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CHARACTERISATION OF EMBEDDINGS IN LORENTZ SPACES

A. GOGATISHVILI, M. JOHANSSON, C.A. OKPOTI AND L.-E. PERSSON

Some new integral conditions characterising the embedding Ap(v) <-t rq(w),
0 < p, q < oo are presented, including proofs also for the cases (i) p = oo, 0 < q < oo,
(ii) q — oo, I <p < oo and (iii) p = q — oo. Only one condition is necessary for each
case which means that our conditions are different from and simpler than other cor-
responding conditions in the literature. We even prove our results in a more general
frame namely when the space Tq(w) is replaced by the more general space rS(iu). In
our proof we use a technique of discretisation and anti-discretisation developed by A.
Gogatishvili and L. Pick, where they considered the opposite embedding.

1. INTRODUCTION

Let (7£, /z) be a totally cr-finite measure space with a non-atomic measure /x, and let
M {TZ, fj) be the set of all extended complex-valued /^-measurable functions on TZ. For
feM(n,fi), let

Mt) = M ( { * 6 TZ; \f(x)\ > t } ) , t e (0,oo),

be a distribution function of / . The non-increasing rearrangement f* of / is defined by

f'(t) = inf{x > 0; f.(x) ^t}, te (0,oo).

We shall assume that fi(TZ) = oo. Everywhere in this paper, we assume that u, v,
and w are weights, that is, locally integrable non-negative functions on (0, oo) and we
denote

V(s) = / v{t)dt and U{s) = / u(t)dt.
Jo Jo

We assume that u is such that U(t) > 0 for every t € (0, oo) and denote
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70 A. Gogatishvili, M. Johansson, C.A. Okpoti and L.-E. Persson [2]

DEFINITION 1.1: Let p 6 (0, oo) and let u and v be weight functions. Then we
define the following four spaces (of Lorentz and Marcinkiewicz type):

€ M(H, /i); ||/||Af(.) = Q°° /"(«>(*)*) < oo J;

A°°(v) = {/ € -M(ft,/i);||/llA-<.) = esssup r(t)v(t) < oo};
te(o,oo)

r~(w) = {/ € M(^,M); ||/||r-(.) = esssup fZ'{t)v(t) < oo}.
te(o,oo)

When u = 1 (hence f/(t) = i), we shall omit the subscript u. We thus write, in such
a case / " , V(v) and r°°(u) in place of /*', r*(u) and r~(«), respectively. The spaces
Ap(u) and Tp(v) are called classical Lorentz spaces. The spaces Ap(u) were introduced
by Lorentz in 1951 in [13]. The spaces Tp(v) were first used by Sawyer in [15] and the
weak classical Lorentz spaces were introduced by Carro and Soria in [4]. Weak Lorentz
spaces were further investigated in [3, 5, 6, 7]. For definitions and a detailed study of
rearrangement-invariant Banach function spaces see for example, [2].

During the last two decades, many authors have spent enormous efforts in order to
find necessary and sufficient conditions on parameters p, q € [0, oo] and weights u, w such
that the embeddings Ap(v) <-+ Tq(w) hold. Such embeddings proved to be indispensable
in several important areas in analysis, including the theory of interpolation and modern
study of Sobolev spaces. This research brought plenty of deep results, see in for example,
[1, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21]. A summary of results of
embeddings of classical Lorentz spaces known by the end the of 1990's, as well as some
references, can be found in [7]. In this survey paper there were some cases of parameters
which were not known. In the paper [11] all cases have been established, but the resulting
characterisation were expressed in a difficult way, not very satisfactory from a practical
point of view.

Our main goal in this paper is to give some new necessary and sufficient conditions
on the weight functions u, v and w such that the inequality

(1-1) ll/llr*»*C1|/|Mw)

holds for every f€M(Tl,n).

