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ON VMOA FOR RIEMANN SURFACES 

RAUNO AULASKARI 

1. Introduction. Let A = {z\ \z\ < 1} be the unit disk and f an 
analytic function in A. The Dirichlet integral DA(/) of / on A is defined 
by 

DACO = - fjA \f'(z) \2dxdy, 

and we denote by AD(A) the space of all functions / analytic on A for 
which DA(/) < oo. We denote by BMOA(A) the space of analytic 
functions / in A for which 

sup - j i I/' (z) I2 log az dxdy < oo 

and by VMOA(A) the space of those analytic functions / in BMOA(A) 
satisfying the condition 

lim 
/ / A I/' '(*) |2 log az 

z — a 
dxdy = 0. 

Other equivalent ways to define these spaces can be found in ( [2], [4], [12] 
e.g.). The following inclusion chain 

(1) AD(A) c VMOA(A) c ^ 0 

is well-known where 

% = \f\ / ana ly t i c in A and lim (1 \z\2)\f\z)\ = 0 

The first inclusion is proved by Yamashita in [14, Remark, p. 366] and the 
second one (e.g. [11, p. 200] ). 

Let R be an open Riemann surface which possesses a Green's function, 
i.e., R £ O G and let F be an analytic function defined on R. The space 
AD(#) is defined as above, 

AD(#) = IF | F analytic on R and 

D*(F"> = \ ILlF'^ \ldxdy< °°}-
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Following Metzger [9] we define BMOA for Riemann surfaces in the 
following way: We denote by BMOA(i?) the space of functions F analytic 
on R for which 

BR(F) = sup - / [ \F\z) \2g(z, a)dxdy < oo 

where g(z, a) denotes a Green's function of R with logarithmic singularity 
at a. Further, for analytic functions F on R, we define VMOA(.R) as 
follows: Let dR be an ideal boundary of R and F an analytic function on 
R. Then F e VMOA(^) if and only if 

lim ( [ \F'(z)\2g(z,a)dxdy = 0. 
a-+dR J JR 

In Section 3 we will state the definition of VMOA(,R) as "pulled back" to 
the universal covering surface A and point out the connection between 
VMOA(#) and BMOA(A) n {automorphic functions}. In [9] Metzger 
proved the inclusion relation AD(i?) c BMOA(i^) using the theory of 
covering surfaces. Kobayashi [7] showed that 

BR(F) ^ DR(F), 

which implies Metzger's result, using calculation technique on Riemann 
surfaces. 

The author wishes to thank Professors I. Laine and T. Metzger for many 
helpful remarks on the first draft of this paper and the referee for several 
useful comments. 

2. The spaces AD(i^) and VMOA(i^). In the BMO-seminar in Joensuu 
(1987) Metzger asked if it is true 

(2) AD(R) c VMOA0R) 

(cf. also [15, (VII) p. 481] ). In this paper we will show that the inclusion 
relation (2) does not necessarily hold. However, in some special cases it 
will be valid. In proving we will exploit the technique of Kobayashi. 
However, before proving our main results we will discuss some 
preliminary proposition and lemmas. Since we have defined the space 
VMOA(i^) in the above-mentioned way, we must prove the relation 
between VMOA(i^) and BMOA(^). This result we will need in proving 
Theorem 2. 

PROPOSITION. For any open Riemann surface R which possesses a Green's 
function 

V M O A ( J R ) c BMOA0R). 
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Proof. Let F e VMOA(^) and ua(z) = \F(z) - F {a) |2. We denote by 
ha(z) the least harmonic majorant of ua(z) on R where, for convention, we 
set ha(z) = oo if ua admits no harmonic majorants. By the assumption, 

lim f [ \F'(z)\2g(z,a)dxdy = 0. 
a-*dR J JR 

Using Kobayashi's lemma [7, Lemma 1] 

(3) ha(a) = \fjR \F\Z) \2g(z> a)dxdy9 a e * , 

we find a compact set R0 c R such that 

(4) ha(a) < 1 

for all a e R\R0. 
Suppose, on the contrary, that F £ BMOA(R). Then, by (3) and (4), 

(5) sup ha(a) = oo. 
a<=R0 

Now we have the following alternatives: 
1) At least for one a0 e R0 the condition 

ha0(
a0) = ° ° 

holds. We choose a point ax G R\R0. Let 

L = {W) | 0 1 ( ^ 1 , ftO) = a0, W ) = a,} 

be a path connecting the points a0 and av Let i//(/0) G L, 0 ^ f0 < 1, 
correspond to the largest value t0 of / for which 

^ W o ) ) = °°-
We take a parametric disk U^t ^ ^ \p(t0) such that 

um(z) = \F(z) - F(W 0 ) ) |2 < 1 for all z e £ 7 ^ . 

