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1. Introduction

Recently different authors have studied the conormal modules I/P of
almost complete intersections in local Gorenstein rings (c. t. Aoyama [1],
Herzog [8], Kunz [13], Matsuoka [16]). An essential tool in these papers
is the theory of canonical modules and the fact that these modules are
easy to handle in the case of almost complete intersections.

In this paper we rely on the idea that almost complete intersections
should not behave very different from complete intersection and that
therefore similar arguments must be possible to study Rees rings and
form rings. The basic similarity is that almost complete intersections
admit superregular sequences of length height (/). This is shown in
section 2.

Our aim is to study to which extend two basic results of Rees [19]
and Valla [22] extend from complete intersections to almost complete
intersections. Rees' result states the well known fact that GτR(I) is a
polynomial algebra if R is CM and I a complete intersection. Valla's
Result claims that R]In[, R)In( and GτR(In) are CM under the same
hypotheses for all n>0. The way Valla's result ought to be generalized
is clear: By calculating the lengths of maximal regular sequences in the
homogeneous maximal ideals of the above rings in terms of depth (Rjl)
and dim(j?). This will be done in section 4.

How to generalize Rees' result is not evident. A reasonable way to
do this may be a study of the geometry of the conormal cone Spec (GrΛ(J)).
An attempt to this is given in section 6, where we consider the relations
between the irreducible components of the conormal cone of / and
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Spec (R/I).

Since Hochster [10] asked a corresponding question, a lot of particular

varieties have been decided to be normally torsion-free or not. But with

the exception of some "relative" criteria (s. [21]) there are no general

geometric properties which characterize normal torsion-freeness. For

locally almost complete intersections such criteria may be given, as is

shown in sections 3 and 6.

Our arguments strongly rely on the knowledge of depth (InIIn+ί) which

is estimated in section 3.

If R is Gorenstein we may sharpen some of our statements in using

a result of Herzog [8]. This is done in section 5, where we also treat

two examples.

If not stated otherwise R is always assumed to be CM, I to be a

generic complete intersection of height A which is an almost complete

intersection. The first requirement on I means

(1.1) For all P e Min (R/I) it holds μP(I) = h ,

where for an arbitrary finitely generated i?-module M Min(M) is the set

of minimal members of supp (M) and μP(M) stands for the minimal number

of generators of the i?P-module MP.

The second requirement on I is

(1.2) μ: = μm(I)<h+l.

By d we denote the Krull dimension of R. For simplicity we always

assume that R/m is infinite. Except for the results of section 2 this as-

sumption may be dropped as usual by replacing R by R[X]mm.

If N^M are i?-modules and if S c: R we write (N: S)M for the

module {x e M\ xS £ N}. The terminology generally is the same as in [15].

§2. Some preliminaries

Most of the proofs we shall give are by induction on A, sometimes

also by induction on δ:= dim(R/7). Making induction on A we always

will use the fact that I admits superregular sequences which generically

generate I:

(2.1) LEMMA. There are elements xu - , xh e I which make part of a

minimal system of generators of I such that the leading forms xl9 , xh e

GrR(I) constitute a regular sequence and such that IP = (xl9 , xh)P for all
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P e Min (i?/J).

This is a consequence of the following strengthened version of the

classical "Primbasissatz" as it is found in [17] and [18].

(2.2) PROPOSITION. Let I satisfy (1.1). Then I admits a system of

generators xl9 , xμ such that for each permutation σ of the elements {1,

• , μ} we have:

( i ) h t f o , ( 1 ) , •• - , x σ ( h ) ) = h .

(ii) (x,ω, , xσ(h))P = IP , for all P e Min (R/I).

Proof. (Induction on h) If h = 0, there is nothing 4to prove. So let

h > 0. For P e Min (R/I) put iV(P) = P I P Π I. As IΦ (0) we see by Naka-

yama that IP Φ PIP, hence that N(F) Φ I. Applying again Nakayama we

see that 2V(P) + ml Φ I for all P e Min (R/I). As R/m is infinite we get

that U: = UPGMinc*//) (N^ + ml) Φ I.

