Acta Neuropsychiatrica

cambridge.org/neu

Short Communication

Cite this article: Saayman JLB, Steyn SF, and
Brink CB. (2021) The long-term bio-behavioural
effects of juvenile sildenafil treatment in
Sprague-Dawley versus flinders sensitive line
rats. Acta Neuropsychiatrica 33:200-205.

doi: 10.1017/neu.2021.4

Received: 10 September 2020

Revised: 28 January 2021

Accepted: 29 January 2021

First published online: 17 February 2021

Key words:

Flinders Sensitive Line rat; long-term
antidepressant-like effects; paediatric major
depressive disorder; phosphodiesterase type 5
inhibitor; sildenafil

Author for correspondence:
Christiaan Beyers Brink,
Email: Tiaan.Brink@nwu.ac.za

© The Author(s), 2021. Published by Cambridge
University Press on behalf of Scandinavian
College of Neuropsychopharmacology. This is
an Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use,
distribution, and reproduction in any medium,
provided the original work is properly cited.

=

@) CrossMark

The long-term bio-behavioural effects of
juvenile sildenafil treatment in Sprague-Dawley
versus flinders sensitive line rats

Juandré Lambertus Bernardus Saayman, Stephanus Frederik Steyn® and

Christiaan Beyers Brink

Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag
X6001, Potchefstroom, 2520, South Africa

Abstract

Objective: To investigate the long-term effects of juvenile sub-chronic sildenafil (SIL) treatment
on the depressive-like behaviour and hippocampal brain-derived neurotrophic factor (BDNF)
levels of adult Sprague-Dawley (SD) versus Flinders Sensitive Line (FSL) rats. Methods: SD and
FSL rats were divided into pre-pubertal and pubertal groups, whereafter 14-day saline or SIL
treatment was initiated. Pre-pubertal and pubertal rats were treated from postnatal day 21
(PND21) and PND35, respectively. The open field and forced swim tests (FST) were performed
on PND60, followed by hippocampal BDNF level analysis 1 day later. Results: FSL rats displayed
greater immobility in the FST compared to SD rats (p < 0.0001), which was reduced by SIL
(p <0.0001), regardless of treatment period. Hippocampal BDNF levels were unaltered by
SIL in all treatment groups (p > 0.05). Conclusion: Juvenile sub-chronic SIL treatment reduces
the risk of depressive-like behaviour manifesting during young adulthood in genetically suscep-
tible rats.

Significant outcomes

o Juvenile sub-chronic sildenafil treatment induced long-term antidepressant-like behav-
ioural effects in young adult Flinders Sensitive Line but not Sprague-Dawley rats.

o Juvenile sub-chronic sildenafil treatment did not have any long-term effect on the hippo-
campal brain-derived neurotrophic factor levels of either rat strain during young
adulthood.

Limitations

« Bio-behavioural analyses, immediately following juvenile sub-chronic sildenafil treatment,
were not performed.

o The FST alone was used to evaluate depressive-like behaviour. Other behavioural tests of
depressive-like behaviour, such as the sucrose preference test, would be of value in pro-
spective studies.

» Monoaminergic levels were not measured, which would confirm the conclusions drawn
from the behavioural data. Similarly, prospective studies may investigate the role of the
nitric oxide/cyclic guanosine 3’,5’-monophosphate/protein kinase G signalling pathway
as a novel antidepressant target.

Introduction

Major depressive disorder (MDD) is a serious mood disorder (NIMH, 2018) that globally affects
an estimated 322 million people (WHO, 2017), making it the leading cause of global disability
(Friedrich, 2017). A recent study reported that 1.7% of children and 6.1% of adolescents suffer
from MDD (Ghandour et al., 2019), highlighting the high prevalence in the paediatric population.
Paediatric MDD results in social dysfunction and poor academic performance (Hazell & Mirzaie,
2013), with most patients having recurrences during young adulthood (Melvin et al., 2013; Kovacs
et al., 2016), thereby accentuating the chronicity of MDD (Monroe & Harkness, 2012).
Conventional antidepressants have major shortcomings, including a delayed onset of action,
troublesome side-effect profiles and marked ineffectiveness in the treatment of treatment-resist-
ant depression (Rosenzweig-Lipson et al., 2007). Importantly, the United States’ Food and Drug
Administration (FDA) has only approved fluoxetine for the treatment of childhood MDD and
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escitalopram as additional option in adolescent MDD (FDA,
2014). Still, antidepressants are issued with a ‘black-box’ warning
of early increased risk of suicidal ideation and behaviour in
paediatric patients (FDA, 2014). This is of note, considering ado-
lescent MDD itself is a major risk factor for suicide (Zubrick et al.,
2017) — the second leading cause of death in this age group
(Mullen, 2018). Antidepressant-use in paediatrics has increased
(Bachmann et al, 2016), highlighting the difficult position
prescribers are placed in — weighing the severe, sometimes fatal
consequences of untreated MDD against the uncertain long-term
effects of approved therapy.