Further, we choose fl9 0 = t0 < tx ^ 1, \p(t{) G U^t ) for which the least 
harmonic majorant h,,t ^ of the subharmonic function 

um{z) = \F(z) - W , ) ) ! 2 

satisfies 

V i ) W ^ i ) ) < °°-

Thus h^t ^(z) < oo on i?. Now 

uHt0y (z) = \F(z) - F(Wo)) I2 = 22( 1 ^ ) - W i ) ) 

+ |FGK*,)) - F ( W 0 ) ) I2) = 4("«/1)(z) + 1} 

^ 4(^ ( ? i )(z) -f 1) < oo 
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on R. Hence 4(/z^(^)(z) + 1) is a harmonic majorant of the subharmonic 
function u^to)(z). Therefore there exists the finite least harmonic majorant 
^(/0)(z) anc* it satisfies 

hm(z) ^ 4(hm(z) + 1) < oo 

on R. This implies that 

hW0)bKto) ) < °° 

which is a contradiction. 
2) We suppose that, for all a e R0, 

ha(a) < oo. 

By (5) there exists a sequence of points (an) c R0, an —> a0 e R0 (since R0 

is compact) such that 

han(
an) "> °° 

as w —> oo. By the assumption, 

Vo) < °°-
Hence ha(z) < oo on R. We take a parametric disk Ua 3 a0

 s u c ^ t n a t 

|F(z) - F ( z ' ) | 2 < 1 for all z ,z ' G ^Q . 

Further, we may suppose that (aw) c Ua . Then 

^ ( z ) = \F(z) - F(a„) |2 Si 22( |F(z) - F(a0) |2 

+ |F(a0) - F(a„)|2) ^ 4(uao(z) + 1) =i 4(^()(z) + 1). 

Hence the least harmonic majorant satisfies 

hap) ë 4(hao(z) + 1). 

Thus 

(6) ha(fi„) =§ 4(h(>o(a„) + 1) 

for each n. Since we may choose Ua to be a compact set, 

hao(z) ^ K < oo 

for all z ^ Ua . Therefore, by (6), 

ha(an) ë 4(tf + 1) < <x> 

which is a contradiction. Thus the antithesis is incorrect and the proposi­
tion is proved. 

For our first theorem we need the following lemmas: 

LEMMA 1. [7, Lemma 2]. For any Riemann surface R, 
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(7) \ha(a) fk - jfR \F'(z) |2(1 - e-2^a))dxdy, 
2 u v ^ 

where ha is the least harmonic majorant of the subharmonic function 
\F(z) - F(a) |2. 

Remark. Kobayashi's lemma has been applied by the value k = 1. 

LEMMA 2. If 

lim g(z, a) = 0 /or 0// z G JR, 

//ze« /or g/ve/? compact set R0 cz R and any e > 0 //zere ex/sto a compact set 
S0 c R such that a G R\SQ implies 

g(z, a) < c /or a// z G R0. 

Lemma 2 is well-known and its proof may be left for the reader. 
The Riemann surface JR is called regular if 

lim g(z, a) = 0 for each z G R. 
a->dR 

The set of constant functions on R will be denoted by C. 

THEOREM 1. Let R be any open Riemann surface possessing a Green's 
function. Then we have the following possibilities'. 

(a) IfR is regular, then 

AD(#) c V M O A ( J R ) . 

(b) IfR is not regular, then 

VMOA(#) = C. 