So, choose y e I - U, and put φ = Min(i2)Π V(jiϊ). As ht(7) = ht(/2)

> 0 we have F e Q for all Q e ?β. So we find an element z e P Π

If we set Xj = y + z we have xx e / — C/ and ht{xxΉ) = 1. By the first

fact #! is J-basic and 7P-basic for all P e Min (i?/J). So it is clear that

Rjxji and IjxJR satisfy again our hypotheses, but with h — 1 and μ — 1

instead of h and μ. By induction we therefore find elements w2, , wμ

€ R whose images x2, ,xμ in RfxxR form a system of generators of Ifxjl

satisfying the requirements of (2.2). Our aim is to find elements eft+1, ,

εμ e R — m such that the elements

x€= wt (i = 2 , . . . , Λ )

Xj = εjXi + Wj (max (2, h) < i < μ)

are a system of generators of I which satisfies our requirements. Clearly,

for all choices of the elements εi we have (xί9 , xμ) = I. By induction

it also is clear that (2.2) (i) and (ii) hold whenever 1 e Ml), , σ(h)}.

From this we see that it suffices to construct the elements εk inductively

on k{ > h) such that the following holds:

For each [system of indices <^> = (ιu , ih} with 1 < ίx < < ih

= k it holds

( * ) xk $ U J°, where O< 0 > = Min (B/(Λ<1, , xih))
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(**) XiRp £ (xiι9 , **Λ)P , VP e Min (B/i) .

So let A<Λ.</£ and assume that ε1? •• ,e ί . 1 are constructed. Put

<Q = U O<ίy>, where ζij} runs through all the systems of indices as above.

For an arbitrary Q e Spec (R) consider the canonical map πQ: R —> K(Q): =

(RIQ)Q. By induction it is clear that πQ(xϊ) Φ 0 for all Q e £}. We also

get by induction that IP — (xu xίt, , xίh_^P for all P e Min (i?//) and all

of the above systems (ίj). So in their rings RP we have equations

with αPf<<i> € (*fl, , x j , P e Min (R/7).
Now, let aPt<ίj> e K(P) be the canonical image of λP§<iJ>. As |B/m| = oo

there is an εk e R — m with

M'*) ̂  0, VQ € Q; α w + 7rP(εfc) ^ 0, V<ΐ,>, VP e Min (Λ/i) .

But from this it is clear, that εk satisfies (*) and (**).

To prove (2.1) let xu - , xμ (μ < h + 1) be as in (2.2). We claim that

%ii ' 9 χh (hence each collection of h elements) has the properties re-

quested in (2.1). To see this it suffices to prove that xx is GrΛ(7)-regular,

as then we have a canonical isomorphism

(2.3) GvB(I)l(xd = GrvUIIXiX).

which allows to make induction on h. So it remains to show that

(In: xJB = I71-1 for all n > 0. Setting J = (xu . - , xμ) we get (In: x,)R =

((Jn + xxl
n-1): x,)R = (Jn: χx)R + I"-1 and it suffices to show that (Jn: xί)B

£ Jn~\ As R is CM x19 , xh form an i?-sequence and we have Ass(R/Jn)

= Min (R/J) for all n > 0. So we only have to show that {Jn

q: x^)Rq c Jn

Q-χ

for all n > 0 and all QeMin(R/J). But this is immediately clear by the

properties (2.2) (i) and (ii).

Making induction on δ we use the following result.

(2.4) LEMMA. Let I satisfy (1.1), assume that h < d — 1 and let Pu

• , Pn e Spec (R) — {/n}. Then there is an x e m — Px U U Pn such that

I + xR is a generic complete intersection of height h + 1 with μm(I + xR)

= μ + l.

Proof. Choose xu - ,xμ according to (2.2). By (2.2) (ii) we have

Is = (χi, -' -9Xh)s, where S= R — \Jpemn(B/i)P-

So there is an s e S such that Is — (xu , xh)s. Now, put
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O - U Min
P€Min(i2//)

As A < d - 1 it is clear that dim (R/P) > 1 for all P e Min (R/I). There-
fore we have m $ Ω , hence m $ Q ' . Now, choose yem — LΛec/ Q, and let

neN.

As y71 is outside of all PeMin(JS/I) we have ht(I + yn.R) = A + 1.

Let ΓeMin(β/(/ + ynR)). Then we have s$T, as otherwise T would be-

long to a Q e O, which would imply that y e Q. So we have (I + ynR)τ

= (*i, ••-,**, ynΛ)Γ, thus μτ(I + ynR) = A + 1 for all T e Min(12/(1 + yn£)).