Our approach is based on discretisation and anti-discretisation methods developed
in [9, 10]. Let as outline the structure of the paper. In Section 2 we give some pre-
liminaries including some definitions and basic facts concerning discretisation and anti-
disctertisation from the papers [9, 10]. In Section 3 we present the main results and
finally in Section 4 we give the proofs.
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[3] Characterisation of embeddings in Lorentz spaces 71

Throughout this paper o < b, (b > a) , means that a ^ Xb, where A > 0 depends on
inessential parameters. If b < a < b, then we write o w 6.

2. P R E L I M I N A R I E S

Let us now recall some definitions and basic facts concerning discretisation and anti-
discretisation which can be found in [9, 10].

D E F I N I T I O N 2 .1 : Let {a*} be a sequence of positive real numbers. We say tha t
{a*} is strongly increasing or strongly decreasing and write a* t t or a/t 44- when

*« a*

respectively.
DEFINITION 2.2: Let U be a continuous strictly increasing function on [0, oo) such

that 1/(0) = 0 and lim U(t) = oo. Then we say that U is admissible.

Let U be an admissible function. We say that a function ip is U-quasiconcave if ip
is equivalent to an increasing function on [0, oo) and ip/U is equivalent to a decreasing
function on (0, oo). We say that CZ-quasiconcave function ip is non-degenerate if

lim <p(t) = lim - L = lim # = lim ̂  = 0.
t-»0+ V t-H»</j(£) tK»f/(f) tK>+(£>(t)

The family of non-degenerate f/-quasiconcave functions will be denoted by fij/. We say
that <p is quasiconcave when tp £ Civ with U(t) = t.

DEFINITION 2.3: Assume that U is admissible and ip e fit/- We say that {xjjfcgz
is a discretising sequence for tp with respect to U if

(i) x0 = 1 and [/(i*) Tt;
(ii) y>(z*) TT and (<p{xk)/{U{xk)) U;
(iii) there is a decomposition Z = Z1UZ2 such that ZiDZ2 = 0 and for every

t 6 [zfc, xfc+1]

<p(zfc) w <?(*) if A; G Zi,

Let us recall [9, Lemma 2.7] that if cp e fiy, then there always exists a discretising
sequence for </? with respect to U.

DEFINITION 2.4: Let U be an admissible function and let v be a non-negative
Borel measure on [0,oo). We say that the function ip defined by

\0tOO)u(s) + u(ty
te(o,oo),
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72 A. Gogatishvili, M. Johansson, C.A. Okpoti and L.-E. Persson [4]

is the fundamental function of the measure v with respect to U. We shall also say that
v is a representation measure of ip with respect to U.

We say that u is non-degenerate if the following conditions are satisfied for every
t € (0,oo):

/[l,oo)

We recall from [9, Remark 2.10] that

<p{t) « I du{s) + U(ty f U(s)-" dv(s), t € (0, oo).

J[O,t] J[t,oo)

We shall further assume that v is non-degenerate.

LEMMA 2 . 1 . Let v be a weight function. Then
A°°(v) = A°°(esssupi;(s)),

with identical norms.

The proof follows from the following simple observation: If F and G are non-negative
functions on (0, oo) and F is non-increasing, then

ess sup F(t)G(i) = esssup F(t) esssupG{s).
0<t<oo 0<t<oo 0<i<t

LEMMA 2 . 2 . ([10, Lemma 1.5]) Let u, v be weights and let <p be defined by

(2.1) <p(t) = esssup U(s) esssup jrr-{, t€(0,oo).
s€(O,t) T€(J,OO) U(T)

Then ip is the least U-quasiconcave majorant ofv and

with identical norms. Further, for t e (0, oo);

<p(t) =esssupv(r)min{l,—j-\) = U{t) ess sup 777-7- ess sup V(T),
TG(0,OO) <• U\T)i s6(t,oo) U(8) T€(0,5)

y (t «s ess supess sup \ ) .
«€(0,oo) U(S) + U(t)

THEOREM 2 . 1 . ([9, Theorem 2.11]) Let p,q,r € (0,00). Assume that U is an ad-
missible function, let v be a non-negative non-degenerate Borel measure on [0,00) and
let <p be the fundamental function ofv with respect to If. Moreover, let a € fly and Jet

be a discretising sequence for ip with respect to U9. Then
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[5] Characterisation of embeddings in Lorentz spaces 73