Neurodevelopment displays surprising similarities and align-
ment of age-related brain development between humans and other
mammals (Eiland & Romeo, 2013) (Fig. 1). Importantly, the sero-
tonergic system in rats reaches maturity at the onset of the pre-
pubertal period (viz. childhood in humans) on postnatal day 21
(PND21), whereas the noradrenergic system continues to develop
throughout pre-pubertal development and only reaches maturity
at the onset of puberty (viz. early adolescence in humans) on
PND35 (Murrin et al., 2007; Eiland & Romeo, 2013). These different
maturity rates may explain why only serotonergic, and not adrener-
gic-targeting antidepressants are effective in paediatric MDD.
Nevertheless, stimuli experienced by an individual during early-life
development that affect these neurodevelopmental processes may
either benefit or harm the functional integrity of the adult brain
(Andersen, 2003; Gomes da Silva et al., 2012), suggesting early-life
to be a unique ‘window of opportunity’ to induce long-term benefi-
cial effects via novel antidepressant treatment targets.

Preclinical studies from our laboratories were the first to demon-
strate that enhanced central nitric oxide/cyclic guanosine 3’,5'-
monophosphate/protein kinase G (NO/cGMP/PKG) signalling,
either through selective phosphodiesterase type 5 (PDE5) inhibition
(Brink et al., 2008; Liebenberg et al., 2010a) or intracerebroventric-
ular infusion of a cGMP analogue (Liebenberg et al., 2010b), induces
antidepressant-like effects, partly by activating the cyclic adenosine
monophosphate response element-binding protein/brain-derived
neurotrophic factor (CREB/BDNF) downstream signalling pathway
(Wang et al., 2014). Indeed, MDD is associated with reduced BDNF
levels (a marker of neuroplasticity) that is restored with antidepres-
sant treatment (Pittenger & Duman, 2008; Lee & Kim, 2010).

A disordered NO/cGMP/PKG signalling cascade has been
reported in the Flinders Sensitive Line (FSL) rat (Wegener et al.,
2010), which is a widely described and validated genetic animal model
of MDD (Overstreet et al., 2005). Regarding the hippocampal BDNF
levels of FSL rats, findings between studies have been inconsistent. As
such, a couple of studies have demonstrated that the hippocampal
BDNF levels of FSL rats are comparable to those of controls
(Angelucci et al., 2000; Angelucci et al., 2003), whereas another study
indicated reduced hippocampal BDNF levels in FSL rats (Elfving et al.,
2010). Therefore, the FSL rat is a suitable animal model to investigate
the long-term effects of juvenile sub-chronic sildenafil (SIL) treatment
on depressive-like bio-behaviour during young adulthood.
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Conversely, Sprague-Dawley (SD) rats represent appropriate non-
depressive-like comparisons (Magara et al., 2015).

Taken together, PDES5 inhibitors (such as SIL) hold potential as
novel candidates for the treatment of paediatric MDD, with poten-
tially beneficial outcomes later in life. Specifically, the use of SIL in
the treatment of paediatric pulmonary hypertension (Huddleston
et al., 2009) makes its safety profile better understood, rendering its
potential use in depressed children and adolescents especially
plausible.

Aims of the study

To investigate the long-term antidepressant-like effects of pre-
pubertal versus pubertal sub-chronic sildenafil treatment in young
adult Sprague-Dawley versus Flinders Sensitive Line rats.

Materials and methods

Figure 2 illustrates the study layout where all pups (SD and FSL)
were weaned on PND21 and randomly divided into pre-pubertal
(treated from PND21-34) and pubertal (treated from PND35-48)
intervention groups. Hereafter, rats were again randomly divided
into saline (SAL) and SIL treatment cohorts. Following 14 days of
treatment, rats were housed under standard laboratory conditions,
for a ‘wash-out’ period, until PND60 (young adulthood), when
behavioural tests were performed. Finally, rats were euthanized
by decapitation on PND61 to measure hippocampal BDNF levels.