Finally by construction it is clear that yn e(x19 , xμ) = I. Choosing

n large enough we also have Xi§(xl9 , Xt_19 xi+ί9 '''9xμ,y
n) for i = 1,

• , μ. For such values of n we therefore get μm{I + ynR) = μ + 1.

As for the case A = 0 we note the following lemma whose proof is

easy:

(2.5) LEMMA. Let I = xR Φ 0 be a generic complete intersection of

height 0. Then

( i ) (J»: * ) , = / » - ' , (n>2)9

(ii) x is regular with respect to R/(0: x)R ,

(iii) I'll*** = RI(xR + (0: x)R), (n>ί).

§ 3. Normal torsion and normal depth

In this section we consider the maps

A(n):= Ass(Λ/I ) , B(ή):= ABB(I*-*H*) ,

t(ή):= άepth(R/In), t(ή):= depth{In~ηin).

By [2] and [3] we know that these maps take constant values A*, J3*,

t*9 ί* respectively for large τι. In our particular situation, we get much

more precise statements. Note that in case μ = A we have by Rees' result

that A(ή) = β(τι) = Min(#//) and ί(^) = t(ή) = δ = d - A. So we only

need to consider the case μ = A + 1. Let us first do this for A = 0.

(3.2) LEMMA. Let A = 0, I = xiϊ^O. Then for all n>l we have

( i ) B(ή) = Ass(R/((0; x)R + xR)) 9

A(ή) = Ass(Λ/((0: x)Λ + xi?))UMin(i?/xΛ),

(ii) ί(n) = ί(τι) = depth(B/(0: x)Λ) - 1 = min(d - 1, depth(B/ί)).

Proo/. The first statement of (i) is clear by (2.5) (iii). As for the

second statement note that by (2.5) (ii) we have xRΓϊ(0: x)R = x(0: x)R
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= 0, which gives rise to a sequence

(3.3) 0 • (0: x)R • R/xnR • B/((0: x)R + xnR) • 0 .

By (1.1) it is implied that Ass((0: x)R) = Min (R/xR). So (3.3) induces

Mm(RlxR)^A(ή)^Min(RlxR)UAss(R/((O:x)R + xnR) = Min (R/xR) U B(ή),

and B(ή)c^A(ή) shows the result.

"(ii)": The equality t(ή) = depth(i?/(0: x)R) - 1 is clear by (2.5) (ii)

and (iii). The sequence

0 >(0:x)R >R >R/(0:x)R >0

shows that depth* ((0: x)R) = min(d, depth CR/(O: x)R) + 1). So by (3.3) we

get that t(ή) > depth(i?/(0: x)) - 1 = t(n\ with equality if depth(R/(0: x)R)

< d. To get the equality sign in the case where depth (22/(0: x)R) = d

note that—even if n = 1—we have t(n) > d — 1 as is shown by the

sequence

(3.4) 0 > R • R/xnR Θ R/(0: x)R • JR/((O: x)R + xnR) > 0

which results from xnRf](0: x)R = 0. By (2.5) (iii) we also get a sequence

0 • Λ/((0: x)R + xR) • R/xnR • R/xn-ιR > 0

which shows that indeed t(n) = d — 1 = t(ri). So it remains to prove

(3.5) depth (i?/(0: x)R) = min(d, depth (R/I) + 1) .

But this is clear by the sequence

(3.6) 0 • R/(0: x)B ^U R > R\I • 0.

To treat the maps (3.1) in the case h > 0 we consider the 1-codi-

mensional points of V(I) in which / is not a complete intersection:

(3.7) [/(!):= {Pe V(I)\ht (P/I) - 1, μP(I) > h}.

Another description of U(I) is given by:

(3.8) LEMMA. Let h>0. Then

U(I) = {Pe U A(ή)\ht(PII) = 1}.
eoneo

Proof. " 2 " is clear by the fact that μ = h implies A(ή) = Min(i?//).
< f £ " : By a result of [5] (in a modified version found in [6]) we know

that μ = h if t(n) = δ for all n. This easily implies the requested relation
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after eventual localization at P e U(I).

(3.9) PROPOSITION. If A > 0 we have

( i ) A(n) = B(ή), A(ή) c A(n + 1), (n > 0);
A* = £ * = E7(J)UA(1).

