar shock does not render a standing wave configuration downstream because the
associated acoustic frequency ωa, see (4.20a,b), does not admit a null solution: ωa > 0 for
any value of the shock oscillation frequency.

4.2.3. The early-time behaviour
From the definition given in (3.4a,b), it is readily seen that when h > 1, the sonic
reflection coefficient Rs exceeds 1. It implies that the amplitude of the sonic wave normally
incident at the shock is reflected back with a greater amplitude. Since the piston reflection
coefficient is unity, it may be tempting to assume that the positive feedback accumulation
should lead to unstable behaviour of the shock front ripple and associated perturbation
variables. This is actually true for one-dimensional planar shocks, i.e. independent of
the transverse coordinate, perturbations of planar shocks (Fowles & Swan 1973; Swan &
Fowles 1975; Kuznetsov 1984), as well as for acoustic radial perturbations in spherically
and cylindrically expanding steady accretion shocks (Huete et al. 2021). In the former case,
the one-dimensional nature of perturbations implies normal incidence for all reflections of
a reverberating sonic wave. In the latter case, the near-normal incidence is ensured by the
scale-free geometry of the perturbation field. In Appendix B the conclusion made first by
Fowles & Swan (1973) (see their figures 3 and 4) that one-dimensional perturbed planar
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Piston

t << λ/c2

Shock

Quasi-one-dimensional
piston-shock

acoustic coupling

Back and forth
sonic waves

Early time corrugated shock

Figure 11. Sketch of the quasi-one-dimensional acoustic flow in the early time shock–piston reflection.

shocks are actually unstable for h > 1 is confirmed both numerically and theoretically, the
power-law growth is established and the corresponding power index is calculated.

For two-dimensional planar shocks, both Laplace-transform analysis and numerical
integration of Euler equations predict no change in the character of the solution, implying
the absence of unstable behaviour when h > 1. To illustrate the qualitative difference
between perturbations in one and two dimensions, we utilise a Taylor expansion analysis
that departs from the one-dimensional solution discussed previously by Fowles & Swan
(1973) and Kuznetsov (1984). This one-dimensional solution is a representative case when
the shock–piston distance is much smaller than the perturbation wavelength. The Taylor
expansion method accounts for deviations from the one-dimensional solution at later times
that arise due to two-dimensional effects (as depicted in the sketch in figure 11).

We seek the perturbed pressure in the form

p̄(η, τ ) = τσ
∞∑

j=0

φj(η)τ
2j = τσφ0(η)+ τσ

∞∑
j=1

φj(η)τ
2j, (4.40)

where σ is an eigenvalue to be determined. Such a form of solution, derived in Appendix B,
stems from the fact that our perturbation problem is singular. In our small-amplitude
approximation, we assume the shock-front ripple amplitude to be much smaller than all
the characteristic lengths, including the shock–piston distance, but at τ → 0 the latter
assumption is apparently violated. Further details can be found in §§ III.A and B of
Velikovich (1996). It can be found there that the discrete spectrum of eigenvalues for a
rigid piston is

σ =
⎧⎨
⎩

1
ln Rs

ln Ds
+ i

2nπ

ln Ds
, n = 0,±1,±2, . . . ,

(4.41)

where σ = 1 corresponds to the solution addressed before through the Laplace transform.
It is also the solution considered by all previous authors, starting from Roberts (1945).
This eigenvalue exists independently of the EoS and shock parameters. For the ideal gas
EoS used by these authors, the solution (4.40) with σ = 1 is the only one that is finite
in the limit τ → 0, which is the heuristic reason why all the other eigenmodes could
be discarded. The early-time behaviour of this eigenmode can be characterised by the
expression p̄s = b0τ + O(τ 3), where b0 is defined in (3.5). In addition, we have ξs = 1 +
O(τ 2), indicating that the shock front maintains the initial shape of the rippled piston up
to terms on the order of τ ∼ 1.
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The discrete spectrum of σ is given by the bottom-line expression in (4.41), which
coincides with that obtained for the one-dimensional perturbed planar shock and presented
in (B5a,b). It demonstrates that for h > 1, implying Rs > 1, the real parts of all
eigenvalues are positive, σR > 0. Hence, the corresponding eigenmodes in (4.40) all
vanish in the limit τ → 0. Since they are no longer singular, they cannot be discarded
and must be included in our analysis. Unlike the one-dimensional planar case, which lacks
proper scales, we utilise the previously defined dimensionless coordinates τ = kc2t and
x̄ = kx to construct the self-similar variable η = x̄/τ . Introducing this form of pressure
perturbations into the sonic wave equation gives

σ(σ − 1)φ0 − 2η(σ − 1)
dφ0

dη
− (1 − η2)

d2φ0

dη2

+
∞∑

j=1

[
(2j + σ)(2j + σ − 1)φj − 2η(2j + σ − 1)

dφj

dη
− (1 − η2)

d2φj

dη2 + φj−1

]
τ 2j = 0.