LEMMA 2 . 3 . ([9, Corollary 2.13]) Let q 6 (0, oo), let U bean admissible function,

let f € fi(/, Jet v be a positive non-degenerate Borel measure on [0, oo) and let tp be the

fundamental function ofv with respect to Uq. Moreover, assume that {xk} is a discretising

sequence for <p with respect to V. Then

LEMMA 2 . 4 . ([9, Lemma 3.5]) Let U be an admissible function, let f,<p€
and let {a;*} be a discretising sequence for ip with respect to U. Then

ess sup jM<p(t) « sup I}pL<p(xk).
0<«oo U[t) k€Z U{Xk)

By using Lemma 3.1 and Lemma 3.2 from [9] we get following

LEMMA 2 . 5 . Ifrk H, then, for any q > 0,

g u h)Tk*_
aik \1 / rxk \q

h r fc«sup / h) rk,
/ kez\Jxk i /

and

sup(/ h) T^sssupf [ * h) rk
l.

k€Z\JXk ) k€Z\JXk )
LEMMA 2 . 6 . ([9, Lemma 3.6]) Let q e (0, oo), let U be an admissible function,

let v be a positive non-degenerate Borel measure on [0, oo) and let <p be the fundamental
function ofv with respect to UQ. Assume that {xk} is a discretising sequence for <p with
respect to U". Then

y.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700039484
Downloaded from https://www.cambridge.org/core. IP address: 54.167.196.208, on 23 Apr 2018 at 05:55:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700039484
https://www.cambridge.org/core


74 A. Gogatishvili, M. Johansson, C.A. Okpoti and L.-E. Persson [6]

LEMMA 2 . 7 . ([9, Lemma 3.7]) Let q e (0,oo), let U be an admissible function
and let vbea non-degenerate positive Borel measure. Moreover, let ip be the fundamental
function off with respect to U9 and let f be a measurable function on [0, oo). If{xk} is
a discretising sequence for ip with respect to Uq, then

) sup \f(y)\+ sup \f(y)\U{y)-l)q
V(xk)

sup \f(y)\qU(y)-Wy)-
<

LEMMA 2 . 8 . ([9, Lemma 3.8]) Let v be a weight function, let U be an admissible
function and <p be defined by (2.1). Moreover, let {xk} be a discretising sequence for <p
with respect to U. Then

( [°° \f(t)\dt \
ess sup / ' ' \v(x)
i6(0,oo) \Jo U{t) + U(X) )

\f{t)\dt

( rxk rxk+i \

U~l(xk) \f(y)\dy+ \f{y)\U-\y)dyU{xk)
Ji/k_i Jxk )

' \Hy)\U-l{y)v(y)dy).
xk )

LEMMA 2 . 9 . ([9, Lemma 3.9]) Let U be an admissible function and let ip € fit/.
Let {xk} be a discretising sequence for (p with respect to U. Then

sup <p{x) sup
( ! ) o

: S\ip tp(xk) SUp
U(xk) + U(y)
1 sup \f(y)\ +sup <p{xk) sup

* Z

sup sup

PROPOSITION 2 . 1 . ([9, Proposition 4.1]) Let {wk} and {vk}, k e Z, be two
sequences of positive real numbers. Let p,q € (0, oo) and assume that the inequality

is satisfied for every sequence {ak} of positive real numbers.
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[7] Characterisation of embeddings in Lorentz spaces 75

(i) Ifp^q, then
'vk < oo.

fcez

(ii) Ifp > q and r = (pq)/(p — q), then

fVu;~(r/p)ur/*V '
\hi k " J

< oo.