(ii) ί(n) = t(n)9 t(ή) > ί(n + 1), (n > 0);

ί* = t* = min(<5 - 1, depth CR/I)).

Proof, "(i)": By (2.1) / contains a superregular element # such that

Ri—R/xR and J : = IR satisfy again (1.1) and (1.2) with A — 1 instead of A.

In particular we get exact sequences

(3.9)n 0 • in-ηjn _JL+ J«/J» + l > Jnjjn^ ^ Q

which show that B(n) ^ B(n + 1). Now with the sequences

0 • I - 1 / / " • i?//w > R/I71-1 • 0

the first two statements of (i) are immediately clear by induction on n.

Consequently we also have A* = B*. So it remains to show that B =

U(I)UA(ί). By (3.8) this comes up to prove

(3.10) P e B(ή) - A(l) = > ht(P/7) = 1.

We prove this statement by induction on h. If h = 0, P e B(n) — A(ί)

implies Pe Ass(i?/((0: x)R + xR)) (c.f. (3.2) (i)). Localizing at P we may

assume that P = m. Then 0 = t(n) = min(d - 1, t(ϊ)), t(ϊ) Φ 0 show that

d = 1. If A > 0, choose the least integer n with PeB(ή) - A(l). Then

(3.9)n_j shows that P e Ass(In/Jn+1) — Ass (R11) and we conclude by induc-

tion on A.

"(ii)": If S < 1, we conclude by (i). So let δ > 1. Then by (i) we

have either depth (R/I) = 0 or ί* > 0. In the first case we conclude by

(i). If ί* > 0 (2.4) implies the existence of a regular element xem which

is regular with respect to all iZ-modules R/In and such that (I, x) satisfies

our hypotheses with A + 1 instead of A. Put R = RjxR and I = IR. Then

R and I satisfy again (1.1) and (1.2) and we have dim(R/J) = δ — 1.

The l?/Jn-regularity of x gives rise to canonical isomorphisms I71'1/!71 =

(In-ηin)lx(In-ηi% S/J» = (R/In)lx(RIIn), which allow to conclude induc-

tively.

As an application we get:

(3.11) COROLLARY. Let A > 0. TAerc ίAβ following are equivalent
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( i ) I is normally torsion-free

(ϋ) U P^ U
pud) QA(i

(3.12) Remark. Let V be an algebraic variety which is a local al-

most complete intersection. Then according to (3.11) we have the following

geometric criterion for the normal torsion-freeness of V: V is normally

torsionfree iff it is a complete intersection in codimension 1.

So if V is normal it is normally torsion-free. This behaviour is rather

typical for almost complete intersections. Note for example that according

to [21] there are smooth projective varieties which are arithmetically

Gorenstein but not arithmetically normally torsion-free.

§ 4. Depth of Rees rings and form rings

Let m]J[ be the homogeneous maximal ideal of R]I[. In this section

we calculate the depths of the local rings

(4.1) 0 J ί [ : = WLyi, 0*0) := GrΛ(7)m ] 7 [.

It comes up to the same to determine g(m]I[; R]I]) and g(m]I[; GrR(I)),

where for an arbitrary ideal T of a noetherian ring A and any finitely

generated A-module M, g(T, M) stands for the maximal length of M-

sequences in T. With our arguments we also may reprove the result of

[22] we quoted previously, but for simplicity of the statements we only

consider the case μ = A + 1.

(4.2) PROPOSITION. Let μ = A + 1. Then

Γmin(cί, depth (#//) + 2 ) , if A = 0
( m i n ( d + 1 ? d e p t h ( i ? / / ) + h + % ί f h > Q

(ii) depth(0ΛO)) = m i n (<*> depth(B/i) + A + 1).

Proo/. "(i)": Let A = 0, 1= xR. Let π be the canonical map R[X]

-> i?]/[ which sends X to the 1-form * * : = (0, x, 0, .) of i?]7[. By (2.5)

(ii) we have (0: x)R = (0: xn)R for all n > 0, which gives rise to the exact

sequence

(43) o • C:= (0: x)RXR[X] • R[X] - % R]I[ > 0.