(4.42)

Likewise, the shock and piston boundary conditions can be expressed in terms of the
eigenfunctions as

1 − h + 2M2
2

2M2
σφ0(M2)+ (1 − M2

2)
dφ0

dη

∣∣∣∣∣
η=M2

+
∞∑

j=1

{[
1 − h + 2M2

2
2M2

(2j + σ)φj(M2)+ (1 − M2
2)

dφj

dη

∣∣∣∣
η=M2

]
(2j + σ − 1)

+M2R(1 + h)
2

φj−1(M2)

⎫⎬
⎭ τ 2j = 0 (4.43)

and dφj/(dη)|η=0 = 0, respectively. Note that the solution of φ0(η) corresponds to the
purely one-dimensional perturbations described by (B12), with the eigenvalue being
determined by Dσ

s = Rs, where Rs denotes the shock reflection coefficient defined
in (3.4a,b) and Ds is the Doppler shift factor provided in (4.32). It describes the
effectively planar sonic reflections when the shock is very close to the piston τ � 1
and two-dimensional effects have not yet entered into play. The other eigenfunctions
corresponding to j > 1 can be recursively determined by

(2j + σ)(2j + σ − 1)φj − 2η(2j + σ − 1)
dφj

dη
− (1 − η2)

d2φj

dη2 = −φj−1, (4.44)

subject to

1 − h + 2M2
2

2M2
(2j + σ)φj(M2)+ (1 − M2

2)
dφj

dη

∣∣∣∣∣
η=M2

= −M2R(1 + h)
2(2j + σ − 1)

φj−1(M2),

(4.45)

dφj

dη

∣∣∣∣
η=0

= 0. (4.46)

Note that the inhomogeneous terms in (4.44) and (4.45), which involve the term φj−1 (or
φ0(η) for j = 1), account for the multidimensional character of the problem. For example,
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Figure 12. Solution of (4.40) for η = M2 with the coefficients computed with (4.44) and (4.45) for
(a) σ = 0.1826 and (b) σ = 1. Shock conditions: R = 3, M2 = 1/2 and h = 1.1.

the factor proportional to φj−1(M2) in (4.45) comes from direct combination of the shock
ripple perturbation (2.6a) and tangential velocity conservation across the shock (2.6c),
while the term φj−1(η) in (4.44) comes from the ∂2p/(∂y2) in the sound wave equation.

The solution of our linear problem is presented as an infinite sum of these eigenfunctions
with constant coefficients. When τ � 1, i.e. when the distance of the shock from the piston
is much smaller than the perturbation wavelength, the solution of this problem is the same
as that for planar shock, where the eigenvalue σ is determined by (B5a,b). Except for
geometry factors, this is equivalent to the eigenvalue that characterises the cylindrical and
spherical accretion shocks in the radial limit, see (3.3a) and (3.3b) in Huete et al. (2021).
However, in this case, the value of σ is analytical, as opposed to the eigenfunction, which
must be solved numerically for each mode number n involved in σI . In the present case, the
solution has been obtained iteratively by considering increasing values of j, starting from
the one-dimensional solution for j = 0 and using the given eigenmode σ . The numerical
computation is rather demanding since the values of φj(M2) must be calculated with
high accuracy to capture the leading contributing terms for φjτ

2n = O(1). For example,
the solution of (4.44) and (4.45) is displayed in figure 12 for R = 3, M2 = 1/2 (which
results in hc = 0) and h = 1.1.

As a check of consistency, we can first evaluate the solution obtained by Taylor
expansions with σ = 1 and compare it with a previously validated solution, such as that
obtained using the Bessel series method. This comparison is displayed in figure 12(b),
which shows the solution obtained for the same shock parameters: R = 3, M2 = 1/2 and
h = 1.1. The Taylor-expansion solution rendered by (4.40) (represented in solid line) is
initiated with the eigenfunction φ0 = b0 that is consistent with the σ = 1 solution for τ →
0. The solution via Bessel series (circles) is computed in a similar form as done in figure 9.
We observe that there is a perfect agreement between the two methods, which validates
the use of (4.40) for computing the shock dynamics even for h > 1. However, the major
advantage of this approach is that it allows the investigation of the full set of eigenvalues,
including those that lead to unstable behaviour in purely one-dimensional configurations.
For example, figure 12(a) displays the case σR = 0.1826 > 0 that results from the same
shock conditions as those in figure 12(b) but obtained from (4.41) (bottom-line expression).
The solution, which has been computed for n = σI = 0 and with an arbitrary constant
C0 = 1 in (B12), has demanded 270 figures of accuracy to get the jmax = 45 term, which is
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enough to capture the evolution of the shock pressure up to τ ∼ 20. A longer time solution
could not be shown due to numerical limitations. The impact of the two-dimensional
effects is readily seen. While the one-dimensional solution exhibits a positive power-law
growth, the introduction of two-dimensional terms leads to a function with non-increasing
amplitude oscillations. However, since we are also interested in the late-time asymptotic
of our solutions, a legitimate question is: Is the decay slower than the powers of time −3/2
and −1/2 predicted by the classics for moderate-strength and strong shocks, respectively,
in ideal gases? Regardless the case, it is the non-decaying contribution associated with the
eigenvalue σ = 1 that would dominate in the long-time regime.