Animals

Male SD (n =48) and FSL (n = 48) rats were bred, supplied, and
housed at the Vivarium of the Pre-Clinical Drug Development
Platform (PCDDP) of the NWU, RSA [(SAVC reg. no.: FR15/
13458), AAALAC accredited (international file #1717), GLP com-
pliant (SANAS GLP compliance no.: G0019)]. All rats were group-
housed (2-3 rats/cage) in polysulphone individually ventilated
cages, under constant Vivarium conditions. Food and tap water
were provided ad libitum.

Drug treatment

Rats were either treated with SAL or SIL citrate (3 mg/kg/day; pur-
chased from Sigma Aldrich) (Liebenberg et al., 2010a) dissolved in
SAL, via daily subcutaneous (sc) injection, from PND21 (pre-
pubertal intervention groups) or PND35 (pubertal intervention
groups) for 14 days (Liebenberg et al, 2010a; Schoeman
et al., 2017).

Behavioural tests

Behavioural tests were performed during the dark cycle, with the
forced swim test (FST) performed 1 h after the open field test
(OFT). Behaviour was recorded with a video camera, situated
above (OFT) and in front of the test arenas (FST).


https://doi.org/10.1017/neu.2021.4

202
pND21 4+ Pre-pubertal intervention groups
14-day
treatment
PND34 T Y MJ :
PND35 + I - Pubertal intervention groups
oy 26 days of SD rats ‘ FSL rats
treatment normal housing [ sal | sIL SAL | siL
(n=12) | (n=12) (n=12) | (n=12)
PND48 + L f
‘Wash-out’
12 days of normal housing
PND60 T I Behavioural testing (OFT & FST) |
PNDé1 T | Neurochemical analysis (hippocampal BONF levels) \

Fig. 2. Aschematicillustration of the study layout. BDNF: brain-derived neurotrophic
factor. FSL: Flinders Sensitive Line. FST: forced swim test. OFT: open field test. PND:
postnatal day. SAL: saline. SD: Sprague-Dawley. SIL: sildenafil.

Open field test

The OFT was performed as previously described for our laborato-
ries (Schoeman et al., 2017), with each rat placed in the centre of
the arena and allowed to explore for 5 min. Total distance moved
was analysed with Ethovision XT 14 software (Noldus Information
Technology BV, Wageningen, NLD).

Forced swim test

The FST consisted of four Perspex® cylindrical tanks, each filled to a
depth of 30 cm with ambient water. The FST was performed as
previously described for our laboratories (Schoeman et al,
2017), with rats placed into the water-filled tanks and allowed to
swim for 7 min. Behaviour was manually scored by an investigator
blind to the treatment groups using a manual continuous timer
software (FST Scoreboard 2.0 software; Academic Support
Services: Information Technology in Education, NWU, RSA),
and scoring only the mid-5 min of each trial (Badenhorst et al.,
2017; Schoeman et al., 2017). Scored behaviour included immobil-
ity, struggling and swimming (Cryan et al., 2005).

Because the FSL rat presents with inherent increased immobil-
ity in the FST, it does not require a pre-conditioning swim trial 24 h
before the testing swim trial (Overstreet et al, 2005).
Consequently, neither SD nor FSL rats had a pre-conditioning
swim trial to directly compare the behaviour of the two rat strains.

Neurochemical analysis

After euthanasia by decapitation on PND61, the whole brain was
immediately extracted and placed in ice-cold SAL. The hippo-
campi were dissected out promptly on an ice-cooled dissection slab
and individually placed into Eppendorfe tubes, which were
immediately placed into liquid nitrogen before being stored at
—80 °C (Harvey et al., 2006).

Hippocampal BDNF level analysis

Analysis of hippocampal BDNF levels was performed using rat
BDNF enzyme-linked immunosorbent assay (ELISA) kits (catalog
no.. E-EL-R1235) that were purchased from Elabscience
Biotechnology Incorporated and according to the instructions of
the manufacturer. Importantly, each sample contained the same
wet weight of tissue, homogenised in phosphate-buffered saline
(PBS) in a 1:9 ratio (hippocampal tissue (g):PBS (ml)=1:9).
Therefore, the differences between the samples in terms of
BDNF protein yield of the extraction process were negligible
and the measurement of total protein levels was not required.
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Results were obtained from a standard curve plotted and expressed
as pg/g wet weight of the hippocampus.