In the proof of (3.2) (ii) we have seen that depth((0: x)R) — min(<2,

depth (RI(0: x)R) + ϊ). So (4.3) implies depth (ΘR]I[) = g((m, X); R]I\) >

g((m, X); (0: x)RXR[X]) - 1 = *(m, (0: x)Λ) = min (d, depth (B/(0: x)^ + 1)

= min (d, depth (R/I) + 2), where the last equality follows from (3.5).
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On the other hand (4.3) shows that R]I[ = R[X]I(X)Π(O: x)RR[X]

hence that depth (&R]I[) < d. Using again (4.3) we therefore get the

equality sign in the above estimate.

So let h > 0. If Λ > 1 choose xu , xh as in (2.1) and let xf be the

1-foπn (0,^,0, -..) of R]I[.

Put R = RfxJR, I = IR and consider the canonical projection R]I[l(x?)
o»

> R]I[. In degree 0 the kernel of this map obviously is given by xjtt.

In degree n > 0 the above map is given by the canonical map ^jxj71'1

-%• (In + x.R^x.R ^ ^Ix.RΠl71 = Inlxx(In: xt)s. As xx is superregular with

respect to I we have (In: xt)R = I11"1. So arn is an isomorphism. So a gives

rise to the following sequence of graded i?]/[-modules.

(4.4) o • Si: = [x,RΘ (0) Θ (0) ] • R]I[l(x?) >R]I[ > 0 ,

We have to show that g(m]I[, R]I[/(x?)) = min (d, depth (R/I) + h + 1).

Assume for the moment, that this holds for ht (I) = h — 1. Then we have

#(m]I[, ϊ?]7[) = min (d, depth (B/I) + h + 1). As ^(m]/[, ft) = ^(m, ̂ Λ) = d

(4.4) shows that the required equality holds. By this argument we may

reduce inductively the problem to the case h = 1.

So let x, y be a system of generators of I which satisfies the condi-

tions in (2.2). We have to show that

(4.5) g(m]I[; i?]/[/(x*)) = min(d, depth(JS/J) + 2).

Applying (4.4) (which also holds for h = 1) we get the following iso-

morphism of graded iϊ]I[-algebras

iqi[/(**) = R®(y, χ)l(χ)®(y\ χ)l(χ)@ .

So we may define a canonical homomorphism p: R[Y] -> i?]I[/(x*) which

sends Y to the 1-form (0,yl(x), 0, 0, •)• Applying (2.5) (ii) to the i?/(x)-

ideal IRj(x) we see again that (xR:yn)R = (xR:y)R, hence that Ker(ρ) =

(xR:y)RYR[Y] = (xR:y)RR[Y]f)(Y). This gives rise to the following exact

sequence of .R[Y]-modules

0 > R\I[l(χ*) > R/(xR: y)[Y]ΦR • R/(xR: y)R >0.

By (3.5) we get g((m, Y); R/(xR: y)R) = min (d - 1, depth (R/I) + 1) and

£((m, Y); R(xR: y)R[Y]) = min (d, depth (i?/I) + 2). So (4.5) is clear.

"(ii)": Let h — 0, I = xR. By (2.5) (iii) there is a canonical map

η: GYR(I) —> i£/((0: x)R + xR)[X] which sends x to X, and which is an iso-

https://doi.org/10.1017/S0027763000020079 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020079


10 MARKUS BRODMANN

morphism in positive degrees. As xRΓ\(0: x)R = 0 we get an exact sequ-

ence

(4.7) 0 — > N:= [(0: *)ΛΘ(0)Θ(0). •] — > GrΛ(7)

Using #(m]7[; iV) = g(m, (0: x)Λ) = min (d, depth (i?/7) + 2) and g(m]I[; R/

((0: x)Λ + xR)[X]) = min(d, depth (R/I) + 1) we see that depth (ΘR(I)) >

min (d, depth (72/7) + 1). On the other side using GrR(I) = R]I[/(x), we get

by (4.3) a sequence

(4.8) 0 > W: = X(0: x)RR/I[X] > R/I[X] > GrB(I) > 0 .

By g((m, X); W) = g(m9 (0: x)RR/I) + 1 = depth (((0: x)R + xR)jxR) + 1 =

depth ((0: x)R) + 1 = min (d + 1, depth (R/I) + 2) (g > ((m, X); R/I[X]) = if

depth (R/I) < d) we conclude that depth (ΘR{I)) = g((m, X); GτR(I)) = g((m,

X); RII[X]) = depth (R/I) + 1, which gives the requested result.

So let h > 0. Then we choose again a superregular element xx e I

and make induction by the isomorphism (2.3).