For the piston-driven two-dimensional corrugated shock, the early time and the
long-time behaviour are unrelated because we can unequivocally define the regimes with
the aid of the temporal scale 1/(kc2). On the other hand, scale-free perturbations follow
the same power-law decay or growth throughout their evolution, from the early to the late
time. This is true for one-dimensional perturbations in planar geometry, see Appendix B,
and for all stable and unstable modes in spherical and cylindrical geometry (Huete et al.
2021). A heuristic argument can be made that their late-time asymptotics are the same
as for the regular mode. It is based on the observation that each of the reverberation
eigenmodes maintains a quasi-classical wave pattern, with a constant number of peaks
and valleys between the shock and the piston, tracking the longitudinal mode number.
The effective longitudinal wavelength increases as t, with the corresponding longitudinal
wavenumber decreasing as k‖ ∼ 1/t, whereas the transverse wavenumber k⊥ = k remains
constant. Hence, the reverberating sonic waves evolve to a grazing incidence, effectively
decoupling the shock from the piston, irrespective of the value of the reflection coefficient
Rs for normal incidence. The above explanation is consistent with the way the situation
changes when the piston oscillates addressed in § 5: then the numbers of added peaks and
values increase linearly with time, so k‖ does not tend to zero, maintaining a finite angle of
incidence of the reverberating sonic waves, leading to a non-resonant increase in the shock
ripple amplitude with time.

We have commented previously that the particular case h = hm = 1 + 2M2
2 renders an

infinite initial slope for the pressure evolution, as seen in (3.5). This stems from the fact
that the sonic reflection coefficient for normal incidence Rs = Ds. In other words, the
Doppler-shift weakening of a sonic wave in a single cycle of its reverberation between
the shock and the piston, 1/Ds, is exactly compensated for by its amplification in the
shock reflection, because Rs > 1. Then, in this case the eigenvalue becomes degenerate
because both top line and bottom line of (4.41) yields the same value σ = 1. Then,
the corresponding time dependence for the shock ripple takes the form ξs ∼ ln τ , which
diverges for τ → 0.

5. Forced resonance in the SAE regime

It is found that the initial value problem associated with the corrugated planar-geometry
case is qualitatively different from that corresponding to cylindrical and spherical steady
expanding shocks associated with the Noh problem, addressed in Velikovich et al. (2016),
Huete et al. (2021) and Calvo-Rivera et al. (2022). It was demonstrated there that the
shock exhibits an unstable power-law evolution when h > hc and the perturbation mode
number is sufficiently high. The reason for this difference is that in the linear perturbation
analysis for the steady expanding shock of the Noh problem, the solution takes the
form of tσ , where σ is the eigenvalue. This solution is valid for the whole temporal
domain due to the singular scale-free nature of the perturbed spherical or cylindrical
flow. Because of the lack of scales, the pressure field behind the shock is made of a
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time-dependent standing wave, whose eigenfunction is determined as a function of the
self-similar variable r/(c2t). There was not any characteristic frequency involved in the
acoustic field but rather an instantaneous frequency Im{σ }/t > 0 that changed with time
correspondingly with the self-similar character of the solution. As a direct outcome,
the standing acoustic wave behind the shock resulted in an in-phase feedback between
the shock and either the axis of symmetry (in cylindrical geometry) or the centre (in
spherical geometry). The planar piston-driven shock problem addressed in this work
does not render any in-phase acoustic coupling. As derived from the frequency analysis
and supported by the numerical computations, the DK mode can only excite additional
lower-frequency modes, thereby composing a multifrequency behaviour at the shock with
finite amplitudes for each mode. However, it is worth noting that it is possible to create
configurations where in-phase perturbations can appear, but only through external means.
One example is the time-dependent wavy piston: an oscillating wall surface in the form
ψp( y, t) = ψp0 cos(ky) cos(Ωpt), which reduces to our previous configuration when the
externally forced frequency Ωp → 0. The problem is similar except that the boundary
condition at the piston is