LEMMA 2 . 1 0 . ([14] and [19]) We have the following Hardy type inequalities:
(a) For the case 0 < p < 1,

(2.2) (["([" h(z)dz) u(s)ds\ ^ c( f " h(s)V{s)ds\;

the best constant C « sup ( / u(s)ds 1 V(t)~l and the equivalent constant is
Xk-iKtKXk \Jxk-i )

independent ofxk-
(b) For 1 < p < oo,

(2.3) ([*([" h(z)dz) u(s)ds) ^c( f " h{s)V(s)ds\;

axt ( ft \P'/P SP/F1

I u(s)ds) V(t)~p'/pu(t)dt) and the equivalent
dd f

( f \P'/P

I u(s)d)

constant is independent

We shall also use the following trivial inequality

(2.4)
rxk+i rxk+i
/ h{z)dz ̂  CV(xk)-

1 / h(s)V(s)ds.

3. THE MAIN RESULT

Our main result reads:

THEOREM 3 . 1 . Let p,q e (0, oo] and let u, v, w be weights. Assume that u is
such that Uq is admissible and the measure w(t) dt is non-degenerate with respect to U9.
Then the inequality (1.1) holds for every f € M(H, /x) if and only if

(i) 0 < p s$ 1, p ^ q < oo

oo.

Moreover, the best constant C in (1.1) satisfies C w A\.
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76 A. Gogatishvili, M. Johansson, C.A. Okpoti and L.-E. Persson [8]

(ii) 0 < q < p < 1

a°° f f°° ( U(x) \i \(r-«)/«

\Jo \U(t) + U(x)J )
x (supU(t)V{t)-{l^Ydx)

0<t<x /

Moreover, the best constant C in (1.1) satisfies C « A j .

(iii) 1 < p ^ q < oo,

< oo.

Moreover, the best constant C in (1.1) satisfies C « i 3 .

(iv) l < p < o o , 0 <q <p, r = (pq)/{p - q)

Moreover, the best constant C in (1.1) satisfies C w A4.

(v) 0 < p s* 1, g = oo

Moreover, the best constant C in (1.1) satisfies C « A6.

(vii) p = q = 00

. w{x) fx u(t)dt
A7 := esssup —7-^- / < 00.

ie(Ooo) U(x) Jo esssupu(s)
0<5<t

Moreover, the best constant C in (1.1) satisfies C « A7.

(viii) p = oo, 0<<7<oo

0<«<t

Moreover, the best constant C in (1.1) satisfies C « A%.

0 \Jo
l/r

< 00.

Moreover, the best constant C in (1.1) satisfies C « .A5.

(vi) l < p < o o , g = oo

1 " '

1 f u{t)dt V , u \ '
(x) Jo esssup u(s)/ /
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[9] Characterisation of embeddings in Lorentz spaces 77

Our next goal is to formulate Theorem 3.1 in a more compact and nice form. We
need the following definition of the associate space (also called the Kothe dual) Ap(v)'u
of Ap(v).

DEFINITION 3.1: Let 0 < p ^ oo and let u, v be weight functions. The u-associate
or Kothe dual space Ap(w)|1 of Ap(v) is defined by

(3.1) | | /HA»« =: sup
A(

f00 r(t)g'(t)u(t)dt
Jo < OO.

In the classical situation (that is when u = 1) the associate norm Ap(v)' was characterised
by Sawyer [15] for 1 < p < oo and by Stepanov [20] for 0 < p ^ 1. In the case p = oo it
was considered in [7] (see also [8]). In fact we can describe Ap(v)' in the following way:

(3-2) Ap(v)' =

\V(t)l/p)'

1 < p < oo)
rr)» P = °°-p vis)/ess sup v(s)

0<3<t

REMARK 3.1. By letting 11-+ U~l(t) (where U'1 is the inverse function of U) in (3.1)
and after using (3.2) we can obtain the following characterisation of Ap(v)'u.

esssupw(s)

(3.3)

Using Tl(w) and Ap(v)'u we can now formulate Theorem 3.1 in the following compact
form:

THEOREM 3 . 2 . Letp,qe (0, oo] and let u, v, w be weights. When q G (0, oo)
we assume that u is such that Uq is admissible and the measure w(t) dt is non-degenerate
with respect to Uq. Then the inequality (1.1) holds for every f e M(H, n) if and only if

(i) 0 < p < q < oo

(ii) ,r = (pq)/(p - q)

< OO.
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REMARK 3.2. Theorem 3.1 and Theorem 3.2 are in fact equivalent, the only difference
is that Theorem 3.2 is stated in a more compact form. All the eight conditions Ai — As

in Theorem 3.1 can be obtained from the two conditions in Theorem 3.2.