Let us introduce the homogeneous maximal ideal m>7< of R}I( and

the local ring ΘR}I(:=R}I(m>I<. (4.2) and the canonical isomorphism

(4.9) GrΛ(J) S

show that the following holds.

(4.10) COROLLARY. Let μ = h + 1.

depth (0Λ> J<) = min (d + 1, depth (R/I) + h + 2).

(4.11) Remark. If we replace 7 by a power 771, the statements (4.2)

and (4.10) are not affected by [7]. So we get the following generalization

of Vallas' result:

(4.12) COROLLARY. Let I satisfy (1.1) and (1.2) and assume that

depth (R/I) > dim (R/I) - 1. Then for all n>0 the rings GτR(In) and

R)In( are CM. If h > 0, the same is true for R]In[.

Proof. By (4.11) we may assume that n = 1. By [12] it suffices to

see that the local rings ΘR(I), @R}I( and ΘR]I[ are CM. This is clear by

(4.2), (4.12) and the well known fact that the above local rings are re-

spectively of dimension d, d + 1 and d + 1.
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§ 5. The Gorenstein case

In this section we consider the case where R is Gorenstein. The

sharpening of some of the previous results that we get in this case is a

consequence that we dispose on canonical modules [9]. One of the re-

sulting facts we use is the following result of Herzog [8] (the result found

in [8] requests slightly stronger hypotheses but (3.2) and (3.9) show that

these may be weakened as below).

(5.1) PROPOSITION. Let R be Gorenstein and suppose that I satisfies

(1.1) and (1.2). Then μ = h iff t(2) = dim (R/I).

We call I unmixed, if Ass (R/I) = Min (R/I). Then as a consequence

of (5.1) we get:

(5.2) PROPOSITION. Let R be Gorenstein μ = h + 1 and assume that

I is unmixed. Then we have:

( i ) B(2) = B(S) = • = 5*.

ϊ(2) = f (3) = = P .

(ii) The following statements are equivalent:

( a ) t(ΐ) > dim(R/I) - 1

(b) R/I is CM.

( c) ί(2) - ί(3) = = dim (R/I) - 1

(d) One of the rings Gr(I), R)I( is CM.

(e) Both of the above rings are CM.

Proof, "(i)": Let PeB(ή), n>2. We have to show that PeB(2).

To do this we may assume after localizing that P = m. We first want to

show that δ < 1. If h > 0, this is indeed clear by (3.2) (i) and the un-

mixedness of 7. If h = 0 we have by (3.2) (ii) that either d — 1 = 0 or

depth (Rjl) = 0. Then by the unmixedness of / we conclude again that

d < 1. But now P = va§B{2) would imply δ = t(2), hence a contradiction

to (5.1).

To prove the second statement we proceed by induction on t* =

min (δ - 1, depth (.R/I)). By (3.2) the case h = 0 is clear. So let h > 0.

Let t* = 0. Then m e A* = B* implies by the first statement that m e B(n)

= A(ή) for all n>l. So we have t(n) = 0, Vn> 1. Now, let ** = 1.

Then we have either depth (R/I) = 1 or depth (R/I) = 2 and δ = 2. Let

us treat the first case; noticing that t(ΐ) = depth (R/I) we get by (3.9) that

1 = t(ΐ) > ί(2)> > ί* = 1. In the second case Rjl is CM. By (3.9) (ii)
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it suffices to show that ϊ(2) < 1. Assuming the opposite, we would get by
(5.1) that I is a complete intersection. But then we have the contradiction
2 == ?(2) = ί*.

So let t* > 1. Then we see that depth (R/I) > 1. As I is unmixed
and as R is CM, all PeAss(R/IR) satisfy dim(J?/P) = δ. Now, let & be
the (multiplicatively closed) set of all those ideals α c R/I for which
ht(α) > 1. Then by [4, (3.13)]

is a finitely generated i?-module, contained in the total ring of fractions
QCR/I) of R/I. So by [4, (3.2)] there are only finitely many P e V(I)
satisfying simultanously

(a) ht(P/7)>l
(β) there is a s e reg(P/J) with P e Ass (R/(I, s)).