∂ p̄
∂ x̄

∣∣∣∣
x̄=0

= ω2
p cos(ωpτ), (5.1)

where ωp = Ωp/(kc2) is the dimensionless piston oscillation frequency. Upon performing
the same mathematical steps, it was discovered that the functional equation governing the
Laplace transform of pressure switches from (4.27) to

Πs(q) = α(q)+ γ (q)+ β(q)Πs(q + 2χs), (5.2)

where

γ (q) = −ω2
p

sinh2(q + χs) sinh q

(sinh q cosh q + σb sinh2 q + σc)[ω2
p + sinh2(q + χs)]

(5.3)

carries the oscillating piston effects. The particular solution of the functional equation
(5.2) can be written as

Πs(q) = α(q)+ γ (q)+
∞∑

n=1

[
α(q + 2nχs)+ γ (q + 2nχs)

] n−1∏
j=0

β(q + 2jχs), (5.4)

from which the residues can be analysed to infer the asymptotic long-time solution of the
shock. It is proved convenient to rewrite (5.3) in the Laplace variable s, namely

γ (s) = −ω2
p

s(s + M2
√

s2 + 1)2

(s
√

s2 + 1 + σbs2 + σc)[ω2
p(1 − M2

2)+ (s + M2
√

s2 + 1)2]
, (5.5)

whose first term in the denominator agrees with the denominator in (4.16), from which
the poles associated with the self-induced oscillations for h > hc can be withdrawn. The
second term in the denominator only introduces an additional frequency to the shock
oscillation, due to the oscillating wavy piston. By simple inspection we observe that, for
the acoustic waves radiated by the piston to reach the shock, the oscillation frequency
must be greater than ωp,min = 1/

√
(1 − M2

2). When this occurs, the pole associated with
the second term in the denominator is purely imaginary with amplitude greater than unity.
Then, the two poles are placed outside of the branch cut sketched in figure 5 and contribute
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with a permanent oscillatory function. The frequency at the shock is given by the pair of
imaginary poles s = ±isp, where

sp =
ωp − M2

√
ω2

p − 1√
1 − M2

2

, (5.6)

which stretches to sp
√
(1 − M2

2) in the temporal domain τ . This is relevant because
the externally induced frequency can trigger a linear instability at the shock when the
self-induced frequency agrees with the externally induced frequency sp = s1, namely

ωp1 =
ω1 − M2

√
ω2

1 − (1 − M2
2)

1 − M2
2

. (5.7)

The linear growth is readily explained by looking at the poles order. When
sp /= s1 (or any other pole, if present), then the denominator takes the form
(s2 + s2

p)(s
2 + s2

1)(s
2 + s2

2) · · · , which translates into the sum of harmonic functions, as
carried out before in (4.36). However, when sp = s1, the order of the imaginary pole of the
resonant frequency increases (s2 + s2

p)
2(s2 + s2

2) · · · , thereby modifying the asymptotic
solution. Upon direct inspection of the residues, the long-time pressure field in the
resonance mode can be expressed as

p̄s(τ 	 1) = lim
sj→isp

d
ds

[
(s − isp)

2Π+
s (s)e

sr
]

+ lim
s→−isp

d
ds

[
(s + isp)Π

−
s (s)e

−sr]

+
n∑

j=2

[
lim

sj→isj
(s − isj)Π

+
s (s)e

sr + lim
s→−isj

(s + isj)Π
−
s (s)e

sr
]

∼ g∞
0 τ sin(ω1τ − π/2),

(5.8)

that involves a linear growth contribution that dominates when g∞
0 τ 	 1. After some

straightforward but lengthy algebra, the growth rate coefficient can be analytically derived:

g∞
0 =

ω4
p1

√
1 − M2

2

2s1
√

1 + 4σc(σc − σb)

s2
1

√
s2

1 − 1 + σc − σbs2
1

s2
1(1 − M2

2)− ω2
p1
(1 + M2

2)+ M2
2 + 2M2

√
ω2

p1
− 1

,

(5.9)

where ωp1 depends on s1 (or ω1) according to (5.7). To verify this claim, two numerical
simulations are conducted for the same perturbation-free conditions: R = 6, M2 = 0.378
and h = 0.75, which provides the self-induced oscillation frequency s1 = 1.47416. The
first computation, displayed in figure 13(a), is carried out with an externally piston-exerted
frequency ωp = ωp1 = 2.03453, while the second case, shown figure 13(b), is computed
with an arbitrary frequency ωp = 1.6 /=ωp1 . The numerical simulation results indicate
that only the non-resonant frequency provides a neutrally stable solution. Furthermore, the
linear growth factor predicted analytically, g∞

0 = 1.72813 (orange dotted line), perfectly
matches the numerical simulation results (black solid lines).