Proof, (a) Let F G AD(i?) and let e > 0. We may choose a compact set 
R, c R such that 

(8> J b » \F'(z)\2dxdy< 
£77 

By Lemma 2 there exists a compact set S0 <z R such that a e ^X^o 
implies 

(9) 1 - e~
2*(z>a) < 

2DR(F) 

for all z e R(. Let a <E K\S 0 . Then, by (7), (8) and (9), 

(10) I A » =i I j j ^ \F\z) \\\ - e - 2 f ( l ' o ) ) ^ 
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jjR \F'(z) \2dxdy + - j j \F\z) \2dxdy 
t 1 

< 2DR(F) IT J JR< 7T J JR\R<i 

< D , ( f ) + - = e. 
2DR(F) R 2 

Hence, by [7, Lemma 1] and (10), we have 

/ / . 
lim ha{a) = - lim / /„ \F'(z) \2g(z, a)dxdy = 0. 

a-^àR IT a->dR 

Thus F e VMOACR) and (a) is proved. 
(b) Let F be a non-constant analytic function on R. Since R is not 

regular, there exist a sequence of points (an) c R converging to dR and a 
point z0 e R such that 

lim g(z0, an) = c > 0. 
n-*oo 

We will consider the integral 

jfR \F'(z) \2g(z, a„)dxdy. 

Let us take a parametric disk 

Ur = {z\ \z - z0\ < r} 

on R and an annulus 

Kxr2 = W rx<\z - z0\ < r2} 

where 0 ^ rx < r2 = r. Since g(z, an) is a harmonic function in Ur (for 
sufficiently large n), we have 

1 f2" 
g ( Z ° ' an) = Ym J ° g ( Z ° + '*"' a") '̂ ° < ' < r' 

Thus, by integrating 

1 2 2 f'2 

-g(z0 , fln)(r2 - rx) = J r g(z0, an)tdt 

1 

~ Ym 

and 

/ L , ( /T-o *<*<> + te'\ an)d*)tdt 

(11) / / K g(z, an)dxdy = 77g(z0, a j ^ - r]) -* w c ( r | - ift 
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as n —> oo. Now 

(12) lim inf / I \F'(z) \2g(z, ajdxdy 

i= lim inf If \F'(z) \2g(z, ajdxdy. 

Since F is a non-constant analytic function, we find r]9 r2 such that 
0 ^ rx < r2 ^ r and \F\z) | ^ a > 0 for all z e J ^ . Hence, by (11), (12) 
and the inclusion K r c [/ 

lim inf j f\F'(z)\2g(z,an)dxdy 
A?—>00 

A Î ^ O O 

2 

- /I â lim inf / / \F'(z) \2g(z, ajdxdy 

s= a ik l i m / v s(z> an)dxdy 

= <7ra2c(rj - r]) > 0. 

By definition F <£ VMOA(R) and thus VMOA(R) = C 

The existence of (a). The simplest regular Riemann surface is the unit 
disk. For other Riemann surfaces satisfying the assumption of (a) 
(cf. [3, Folgesatz 13.3, p. 141]). 

The existence of (b). Let R be a bounded, connected, open set in the 
complex plane with a Green's function. If R has irregular boundary 
points, then the assumption of (b) is satisfied (cf. [6, Satz 8.34, p. 200] ). 
Further, on these Riemann surfaces R there exist non-constant functions 
F e ADÇR) but as we showed the space VMOA(/?) consists only of 
constant functions. Thus AD(R) £ VMOA(7?). 

3. The spaces VMOA(i?) and &0(R). In this section we want to consider 
if in the formula (1) the latter corresponding inclusion is valid on Riemann 
surfaces. Since there is a Green's function on R, the universal covering 
surface of R is A and if IT:A —» R denotes the universal covering map then 
the group of deck transformations is a Fuchsian group T. Let £2 be the 
Ford fundamental polygon for T so that II:Œ -» # is a (1 — 1) into map 
and 11:0, —> R is onto and the area measure of d£2 is zero. 

The space 

%(R) = \F\ F analytic on R and lim | F ( z ) l | J z | = o] , 
I z-*dR da(z) ) 

where do(z) is the Poincaré metric of R, corresponds to <%0 on R. We want 
to prove the inclusion 
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VMOA(i?) c @Q(R). 

The proof of the inclusion is based on the fact that F can be "pulled back" 
to a function / acting on A by the following method: if F is analytic on R, 
define/(z) by / (z ) = F(H(z) ) for all z in A. It follows immediately t h a t / 
is an analytic function on A which satisfies 

(13) /(y(z) ) = f(z) for all y in T and z in A. 