4. PROOFS

PROOF OF THEOREM 3.1. We start with the upper bounds (sufficiency).

Let 0 < p < oo. First we use the fact that / is non-increasing if and only if f
is non-increasing and a standard argument shows that it is enough to prove (1.1) for /
satisfying

r(ty= [°°h(s)ds,
Jt

where h is some positive measurable function on (0,oo). That is, when 0 < q < oo we
only have to prove that

u(s)dsJ w{t)dt\<41)

holds for every non-negative function h, and for q = oo, by the Lemma 2.2 we have to
prove that the inequality

(4.2) sup g | j £ ( j T M*)d*)l Pu(s)da < C QH (£° "j )

holds for every non-negative function h, where the function ip is defined by (2.1).

According to Pubini's theorem the inequalities (4.1) and (4.2) are equivalent to

aoo / 1
t f poo \ l/p \ 9 \ l/g / /•<» \ I/P

and

wu\ r* / r°° \1/p / r°° \
(4.3) s u p m / ( / h{z)dz\ u{s)ds^C[ h(t)V(t)dt)

t<B{0,oc) U [t) Jo \Js / \Jo }
respectively.

Assume first that 0 < q < oo. Define
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[11] Characterisation of embeddings in.Lorentz spaces 79

Then tp £ fly, and therefore there exists a discretising sequence for ip with respect to
V. Let {xk} be one such sequence. Then <p{xk) ft and {tp{xk))/{Uq{xkj) JJ.. Further-
more, there is a decomposition Z = ZiUZ2, Zil~lZ2 = 0 such that for every k G Zi and
t € [xk, xk+i], tp(xk) « <p(t) and for every k € Z2 and

For the left-hand side of (4.1), using Lemma 2.3 with dv(t) = w(t)dt and

f{t)= I / A(2)dzl u(s)ds we get that

[using Lemma 2.5]

[using the fact that / u(s)ds = U(xk) - U{xk-\) «

i /«
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80 A. Gogatishvili, M. Johansson, C.A. Okpoti and L.-E. Persson [12]

[using Lemma 2.5 on the second term]

Now we shall distinguish several cases. Starting with the case 0 < p < 1. Using
(2.2) for / and (2.4) for / / we find that

1/9

-p (T «w
h(s)V(s)dsj

(^j x*_i<t<u,

and

?/P

(4.7)

(i) In the case 0 < p ^ l , p ^ q < oo (that is q/p ^ 1) we have according to (4.6)

that

^ 4
k U{Xk) xk-i<t<xk

and, similarly, if q/p > 1 we have according to (4.7) that

aoo \ l/p

h(s)V{s)ds)
and, finally, according to (4.4) and Lemma 2.9, we get that

Z + Z / ^ s u p ^ ^ - C sup U{t)V<t)-*)( rh{8)V{8)da
k U{xk) \k_l<t<xk \Jo

= A^J™ h(s)V(s)ds} ".

i /p

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700039484
Downloaded from https://www.cambridge.org/core. IP address: 54.167.196.208, on 23 Apr 2018 at 05:55:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700039484
https://www.cambridge.org/core


[13] Characterisation of embeddings in Lorentz spaces 81

(ii) For the case 0 < q < p ^ 1, r = (pq)/(p — q), by applying Holder's inequality
for sums to the right-hand side of (4.6) and the right hand side of (4.7) with exponents
p/q and r/q, we find that

\ l/r / ^oo \ 1/P

sup U(t)V(t)-{l/p)Y I I / h(s)V(s)ds)

h{s)V(s)ds) .