Moreover, when more than one frequency are present in the shock because of the
reverberations of the self-induced oscillations, h > hc2 , a linear growth could also
exist. For that to happen, for the pole associated with the displaced term in (5.3),
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Figure 13. (a) Resonant and (b) non-resonant behaviour of the shock front when the piston oscillates with
frequency ωp. Shock conditions are R = 6, M2 = 0.378 and h = 0.75.

ω2
p2

+ sinh2(q + 3χs) should provide a pole that agrees with s2, thereby changing the order
of the imaginary pair of poles. Because of the Doppler shift, this condition is harder to
meet. For example, for the case computed in figure 13, ωp2 = 0.898 < ωp,min, associated
with a low-frequency condition whose acoustic waves radiated from the piston cannot
reach the shock. Alternatively, an external excitation can be incorporated via periodic
disturbances placed ahead of the shock in the form of vorticity, entropy and/or sound as
done in Wouchuk, Huete & Velikovich (2009) and Huete, Velikovich & Wouchuk (2011);
Huete, Wouchuk & Velikovich (2012), where the resonance possibility was not considered
because the approaches were developed under the ideal gas assumption, i.e. h < hc. In
summary, a linear growth of the shock ripple amplitude in a two-dimensional planar shock
can only occur for h > hc if an external in-phase perturbation field input is applied.

6. Conclusions

We have conducted an analysis of the stability of a planar shock that is driven by a
weakly perturbed piston. The study was carried out utilising three independent methods:
direct numerical integration of the Euler equations utilising the method of characteristics;
theoretical analysis via the Laplace transform, which was executed through the Bessel
series method in accordance with Zaidel’ (1960) and Briscoe & Kovitz (1968) and the
direct inverse Laplace transform in accordance with Wouchuk & Cavada (2004); and
Taylor expansion that departs from the one-dimensional planar shock solution as in
Velikovich (1996). The excellent agreement between the independent methods provides
a means of cross-validation for the final results. The main conclusions are summarised as
follows.

(i) The presence of a rigid piston driving the shock does not affect the limits nor the
character of the instability against two-dimensional perturbations, when compared
to the isolated shock case. For h < hc, the shock perturbation amplitude decays
with the power law t−3/2, for h = hc it decays with the power law t−1/2, and for
hc < h < 1 + 2M2, the shock dynamics exhibits a constant sustained oscillation.
Another distinguished case occurs for h < hd, where the initial damping of the
perturbations is exponential, as observed by Bates (2004) and Clavin & Searby
(2016). The influence of the shock–piston interaction is manifested in the change
of the amplitude of the oscillations and, more importantly, the possibility of
exciting secondary frequencies that result from the acoustic waves reflected from
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the piston that can reach back the shock from behind. The conditions at which
these secondary frequencies arise can be simply obtained by accounting for the
two-dimensional character of the acoustic field and the Doppler effect associated
with the moving shock. The asymptotic amplitudes that dominate in the long-time
limit are analytically obtained by direct inspection of the residues of the Laplace
transform.

(ii) As the difference h − hc > 0 grows, the number of secondary frequencies increases,
and so does the amplitude associated with each oscillation mode. When h approaches
the limit h → 1 + 2M2, the fundamental frequency associated with the DK mode
diverges along with the corresponding amplitude. The influence of the piston in
this issue is that for h → 1 + 2M2 the number of secondary frequencies and their
associated amplitude also diverge. This is a token of the change of the character
of the solution, which is found to be an exponential instability for h > 1 + 2M2
and h < −1 (Erpenbeck 1962; Huete & Vera 2019), but that is ultimately associated
with the splitting of a single unstable shock front into a sequence of stable simple
waves (Kuznetsov 1989; Menikoff & Plohr 1989). The influence of the piston in
these unstable ranges is that, at early times, the growth rate is linear because of the
constrainment effect of the solid wall.

(iii) A true instability, as opposed to the neutral stability discussed above for hc <
h < 1 + 2M2, is possible in resonant conditions: when the shock is excited with
a frequency that coincides with the self-induced oscillation frequency of the DK
mode. The excitation can be placed in the upstream flow or in the driving mechanism
and the qualitative result is the same: a linear growth of the shock perturbation
amplitude ∼ t. In this work, the excitation that has been placed in the driving
mechanism by considering an oscillating wavy piston. Although this may be seen
as a very particular case to trigger the shock instability, the outcome is actually
important in conditions where the driving mechanism comes with a noisy source
that involves a full spectrum of frequencies. In such case, the resonant frequency
will dominate the shock dynamics in the long time.