We denote these primes by Pl9 , P r. By condition (β) we have then
mφ Pj (j = 1, -", r). Moreover put U* A(n) = {Pr+1, , Ps}. Then, ac-
cording to (2.4) there is a x e m — Px U U Ps such that / + xR is a
generic complete intersection of height h + 1 and an almost complete
intersection. Moreover, as x § Px U U Pr I + ocR is unmixed. Put Rf =
R/xR9 Γ = IR. Then Γ satisfies (1.1) and (1.2). As xeP r + 1 U UP, it
follows t(R'/Γn) = (̂JR/(7n + xi?)) = t(ή) - 1. This allows to conclude
inductively

"(ii)": (a) +> (d) «-> (e) are clear by (4.2). (b)«->(a) is obvious. (c)«->
(a) is clear by (3.2) and (3.9). So it remains to show (a) <-> (c) and (a) <->
(b).

«(a) ^> (c)": As t* = ί* = min(ί(l), dim (iϊ/I) - 1), we conclude by the
second statement of (i).

"(a) «-> (b)": By the isomorphism (2.3) we inductively may reduce the
situation to the case h = 0, μ = 1. We still know that (a) implies (c).
By (3.2) (ii) we conclude that depth (i?/(0:1)R) = dim(i?). As I is unmixed,
this implies that R/I is CM. by [18, 1.3].

(5.3) Remark. Let V^Pn be an algebraic variety of pure dimension
δ which is locally an almost complete intersection. Then (a) «-> (b) of (5.2)
(ii) shows that V is CM. if δ = 2 or of δ = 3 and V is normal.

In [8] resp. [13] it is shown that under the hypotheses of (5.2) the
torsion-freeness of the conormal module I/P is equivalent to the vanishing
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of U(I). We may sharpen this in showing that the vanishing of U(I)

also implies the normal torsion-freeness of I.

Indeed by (3.11) and (5.2) it follows

(5.4) COROLLARY. Let R and I be as in (5.2). Then the following are

equivalent:

( i ) 17(2) = 0,

(ii) I is normally torsion-free,

(iii) I/P is R/I'torsion-free.

(5.5) EXAMPLES. We look at two examples which with different

methods have been studied by Robbiano [20].

(a) Let R = k[Xl9 , X6](χ1,...,χβ) and let I be the ideal generated by

the 2 X 2-minors of the matrix (%} ^ ψ\.

I is prime and perfect [11]. Each pair of minors generates a complete

intersection which coincides with I on the punctured spectrum of R. So

we have U(I) — 0 and the unmixedness of I. By (5.4) I is normally

torsion-free (this holds for a larger class of determinantal ideals [10]). By

(4.2) GrΛ(I) is CM and we have ί(2) = t(S) = . = f (2) = f (3) = = 3.

(b) Let R = k[Xu , XA](χu...tzA)
 a n d let I be the ideal generated by

the 2 X 2-minors of the matrix (% ^ ψ\.

I is again a perfect prime (example (b) follows from example (a) by

factoring out two independent linear forms) and satisfies (1.1) and (1.2)

with h = 2. In this case (5.2) gives t(2) = *(3) = = 1(2) = t(S) = .

= 1 and the CM-property of GrΛ(7).

§ 6. On the structure of the conormal cone

In this section we consider the morphism

(6.1) Φ: Spec (GrΛ(I)) • Spec (R).

(6.2) LEMMA. Let P e V(I). Then there is an isomorphism K(P)®R

GrR(I) = K(P)[X19 ,Xμpω], where K(P) stands for the field (R/P)P.

Proof Obviously we may assume that P = m. If μ = h, the iso-

morphism is a consequence of the fact that GrR(I) is a polynomial ring

in h indeterminates over R/L So let μ = h + 1 and let xl9 , xu be a

system of generators of / which satisfies the conditions (2.2) (i), (ii).

Consider the canonical morphism
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Ψl: K(m)[Xu . , Xμ] >K(m)®RGrR(I)

which sends X{ to l®xt. We want to show that ^ 7 is an isomorphism.

If h = 0, this is clear by (2.5) (i). So let h > 0. We have to show that

Ker (ψj) = 0. Choose i e {1, , μ). According to section 2 the element

xt is superregular with respect to /. So (2.3) gives rise to diagrams

0 - K(m)[Xlt . . . , X J - * > K(m)[Xlt • • •, Xμ] - JΓ(m)K, • , Xt, • • •, Xμ] - 0

\ψl I ¥>//#* fl

which show inductively that Ker (ψj) c

(6.3) Remark, (6.2) shows in particular that for P e

P:= PGτ(I)PΠGτB(I)

is prime. P is the generic point of Φ

(6.4) PROPOSITION. Let 2T = AssίGrsCD) and S3 = Min(GrΛ(/)). Then

we have for the map ~ : P-+P:

( i ) -maps A(1)U A* (a ΛίcΛ egwa/s A* = C7(/)U A(l) if h>0)

bijectίvely onto 2ί.