Therefore, we get that

( 4 . 8 ) 7 + 7 7 < ( V ^ J ( s u p U ( t ) V ( t ) - { 1 / p ) ) r ) x ( f h ( s ) V ( s ) d s

By using the Lemma 2.7 we obtain from (4.8) that

i/paoo \ 1/P

h(s)V(s)ds) .
Now let us assume that 1 < p < oo. Using (2.3) for I and (2.4) for II, we get

«/p'

1/9

(4.9) x( / h(s)V(s)ds)
V-Zx*-: )

/ / rxt+i \ q/P\ 1/9

(iii) Suppose that 1 < p < q < oo. Then, according to (4.9) and (4.10), we obtain
that

1/paoo \ 1/p

h(s)V(s)dsj .
Hence, using integration by part and Lemma 2.8, we get that

sup^y1,7' ( r Vity'rUit
*>o U{xk) \JXk_l

x ( f°°h(s)V(s)ds)

7 + 77<

\i/p
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s u p ^ f ^ ( f V(t)-'U(tfv(t)dt
*>o U{x) VJ

aoo \

h(s)V(s)ds)
<

\i/p

i/p

aoo \ 1/P

h(s)V(s)dsJ .
(iv) Next we consider the case 1 < p < oo, 0 < q < p, r = (pq)/{p — q)- By using

the Holder's inequality for sums to the right-hand side of (4.9) and the right hand side
of (4.10) with exponents p/q and r/q, we find that

i /p

and

Therefore, using integration by part and Lemma 2.6, we see that

>7p

\ 1 ' r / f°° \ xlp

'"n / h(s)V(s)ds) .

1/Paoo \ 1

h(s)V(s)ds\ 1/r

1/paoo \

h(s)V(s)ds] 1/P

JJ°° h(S)V(s)dsY'.

Let now q = oo. In the same way, by using Lemma 2.2, Lemma 2.4 and Lemma 2.5
we obtain for the left-hand side of (4.3) that

sup
«€(0,oo) u (l) JO \Js
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[15] Characterisation of embeddings in Lorentz spaces 83

* 6 Z U { ) Jr (
r (r
JXki \J,*ez

h(z)dz := III + IV,

where ip is denned by (2.1).
(v) Let 0 < p ̂  1, q = oo. By using the inequality (2.2) for / / / and (2.4) for IV,

we arrive at

III < supfpl( sup U(t)V(t)-^){ h(s)V(s)ds) ,
k U{Xk) \k_1<t<xk Vxt /

/ /-xt+i \1/P

IV < sup^(xfc) V{xk)-'"> (j h(s)V(s)ds)

and, finally, by using Lemma 2.9 we get that

sup U{t)V{t)-VP)( rh(s
\J^ 4 ( {))(

k U{xk)
 vii_1<t<it \J0aoo \ 1/p

h(s)V(s)ds) .

s)V(s)ds)
)

(vi) Let now 1 < p < oo, q = oo. By using (2.3) for / / / and (2.4) for IV, we
obtain that

i/p\

x ( £ *MVM*) ')

and
\ l/p
)( / h(s)V(s)ds)

\JXl, /
52 /
k€Z \JXl,

Using integration by part and Lemma 2.8, we find that

/ / / + IV < s u p ^ 4 ( I"" V(t)-VMU{tf''u(t)dt + V(xk)-VMU{xk)A
k>o u{xk) vyIt_, /aoo \

h(s)V(s)ds)

1/p

ao
1/P
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< supyi(ifc) I / — . . .———w— I x ( / ft(s)V(s)d5 I

aoo \ l/p

h(s)V(s)ds )
/

(vii) For the case p = q = oo, we use Lemma 2.1 and get that

Q fX f'(t)u(t)dt
\X) Jo*€(0,o) W O

t«(x) r u{t)dt ... , .
ess sup . : / ——r Tesssup/ (i)esssup w(
x€(0,oo) U{X) Jo eSS SUp v(s) l€(0,oo) 0<5<i

(viii) Finally, for p = oo, 0 < q < oo, by Lemma 2.1 we obtain that

aoo / -I px ii(f\/1-t \ Q \ ^/'

( 777-T / r r ) w(x)dx) esssup/*(i)esssup7;(s)
\U\Xj Jo GSSSXip V\S) J / x€(0,oo) 0<«<x

x€(0,oo)
0<»<t

Next we prove the lower bounds (Necessity).
Let 0 < q < oo and let {x*} be a discretising sequence for (p from (4.4). Then by

(4.5) we have that

1/P

+ [52[ I ^ h(z)dz\ (p(xkU < (^2 f " h(t)V(t)dt\ .