(iv) For h > 1, the character of the solution of the perturbed two-dimensional shock
does not change, but it makes a difference for purely one-dimensional perturbations.
Since sonic disturbances hit planarly on the shock surface and on the solid piston,
and because there is no change of the incidence angle in subsequent reflections
resulting from two-dimensional effects, when the reflection coefficient at the shock
is greater than unity (Rs > 1) the acoustic reverberation translates into a power-law
growth of the perturbations in the form tσR , where σR is given in (B5a,b). Likewise,
perturbation will decay with a similar power law for any value of the DK parameter
in the range −1 < h < 1.

For convenience, all the different regimes of shock perturbation evolution have been
depicted in figure 14, they include isolated two-dimensional perturbed shock, piston-driven
two-dimensional perturbed shock, oscillating-piston-driven two-dimensional perturbed
shock, piston-driven one-dimensional perturbed shock and the spherical or cylindrical
expanding accretion shock perturbed in two or three dimensions, with the latter
corresponding to the results given in Huete et al. (2021). Hatched regions correspond
to conditions that render exponential instability and multiwave solutions of the planar
Riemann/piston problem (Kuznetsov 1989; Menikoff & Plohr 1989). It is readily observed
that for the shock to be unstable, an in-phase perturbation feedback must occur between
the shock and the supporting mechanism, as spontaneously occurs in expanding accretion
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Figure 14. Chart of the shock perturbation regimes associated with different steady shock configurations.
Hatched regions correspond to conditions that render multiwave solutions of the planar Riemann/piston

problem.

shocks, whose perturbation field is scale free and externally exerted in the oscillating
planar piston case.

All the results presented in this work have been expressed in terms of properties
associated with the EoS and the shock intensity. They are the shock compression ratio
R, the post-shock Mach number M2 and the DK parameter h. Then, they are easily
extrapolated to any shock conditions and any fluid EoS, in a same manner as done in Huete
et al. (2021) for expanding accretion shocks, where analytical expressions for R, M2 and
h were derived explicitly for ideal gas EoS, a vdW gas and for simple metals described by a
three-terms EoS. A ready example where the condition h > hc is met is the finite-strength
shock moving in a vdW gas with low adiabatic index, see Bates & Montgomery (2000)
and Huete et al. (2021).

In the light of the results of Clavin (2013), Lodato et al. (2016) and Shen et al.
(2021), which suggest that the formation of triple points and Mach stems in the shock
front occurs at τ ∼ ε−1 even in ideal gases, further measures can be taken to complete
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the stability analysis by including weakly nonlinear disturbances. They include the
formulation of a theoretical framework that incorporates arbitrary equations of state. In
addition, other boundary conditions representing distinguished supporting mechanism
may have a significant influence in the triple-point formation.
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Appendix A. Bessel-series coefficients

We can follow Briscoe & Kovitz (1968) to obtain an analytical solution in the form of
Bessel series (4.14), with the aid of (4.15), (4.27) and (4.28) to give

∞∑
ν=0

Pνe−νq(a4,νe4q + a2,νe2q + a0,ν + a−2,νe−2q + a−4,νe−4q)

= b3e3q + b1eq + b−1e−q + b−3 + e−3q, (A1)

where the accompanying coefficients read as

a4,ν = e−4χs[(σb − 1)+ (σb + 1)e2νχs], (A2)

a2,ν = 2(2σc − σb)(e−4χs + e2νχs), (A3)

a0,ν = e−4χs[σb + 1 − (σb − 1)e8χs](1 − e2νχs), (A4)

a−2,ν = −2(2σc − σb)(e4χs + e2νχs), (A5)

a−4,ν = −e4χs[(σb + 1)+ (σb − 1)e2νχs] (A6)

for the ν-dependent functions and

b3 = −2
σc

σa
e−2χs(1 + e−2χs), b1 = −2

σc

σa
e2χs(1 + e−6χs), (A7a,b)

b−1 = 2
σc

σa
e−2χs(1 + e6χs), b−3 = 2

σc

σa
e2χs(1 + e2χs) (A8a,b)

for the inhomogeneous part, respectively. For ν ≥ 9, it is straightforward to write the
following recurrence relationship for the coefficients

Pν = −a2,ν−2

a4,ν
Pν−2 − a0,ν−4

a4,ν
Pν−4 − a−2,ν−6

a4,ν
Pν−6 − a−4,ν−8

a4,ν
Pν−8 (A9)
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that can be initiated with the first four odd coefficients

P1 = b3

a4,1
, P3 = b1

a4,3
− P1

a2,1

a4,3
, P5 = b−1

a4,5
− P1

a0,1

a4,5
− P3

a2,3

a4,5

P7 = b−3

a4,7
− P1

a−2,1

a4,7
− P3

a0,3

a4,7
− P5

a2,5

a4,7
.