Statistical analysis

The minimum number of rats needed for statistically significant
results were used in this study, as estimated by an evidence-based
estimation (Liebenberg et al, 2010a). A 5% confidence limit for
error was taken as statistically significant (p <0.05). A three-way
analysis of variance (ANOVA) was performed on all data sets, fol-
lowed by analyses of two-way interactions, simple main effects, and
Bonferroni pairwise comparisons. The unbiased Cohen’s d (d,,,;,)
was also calculated and reported + 95% confidence interval (CI) of
the effect magnitude (Cumming, 2013). IBM* SPSSe Statistics
(version 25.0. Armonk, NY: IBM Corp), together with Laerd
Statistics® (https://statistics.laerd.com) were used for statistical
analyses, whereas figures were created in GraphPad Prism®
(version 7.0, San Diego California, USA). Effect magnitude
indicators were calculated in Exploratory Software for Cls
(Cumming, 2013).

Results

Data are presented according to significant two-way inter-
actions, as identified by ANOVA analyses. Accordingly,
Figure 3 reflects only the two independent variables that were
identified to have significant effects on inter-group differences.
Still, a complete description of the statistical analyses is
described in the text.

Forced swim test

Although no significant three-way interactions for immobility
(F188=1.31, p=0.26) or time spent struggling (F;gs=0.01,
p =0.94) in the FST existed, significant rat strain*drug interactions
were identified (F;g3=6.80, p=0.01) (Fig. 3(A)) and
(F1 88 =19.40, p<0.0005) (Fig. 3(B)). Compared to SAL + FSL
animals, SAL + SD (d,,, =1.4 [0.8; 2.1]) and SIL + FSL (d,,.;
=14 [0.8; 2.0]) groups spent less time immobile in the FST,
regardless of treatment period (p<0.0005). For struggling, rat
strain differences were only identified between SAL-treated ani-
mals (p <0.0005), with SD spending more time struggling com-
pared to FSL rats, regardless of treatment period (d,,;=2.3
[1.6; 3.1]). Further, SIL treatment, regardless of treatment period,
decreased struggling behaviour in SD rats (p =0.007; d,,,, =0.9
[0.3; 1.5]) and increased it in FSL rats (p = 0.001; d,,.; = 0.8 [0.2;
1.4]). Again, no significant three-way interaction (F;gs =1.79, p
= 0.18) existed for swimming behaviour (Fig. 3(C)); however, a sig-
nificant treatment period*drug interaction was identified
(F1 83 =4.74, p=0.03). Pre-pubertal SIL treatment, regardless of
rat strain, increased swimming behaviour relative to SAL-treated
age-matched controls (p <0.0005, d,,,, = 1.3 [0.7; 1.9]) and com-
pared to pubertal SIL-treated animals (p=0.02, d,,;,=0.8
[0.3; 1.4]).

Open field test and hippocampal brain-derived neurotrophic
factor levels

There were no significant three-way (F)gg=2.08, p=0.15 and
F, 83 =0.01, p=0.94) or two-way interactions for distance moved
in the OFT or hippocampal BDNF levels (Table 1).
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Table 1. Total distance moved in the OFT and hippocampal BDNF levels of young adult SD and FSL rats, following sub-chronic pre-pubertal or pubertal treatment with
either SAL or SIL

Distance 2431.1 + 253.7 2936.9 + 178.5 2204.7 £ 203.8  2030.0 + 223.6 3249.1 + 299.0 3022.4 + 178.7 1985.3 + 256.2 2000.8 + 188.7
moved (cm)

BDNF levels 882.4 £ 49.6 841.2 + 53.7 980.0 + 70.8 935.9 £ 73.3 988.2 £ 73.0 1117.6 + 98.8 1058.1 + 47.0 1202.4 £ 137.8
(pg/g wet

weight of the
hippocampus)

BDNF: brain-derived neurotrophic factor. FSL: flinders sensitive line. OFT, open field test. SAL: saline. SD: Sprague-Dawley. SIL: sildenafil.
Distance moved (cm) on PND60 and hippocampal BDNF levels (pg/g wet weight of the hippocampus) on PND61. All groups are equal (n = 12). Data points represent the mean =+ standard error of

the mean.
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Fig. 3. FST data of SD and FSL rats on PND60, following sub-chronic pre-pubertal or pubertal treatment with either SAL or SIL. Time spent immobile (A) and struggling (B),
regardless of treatment period, and time spent swimming (C), regardless of rat strain, according to ANOVA-identified independent variables. All group sizes are equal
(n=24). Data points represent the mean +95% confidence interval of the mean. Statistical analyses are reported in the text with ** p<0.01, **** p <0.0005 versus
SAL+SD in A and B and SAL + Pre-pubertal in C; M p <0.01, A p<0.001, MMM p <0.0005 versus indicated test group. FSL: Flinders Sensitive Line. SAL: saline. SD:

Sprague-Dawley. SIL: sildenafil.