Functions satisfying (13) are called automorphic functions with respect to T. 
Define the spaces AD(A/r), BMOA(A/T), VMOA(A/r) and # 0 (A/r) as 
the pull backs of the spaces AD(R), BMOA(R), VMOA(#) and %{R\ 
respectively. We note that the space BMOA(A/T) corresponding to 
BMOA(#) could be defined as 

BMOA(A) n {automorphic functions with respect to T}. 

However, in the case of VMOA(^) the corresponding space VMOA(A/T) 
is in general different from 

VMOA(A) n {automorphic functions with respect to T}. 

In fact, the latter space consists only of constant functions. Instead the 
space VMOA(A/T) includes those functions / of BMOA(A) n {auto­
morphic functions with respect to T} which satisfy in one fundamental 
polygon S (in all fundamental polygons) the condition 

lim [ [ \f(z)\2g(z,a>;T)dxdy = 0 
M->i J JU 

where g(z, <o; T) is a Green's function of the Riemann surface A/T. 
Now 

^o(A/T) = 1/1 / automorphic with respect to T and 

lim (1 - \z\2)\f'(z)\ = o ) 

(cf. [1, Definition 1] where we denoted ^ 0 ( A / r ) bY ^o( r ) )• 
In [1, Example (a)] we proved AD(A/T) c ^ 0 (A/ r ) . Further, in 

[1, Theorem 1] we gave some equivalent conditions implying an analytic 
automorphic function to belong to ^ ( A / T ) . In Section 2 we showed that 
AD(A/T) (f. VMOA(A/T) in some cases. However, the following is 
valid: 

THEOREM 2. VMOA(A/T) c <^0(A/r). 

Proof. It is well-known that (cf. Proposition) 

VMOA(A/r) c BMOA(A/T) c BMOA(A) c S8, 
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where the inclusion BMOA(A/T) c BMOA(A) has been proved by 
Metzger [9, Proposition 2] and 

Si = \g\ g analytic in A and sup (1 - |z|2) \g\z) \ < ool 
I zeA J 

is the space of Bloch functions. Let / e VMOA(A/T). Suppose, on the 
contrary, that 

/ G a\a0(à/T). 

Then there exists a sequence of points (<ow) c S2, \con\ —> 1, such that 

lim (1 - k J 2 ) | / ' K ) l = c > 0 . 
«—>oo 

Set 

Since / G J , we may suppose that 

lim / „ ( 0 = /o (0 

uniformly in compact sets of A where f0(Ç) is an analytic function in A. It 
follows that 

l/„'(0) | = (1 - |WJ 2 ) | / ' («„) | - > c a s r c ^ o o . 

Since 

/o '(0) = lim /„'(0), 

fçfX) is a non-constant function. 
If gA(z, CÔ) = log( |1 — côz\/\z — o)\ ) is a Green's function of A, then by 

a Myrberg's theorem [13, p. 522] 

g(z, <o; r> = 2 &(*, Y(w) ) 

is a Green's function of the Riemann surface A/I\ By a calculation 

/ I i/'(2) i2s(z> u> T^dxdy = I L i/'(z> i2&(*> « ) ^ ^ -
Further, by the assumption 

(14) lim / /. \f'(z) \2gA(z, wn)dxdy 
n^>oo 

lim J j [ | / ' ( z ) |2g(z, co„; I>te/»> = 0. 
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Choose the pseudohyperbolic disks 

«V R) = (^ 
w„z 

< R\ (R < 1). 

Then, by (14), 

(15) lim f t | / ' (z) \\(z, un)dxdy = 0. 

By the change of variable 

l + unS 

0 = ,!i- / X K * > l/,(z) |2gA(2' " - ^ 

- , ! ^ / X ( o , « ) ^ ( f ) | 2 ^ 0 ) ^ 
= /X(0.«)l/o(f)l2^0)^r, 

= l o ^ iX<o,«) l/o(f) I2**» > « 
since f0(Ç) is non-constant. But this is a contradiction and t h u s / G ^ 0 (A/ r ) . 
Hence VMOA(A/F) c ^ 0 (A/ r ) . 

4. The space BMOH(i^). Let £/ be a real-valued harmonic function on 
the Riemann surface R. We denote by HD(#) the space of all harmonic 
functions U on R with finite Dirichlet integral, that is, 

HD(#) = \U\ U harmonic on R and 

/ / , Igrad U(z) \2dxdy < oo >. 