⎫⎪⎪⎬
⎪⎪⎭ (A10)

The even values for Pν have been found to be zero so the recurrence relationship allows
obtaining all the required coefficients to compute the pressure field in (4.14).

Appendix B. One-dimensional perturbed planar shocks

Let us propose a planar shock that departs from the flat piston with an initial perturbation
that may come, for example, from the piston speed. The one-dimensional Euler equations
that govern the flow behind the shock read as

∂ p̄
∂ t̃

+ ∂ ū
∂ x̃

= 0 and
∂ ū
∂ t̃

+ ∂ p̄
∂ x̃

= 0 (B1a,b)

provided that temporal variations in density are isentropic. The temporal and spatial
coordinates have been reduced with t̃ = t/t0 and x̃ = x/(c2t0), respectively, where t0 is
an arbitrary temporal scale. In form of characteristics, the above equations are

∂ j̄+

∂ t̃
+ ∂ j̄+

∂ x̃
= 0 and

∂ j̄−

∂ t̃
− ∂ j̄−

∂ x̃
= 0 (B2a,b)

with j̄± = ū ± p̄. Observe that, in contrast to (3.1a) and (3.1b), the transverse velocity
perturbation does not give rise to any inhomogeneous term. As a result, j̄± become
genuinely invariant functions along the paths with constant values of x̃ ∓ t̃.

The problem formulation completes by defining the piston (placed at x̃ = 0) and shock
(placed at x̃ = M2 t̃) boundary conditions: j̄−p = −j̄+p and j̄−s = Rsj̄+s , respectively, with
Rs being the shock reflection coefficient defined in (3.4a,b). When the system is in its
initial equilibrium state, j̄±(t̃ = 0) = 0, and no dynamic response is observed during
numerical integration. In order to introduce unsteadiness, we can introduce a weak
perturbation in the pressure field at the beginning of the numerical integration.

The outcome of the computation is presented in figure 15 that displays the shock
pressure perturbation normalised with the initial perturbation amplitude. In figure 15(a),
the numerical solution is shown in solid line for three different values of h, they are
h = 0.9, h = 1 and h = 1.1. The maxima of the oscillations are identified with filled
circles. Figure 15(b) shows the previously identified maxima for ln p̄s as a function of
ln t̃. It is readily seen that they align along a straight line whose slope corresponds to σR,
thereby validating the theoretical prediction of the pressure field evolution detailed below:
p̄s ∼ t̃σR . Then, as anticipated, the shock is effectively unstable against purely planar
disturbances for h > 1, as predicted by Swan & Fowles (1975) and Kuznetsov (1984),
but stable against two-dimensional perturbations, as found in this work. Therefore, we can
conclude that the multidimensional perturbation serves as a stabilising mechanism for the
instability that is specifically associated with acoustic reverberations.

To obtain the growth rate analytically, we integrate the sound wave equation

∂2p̄
∂ t̃2

= ∂2p̄
∂ x̃2 (B3)

that is the one-dimensional version of (2.5). This produces a pressure field of the
form p̄(x̃, t̃) = f̄+(t̃ − x̃)+ f̄−(t̃ + x̃), which represents the superposition of forward and
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σR = 0.183

(b)(a)

Figure 15. (a) Numerical solution of the one-dimensional shock pressure dynamics and (b) asymptotic
growth rate. The post-shock Mach number is M2 = 0.5.

backwards propagating sonic waves. Further manipulation renders the following functional
equation:

f̄ (Dsz) = Rsf̄ (z), (B4)

where Ds is the Doppler factor defined in (4.32). The solution of (B4) is well known. As
multiplying the argument of a function results in a multiplication of the function itself, it
follows that f̄ is a power of its argument f̄ (z) ∼ zσ . Furthermore, by splitting σ = σR + iσI ,
we arrive at

σR = ln Rs

ln Ds
and σ

(n)
I = 2nπ

ln Ds
. (B5a,b)

Hence, the general solution of (B3) particularised at the shock is

p̄s(t̃) = t̃σR

∞∑
n=0

cn cos
(

2nπ

ln Ds
ln t̃ + ϕn

)
, (B6)

where cn and ϕn are the dimensionless amplitude and phase, respectively, of the nth
eigenmode. The terms in the sum over n correspond to the reverberation contribution
terms. This expression is also a valid asymptotic solution for (2.5) in the limit τ → 0,
i.e. when the piston-to-shock reverberation time is much shorter than the communication
time between transverse perturbations. At h > 1, when σR > 0, this asymptotic solution
is finite in the limit τ → 0, although not analytic: it features oscillations of decreasing
amplitude whose frequency diverges as 1/τ . However, since our perturbation problem is
singular in this limit, such solutions should not be discarded