Let 0 < p ^ 1. For k G Z, let hk be functions that satisfy the Hardy inequality (2.2)
and the Holder inequality (2.4), that is, functions hk satisfying

fXk
supp/ifcC [xk-uxk], / hk(s)V(s)ds = 1,

( fk ( ['" hk(t)dt) u(s)ds) > sup (U(t) - U(xk^)
\Jxk-i \J> I / xt_,<«<xt

fxk -1

Now we define the test function

(4.13)
Jt£Z
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[17] Characterisation of embeddings in Lorentz spaces 85

where {ak} is a sequence of positive real numbers. Then, by using this test function in

(4.12), we get that

(4.14) \^^mjL^^{U{t)-U{xk.l)j V(t)-<"»)

UP

Now, by using Proposition 2.1 for the case 0 < p ̂  1, p ̂  q, we find that

suw{xk)
llqV{xk)-

llp + sup( sup (U{t) - U{xk-l))V{t)-llp\ ^fj ^' < oo.

Moreover, according to Lemma 2.9, we see that

Ai < sup sup V(t)-lfp<p(t)l/t

P V ( ) ( ) ( sup
*€Z *€Z

tez

sup

Let 0 < q < p ̂  1. We obtain from (4.14) and Proposition 2.1 that

1A

< OO.

Therefore, in view of Theorem 2.1, Lemma 2.5 and Lemma 2.7, we have that

< oo.

Let 1 < p < oo. For k € Z, let ftt be functions that satisfy the Hardy inequality (2.3)
and the Holder inequality (2.4), that is, functions hk satisfying

supp/i* C [xk-uxk], / hk{s)V(s)ds = 1,
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( J hk(t)dtj u{s)ds]\ it lV /« / # i \ \

hk(s)ds

Now we define the test function

(4.15) h(s) --

where {a*} is a sequence of positive real numbers. Then, by using this test function in
(4.12) we get

Now, by using Proposition 2.1 for the case 1 < p < q < oo, we find that

suP
z

+ supV(xk)~
1/p(p(xk)

l/g < oo.

Hence, by Lemma 2.4 and Lemma 2.8 and performing integration by part, we have that

(xk)

*€Z

(U(t) - U(xk^)Yv

)l/9V{xk)-
lt* <co.

Let now l < p < o o , 0 < q > < p . Then, by using (4.16) and Proposition 2.1 we obtain

that
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[19] Characterisation of embeddings in Lorentz spaces 87

Therefore, by using Theorem 2.1 and Lemma 2.6 and integration by part, we get that

lr

(g W (£,

Let q = oo and let { i t } be a discretising sequence for ip defined by (2.1). Then, according
to (4.11) we have that

W(TL) rx" / rXk \lp / rXk+i \ l p

(4.17) snpy^- ( / h(z)dz) u(s)ds + suptp(xk)I / /i(z)dz )
*ez t>(a;*) A t _ ! \75 / fcez Vy^ /

Let 0 < p ^ 1. If we use in (4.17) the test function defined by (4.13) we obtain that

s u pkez U(xk)Xk_l<t<Xk

kez

Therefore, by Proposition 2.1 we have that

sup ^ SUP (^W - tf(z*-i)M*)-(1/p) + SMPip(xk)V(xk)-
1'" < oo.

kez U(xk)Xk_l<t<xk kez

Thus, by Lemma 2.9, we find that

As < sup sup
keZ xk-

< suptp(xk)V(xk)
 v*" ' '+sup[ sup

kez

+sup(
L C 7 \—

sup
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Now let 1 < p < co. Using in (4.17) the test function defined by (4.15) we obtain that

W

Vx*-i

/ \ Xjp

+ sup a1
k'

p<p(xk)V(xk)~(l/p) < I 5~^afc 1
Jtez ^itiz '

Moreover, using Proposition 2.1 we get that

sup(fXk (U(t) - f/(xfc_1))
p'/py(<)-p'/pu(i)d«<) ^ 4 V()y"() < co.