(ii) —maps Mm(R/I)[jU(I) bίjectively onto S3.

Proo/. "(i)": Φ(P) = P shows that - is injective on V(I). So it

remains to show that (A(l) (J A*)~ = SI. We first prove that A(l) U A* =

Using (3.2) (i) and (3.9) (i) we may write A(1)UA* = \Jn>1B{n). So

A(1)UA* is the set of those P e V(I) for which PGrΛ(J) is annihilated by

a form. This immediately proves A(l) U A^ = Φ(2ί).

Having this it remains to show that Φ0β)~ = Sβ for all φ e 21. After

localization we may assume that Φ(φ) = m, once having chosen such a

^ . Now we prove the statement that mGrR{I) = φ by induction on h.

Let h = 0. If μ = 0 there is nothing to prove. So let μ = 1.

By (6.2) the only homogeneous primes containing mGr^I) are mGr(J)

and the homogeneous maximal ideal. So $β must equal one of these. As

depth ΘR(I) > 0 (by (4.2) (ii)) φ e Ass (GrΛ(7)) implies that $β = mGrΛ(i).

So let ft > 0 and choose Λ: as a supperregular element (which induces

an isomorphism (2.3)). $β e 21 shows that jce$. As ^ is homogeneous and

x of degree 1 we have (x, $β) =̂ GrΛ(7). So (x, β̂) has a minimal prime
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divisor Q which belongs to Ass (Gr^ (7)/(x)) by [14]. Using (2.3) we thus

get by induction that Q = (m, jc)Gr(7). m = mGrΛ(i) c; Ψ £Ξ Q and ht(Q/m)

= 1 then show that m = *β. "(ii)": Let Pe A(1)U A*. We have to show

that

P e S ^ P e M i n ( i ? / 7 ) U U(I).

To do this we may assume that P — m. Let Λ = 0, μ = 1. Then we have

m g Min (R/I) and it remains to prove that m e £7(7) β-πieS. So let m e

Z7(7). As d = 1, mφ m]7[Gr (7) shows that m e S3. If m e S3 (6.2) shows

that dim(GrΛ(7)/m) = 1. On the other hand we have by (4.8) an isomor-

phism GτR(I) = R[X]/(X(0:1)R, I).

Let ψ eMin(R[X]l(X(0:1)R, I)). Then we have φ e Min (i?[X]/(X, 7))

or φeMin(72[Z]/(0:7),7)).

In the first case we have dim (R[X]/ψ) = d as 7?/7 is purely d-dimen-

sional (dim {RIP) = d for all P e Min (i?/7)). In the second case we have

dim(R[X]lφ) = d as i?/((0: 7)Λ, 7) is purely cί-1-dimensional (which follows

as i?/(0:7) is purely d-dimensional and as the generator of 7 is 7?/(0:7)-

regular). So Gr(7) is purely d-dimensional. Thus ί n e S induces that

d = 1. But this means that m e C/(7).

Now let /ι > 0. Again we may assume that μ = h + 1. As 72 is CM,

GYR(I) is purely d-dimensional (as 7?)7< is) and therefore we may conclude

as previously by (6.2).

(6.5) gives a geometric characterization of the normal torsion-freeness.

Indeed, by (6.5) (ii) and (3.11) it clearly follows

(6.6) COROLLARY. Let I be unmixed, h > 0. Then I is normally

torsion-free iff the conormal cone of I has the same number of components

as V(7).

(6.7) Remark. Using [4] (6.6) says that under the above hypotheses

the symbolic Rees ring R]I[:= 0 7(n) either equals R]I[ or is not finite
7Z>0

over 7?]7[.

Acknowledgement We thank the referee for his bibliographical in-

formations and for his simplifying arguments in the proofs of (5.2) and

(6.4).

Remark. In the meantime Huneke [23] [24] has studied ideals gene-

rated by d-Sequences, and so got results which partly cover ours.
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