For convenience in the description of the early time solution in (4.2.3), we present
an alternative form to derive the evolution of the pressure field, provided that the
one-dimensional shock lacks spatiotemporal scales (if not externally imposed). It suggests
the use of a self-similar variable η = x̃/t̃ to describe the pressure field. Then, the sonic
wave equation (B3) as a function of η and t̃ reads as

t̃2
∂2p̄
∂ t̃2

− 2ηt̃
∂2p̄
∂ t̃∂η

− (1 − η2)
∂2p̄
∂η2 + 2η

∂ p̄
∂η

= 0. (B7)

The problem formulation is completed with the inclusion of the corresponding shock and
piston boundary conditions, which are

1 − h + 2M2
2

2M2

∂ p̄
∂ t̃

∣∣∣∣∣
η=M2

+ (1 − M2
2)

1
t̃
∂ p̄
∂η

∣∣∣∣
η=M2

= 0 (B8)
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and ∂ p̄/(∂η)|η=0 = 0, respectively. Noting that (B7) is invariant with respect to the time
scale (i.e. it is remains valid after the substitution t̃ → τ ), we can use separation of
variables to write

p̄(η, τ ) =
(

τ

kc2t0

)σ
[φ0(η)+ φ1(η)τ

2 + φ2(η)τ
4 + · · · ], (B9)

where σ is the eigenvalue and φj(η) is the jth acoustic eigenfunction. The transition to the
one-dimensional perturbation limit proceeds by setting τ → 0, kc2t0 → 0, while keeping
τ/(kc2t0) = t̃ finite, which reduces (B9) to p̄(η, τ ) = t̃σφ0(η). Here, the first eigenfunction
φ0(η) is found from

σ(σ − 1)φ0(η)− 2η(σ − 1)
dφ0(η)

dη
− (1 − η2)

d2φ0(η)

dη2 = 0 (B10)

subject to the shock and piston boundary conditions, namely

1 − h + 2M2
2

2M2
σφ0(M2)+ (1 − M2

2)
dφ0

dη

∣∣∣∣
η=M2

= 0 (B11)

and dφ0/(dη)|η=0 = 0, respectively. Imposing the piston boundary condition in (B10)
gives the one-dimensional running wave solution

φ0(η) = C0[(1 + η)σ + (1 − η)σ ], (B12)

where C0 is an order-of-unity constant. Upon substitution in (B11) we find Dσ
s = Rs as the

dispersion relationship for the eigenvalue σ , whose solution is given above, see (B5a,b).
It is readily seen that, if h > 1, then Rs > 0 and σR > 0, thereby denoting instability, in
agreement with figure 15. It is also interesting to note that σR is symmetric with respect to
the deviation of h from unity, since

Rs = 1 − (1 − h)/(2M2)

1 + (1 − h)/(2M2)
=

⎡
⎣1 + 2

∞∑
j=1

(
1 − h
2M2

) j
⎤
⎦

−1

, (B13)

that renders Rs(h = 1 − a) = Rs(h = 1 + a)−1, with a being an arbitrary value
constrained by the global instability limits in the DK parameter −1 < h < 1 + 2M2. For
example, in figure 15 computed for M2 = 0.5, Rs(h = 1.1) = 1.2222 and Rs(h = 0.9) =
0.81818 = 1.2222−1, finally renders σR(h = 1.1) = −σR(h = 0.9) = 0.183.

The acoustic reverberation instability occurring for h > 1 can be also explained in
phenomenological terms. The acoustic wave reverberating between the shock front and
the piston moves at the speed of sound, c2, whereas the shock front moves away from
the piston at velocity u2. Its back-and-forth cycles increase in duration as powers of the
Doppler shift factor: t̃1, Dst̃1, D2

s t̃1 and so on, cf. figure 3 of Fowles & Swan (1973).
Since the reflection coefficient from the piston is unity, each cycle multiplies the acoustic
wave’s amplitude by the shock reflection coefficient, rendering 1, Rs, R2

s and so on. The
amplitude thus varies as a complex power of time, with the real part of the power index
being given by (B5a,b). Note that σR agrees with the eigenvalue obtained in Huete et al.
(2021) for expanding accretion shocks in the radial limit, with the difference that 1/2 or
1 must be subtracted from σR when considering cylindrical or spherical divergent shocks,
respectively.

The consequences of the unstable behaviour can be explained as follows. If the initial
shock pressure perturbation is positive, the shock velocity will increase and so will
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the perturbation itself. Conversely, if it is negative, the reverse will occur. The point
corresponding to the shock front parameters will then move along the Hugoniot curve
with two possible outcomes. The value of h will either decrease until it reaches h = 1, at
which point the decrease stops, or increase beyond h = 1 + 2M2, resulting in the splitting
of the shock.
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