Further we denote 

BMOHCR) = \U\ U harmonic on R and 

sup J JR Igrad U(z) |2g(z, d)dxdy < ooj. 

(All the time we suppose that R admits Green's functions.) 
Kusunoki and Taniguchi [8] showed that a harmonic function U in 

HD(i^) belongs to BMOH(i?) in some special cases. Gotoh [5] constructed 
an infinitely connected plane domain R and a harmonic function U such 
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that U e HD(R) but U £ BMOH(iR)- The meaning of this section is to 
show that Pommerenke [10, Theorem 2] has implicitly constructed a 
harmonic function U <E HD(i?) but not belonging to BMOH(^). 

We proceed by pulling back functions to the universal covering surface 
A. Pommerenke constructed an analytic non-Bloch function / satisfying 

a ,Q \f'(z) \ldxdy < oo. 

The function / satisfies the equality 

/ (y(z) ) = / ( Z ) + r(y) 

where y e T (T of convergence type) and r(y) is a real number. If we 
set 

then w is a harmonic automorphic function with respect to T for which 

JQ Igrad i*(z) \2dxdy = J JQ | / ' (z) \2dxdy < oo. 

Since BMOA(A) c 3& and g £ â?, we have 

(16) sup / / |g'(z) |2gA(z, w)</x<(y = oo. 

a 
a 

The equality (16) is equivalent to (we may suppose that w e fi) 

(17) sup JJQ \g«z) |2g(z, co; Ddxrfv = oo 
where 

g(z, (o; T) = 2 a (z , y((o) ). 

As transferred to the surface # the expression (17) is same as 

sup / / |grad U(z) \2g(z, a)dxdy = oo 
a*=R J JR 

where II(co) = a and w(z) = É/(II(z) ). By the definition U £ BMOH(fl). 

REFERENCES 

1. R. Aulaskari, Criteria for automorphic functions to belong to @Q(T) and NQ(T), Complex 
Analysis and Applications, Proc. Conf. Varna/ Bulg., (1985). 

2. A. Baernstein II, A na/y tic functions of bounded mean oscillation, Aspects of contemporary 
complex analysis (Academic Press, 1980), 2-26. 

3. C. Constantinescu and A. Cornea, Idéale Render Riemannscher Fldchen (Springer-Verlag, 
Berlin-Gôttingen-Heidelberg, 1963). 

4. J. Garnett, Bounded analytic functions (Academic Press, 1981). 
5. Y. Gotoh, On BMO functions on Riemann surface, J. Math. Kyoto Univ. 25 (1985), 

331-339. 

https://doi.org/10.4153/CJM-1988-049-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-049-9


RIEMANN SURFACES 1185 

6. L. L. Helms, Einfuhrung in die Potentialtheorie (Walter de Gruyter, Berlin-New York, 
1973). 

7. S. Kobayashi, Range sets and BMO norms of analytic functions, Can. J. Math. 36 (1984), 
745-755. 

8. Y. Kusunoki and M. Taniguchi, Remarks on functions of bounded mean oscillation on 
Riemann surfaces, Kodai Math. J. 6 (1983), 434-442. 

9. T. A. Metzger, On BMO A for Riemann surfaces, Can. J. Math. 18 (1981), 1255-1260. 
10. Ch. Pommerenke, On inclusion relations for spaces of automorphic forms, Lecture Notes in 

Math. 505 (Springer-Verlag, Berlin-Heidelberg-New York, 1976). 
11. On univalent functions, Bloch functions and VMOA, Math. Ann 236 (1978), 

199-208. 
12. D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 

391-405. 
13. M. Tsuji, Potential theory in modern function theory (Maruzen Co. Ltd., Tokyo, 1959). 
14. S. Yamashita, Functions of uniformly bounded characteristic, Ann. Acad. Sci. Fenn. Ser. 

A I Math. 7(1982), 349-367. 
15. Some unsolved problems on meromorphic functions of uniformly bounded character­

istic, Internat. J. Math. & Math. Sci. 8 (1985), 477-482. 

University ofJoensuu, 
Joensuu, Finland 

https://doi.org/10.4153/CJM-1988-049-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-049-9