Hence, by using Lemma 2.4, Lemma 2.8 and performing integration by part, we get that

*ez

<_<p(»*)/'* • • ^ 1 / P '

sup

+sup¥)(zit)V(xfc)~(1/p) < co.

The corresponding estimates for At and A% are trivial, by using Lemma 2.1 and taking
the test function f(t) = (esssupu(s))" . The proof is complete. D

P R O O F OF THEOREM 3.2. It is easy to see that

Using (4.18) we calculate the following norms in Theorem 3.2:

(«•!•> l(XM)lnM = (J JU^BwWl')d

and

in each of the eight cases considered in Theorem 3.1.
1. For the case l < p < c o , 0 < p ^ g < c o , by using (3.3) and (4.19) we find that
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[21] Characterisation of embeddings in Lorentz spaces 89

Thus, using (4.19) and (4.21)

|
t>o

0

= A3.

2. For the case 1 < p < oo, q = oo, by using (3.3) and (4.20) we have that

t>o

U(t)w(s) N / 7 , U(S) V V(S) AW

o
= A6.

For the case 0 < p ^ 1, by using (3.3) and (4.18) we obtain that

U(s)
(4.22) WxmlU'Wu ~ IIX(<M)llr«(i/(t)/v(t)'/p) * U(t)esssup

te(o,<»)

3. For the case, 0 < p < 1, p < q < oo, by using Lemma 2.2 and (4.22) we get that

t>o

t>0

• l / «

\J \
0

, s u p f f ( T U ^ \ j r Xw{s)ds\ esssup TTIS\U ,
t>o\J \U(t) + U(s)J w ; ,mJ) U(s) + U(t)

0

0

4. For the case 0 < p ^ l , g = oo, by using (4.20), (4.22) and Lemma 2.2 we find

that

sup||x(o,t)llr~(uO llxco.olUpM^r1

t>o
\-i

|

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700039484
Downloaded from https://www.cambridge.org/core. IP address: 54.167.196.208, on 23 Apr 2018 at 05:55:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700039484
https://www.cambridge.org/core


90 A. Gogatishvili, M. Johansson, C.A. Okpoti and L.-E. Persson [22]

U(t)w{s) _ _ U(s)
^ £ ) U{s) + U{t)

sap(«mpr?
t>oVs€(o,oo) U{s)

5. Now consider the case I < p < oo, 0 < q < p, r = {pq)/(p — q)- By using (3.3)
(4.19), and (4.21), we have that

' 0 0

= A4.

6. For the case 0 < q < p < 1, by using (3.3), (4.19) and (4.22), we obtain that

0 0

/ U(t)U(s)V(s)y
x (ess sup ;./> , r / x I dt

(
0 0

= .42.

7. For the case p = q = oo, by using (3.3), (4.20) and Lemma 2.2, we have that

sup||(x(o,t))||r.{lo)|IX(o,t)l|A»(t,)i

«sup||x(o,ollrs=(u,)||(X(o,t))||Al(u(T)/e8S8UPj€(or)uW)t/(t)-1
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/ U(t)w(a) \ 1 / U(T)
« SUp eSS SUP 777-; T—r- 777-r / TT« r

t>o V ,e(o,oo) U{t) + U(s)) U(t) J ess suPs6(0,T) v(s)

t
w(s) f U(T)

w ess sup -ri—- / T-T-dr
,6(0,00) U(s) J esssup,6(0>r)u(s)

= A7.

8. For the case 0 < q < p = 00, we have that r = q and by using (3.3), we have
that

esssupJ 6 ( O i T )<n

The proof is complete.
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