Discussion

On PND60 (representing young adulthood), SAL-treated FSL rats,
regardless of treatment period, displayed increased depressive-like
behaviour (Fig. 3(A)) and reduced struggling behaviour (putatively
associated with impaired noradrenergic neurotransmission) in the
EST (Fig. 3(B)) compared to SAL-treated SD rats, thereby confirm-
ing the depressive-like phenotype of the FSL rat (Overstreet et al.,
2005). Importantly, because general locomotor activity was com-
parable across all treatment groups (Table 1), FST group
differences could be ascribed to treatment-induced changes or
inter-strain variation in psychomotor (and not locomotor) activity.
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Perhaps the most important finding is that early-life sub-
chronic SIL treatment induced antidepressant-like effects in young
adult FSL rats, regardless of treatment period (Fig. 3(A)). This is
promising, as neither escitalopram (Steyn et al., 2018) nor venla-
faxine (Steyn et al., 2020) were able to induce any robust long-term
antidepressant-like bio-behavioural effects in FSL rats in previous
studies. However, the antidepressant-like effects of early-life SIL
treatment was not observed in young adult SD rats, suggesting that
a genetic predisposition that makes individuals more susceptible to
the development of MDD (i.e. FSL rats) may play an important role
in the long-term antidepressant-like effects of SIL.
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Interestingly, early-life sub-chronic SIL treatment, irrespective
of treatment period, appears to elevate noradrenergic neurotrans-
mission (mechanism to be confirmed) in young adult FSL rats
(increased struggling behaviour in the FST) and reduce it in young
adult SD rats (healthy controls) (Fig. 3(B)). Therefore, it cannot be
ruled out that sub-chronic SIL treatment in paediatric patients may
have potentially detrimental effects in normal healthy individuals
later in life in terms of hampering coping responses and therefore
requires further investigation. Still, these findings suggest that hav-
ing a genetic susceptibility to develop MDD (or the lack thereof)
dictates the type of effects that early-life sub-chronic SIL treatment
might have on noradrenergic neurotransmission during young
adulthood and warrants further investigation.

Our data further suggest that putative enhancement of seroto-
nergic-associated behaviour (mechanism to be confirmed) later in
life by early-life sub-chronic SIL treatment is age-dependent, since
increased swimming behaviour in the FST was only observed in
pre-pubertal- and not pubertal-treated animals, irrespective of
rat strain (Fig. 3(C)). Genetic susceptibility does not appear to play
arole in the long-term serotonergic-associated effects of SIL, since
both adult SD and FSL rats were similarly affected in this study,
which is in line with the current approval of only serotonergic-tar-
geting antidepressants in paediatric MDD patients.

Increases in BDNF levels have been associated with antidepres-
sant action (Pittenger & Duman, 2008; Lee & Kim, 2010). In this
study, early-life sub-chronic SIL treatment had no long-term or
lasting effect on the hippocampal BDNF levels of either adult
SD or FSL rats (Table 1). This may be due to the transient enhance-
ment of neuroplasticity observed immediately following early-life
antidepressant treatment. As such, our group demonstrated that
pre-pubertal sub-chronic escitalopram treatment increased hippo-
campal BDNF levels on PND35 in FSL rats (immediately following
treatment), however on PND60 (after a ‘wash-out’ period), these
levels had returned to baseline (Steyn et al., 2018). Prospective
studies should further investigate the effect of PDE5 inhibition
on neuroplasticity.

Although the biochemical mechanisms underlying the anti-
depressant-like effects of SIL cannot be elucidated solely based
on the present findings, the pro-adrenergic effects of SIL, as delin-
eated from the SIL-induced changes in struggling behaviour in the
FST, are an intriguing possibility. In this regard, whereas it has
been demonstrated that the antidepressant activity of SIL is asso-
ciated with a novel mechanism of action, namely the modulation of
the NO/cGMP/PKG and the cyclic adenosine monophosphate/
protein kinase A (cAMP/PKA) cell signalling pathways
(Liebenberg et al., 2010b, 2011), we see here that SIL may induce
its long-term antidepressant-like effects in FSL rats, at least in part,
by ultimately normalising noradrenergic signalling. As a working
hypothesis, when translating the current results to humans, it may
be that individuals with a genetic susceptibility to develop MDD
could benefit from early-life sub-chronic SIL treatment, putatively
by modulating neurodevelopment, which results in a significantly
reduced risk of developing MDD during young adulthood. Taken
together, the PDE5 inhibitors (such as SIL) have potential as novel
antidepressant strategies in the treatment of paediatric MDD, with
beneficial behavioural outcomes later in life.
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