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1. Introduction

Let £, be an irrational number with simple continued fraction expansion <* =
[_ao;aua2,..], Pjqn be its nth convergent, \£-pJqn\ = \/{Mnql). The following two
theorems were proved by Miiller [9] and rediscovered by Bagemihl and McLaughlin [1]:

Theorem 1. For n>\, max(Mn_j,Mn,Mn

Theorem 2. For n>l, either Mn>an + 1 + l/an+1 or min(Mn_1,Mn + l)>an + 1 + l/an+v

If an + 1^2 in the above theorems, we have Fujiwara's theorems [4]. Since a n + 1 ^ l ,
Theorem 1 implies Borel's theorem [2], and Vahlen's theorem [22] (that either Mn or
Mn+1 is greater than 2) follows from Theorem 2. For more information, cf. [3, 5, 7, 10,
12, 16, 17].

In this paper, we use the method of papers [20,21] to prove a theorem, which includes
Theorems 1, 2 and provides a new inequality max(Mn_1,Mn+1)>4an + 1(a^+1 + l)/
(2a*+1 + 1). The proof is elementary. This theorem can be used to investigate asymmetric
approximation.

2. Preliminaries

It is well known [5,7] that if Mn = [an+1;an+2,...] + [0; an,aa.1,...,a1'], then £-pJqn =
(-\YI(Mnql), \Z-pJqn\ = l/(Mnq

2
n).

Let P = [an + 2;an+3,...]; g = [an;an_1,...,a1]. Then we have the following relations:

(2)
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We need the following two simple lemmas. They may be easily proved by evaluating
the derivatives of the functions involved.

Lemma 1. Let f{x) = l/{a + x~i)+l/(r-a-x~1) withO<a<r.

(i) The function f(x) is decreasing on the interval (l/(r — a), 2/(r — a)). Thus, if
l/(r - a) < x < 2/(r - a), f(x) > 4r/(r2 - a2).

(ii) Ifr^la then f(x) is decreasing on the interval (l/(r — a), oo), so that if l/(r — a)<x,
f(x)>r/(a(r-a)).

Lemma 2. / / r > 0 then the function g{x) = l/(r — x ~l) + x is increasing on the interval
(2/r, oo). In particular, ifO<a<r and x>2j(r — a) then g(x)>Ar/(r2—a1).

3. Main results

Theorem 3.

(i) Let r>an + l be a constant. If Mn<r, then max(Mn_1,Mn + 1)>4r/(r2 —a2
+1).

(ii) Let r be a constant such that an + 1<r<2an+l. If Mn<r, then min(Mn_!,Mn + i )>
r/(an+1(r-an+1)).

Proof. Since Mn<r, by (2) we have 1/P + l/Q = Mn — an+l<r — an+l. Hence

It is easily seen that the following inequalities hold:

From (4), (5), we know

P>—-—; (8)
r-0, + 1

Q>——• (9)

If Q^2/(r-an+l), by Lemma l(i), (8) and (6) we have Mm+1 >4r/(r2-a2
+ 1).
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If g>2 / ( r - a n + 1 ) , by Lemma 2 and (7) we have Mn.l>Ar/(r2 —
Therefore max(Mn_1)Mn + 1)>4r/(r2-a^+ 1) .
To prove (ii), we notice that by (5)

Since an+1<r<2an+1, by Lemma l(ii), (9), (8), (6) and (10), we have min(Mn_1,Mn+1)>
r/(an + i(r-an+l)).

Remark 0. If Mn = r and Q=£2/(r—an+l), we still have max(Mn_!,Mn+1)>
4r/(r2-a2

+j) by the proof of Theorem 3(i).
If Mn = r and Q = 2/(r-an+i), then by (2) we have P = 2/{r-an+l) = Q. It is impossible

because Q is rational but P is irrational. Therefore Theorem 3(i) can be strengthened as
follows:

Theorem 3(i'), / / Mn = r, then max(Mn_1,Mn + 1 )>4r( r 2 -a 2
+ 1 ) .

Remark 1. Letting r = a2
+1 +4 in Theorem 3(i) we have Theorem 1.

Letting r — an+1 + l/an+1 in Theorem 3(ii) gives Theorem 2 and also the result that
either M n >a n + 1 + l/an+1 or max(Mn_1,Mn+1)>4an+1(a2

+1 +l)/(2a2
+1 + l).

The following result is a generalization of Theorem 2.

Corollary 1. For n>l and k>0, either Mn>an + 1 + l/(kan+l) or min(Mn_!, Mn + 1 )>
kan + 1 + l/an+1.

Proof. This is a special case of Theorem 3(ii) for r = an+1 + l/(kan+l).

Remark 2. If k is sufficiently large, comparing Theorem 2 and Corollary 1, we have
an interesting conclusion: if Mn loses a little, both MB_t and Mn+l will gain a lot.

The following result, which is a corollary of Theorem 3, was obtained by Sziisz [19,
Theorem 2.1].

Corollary 2. Let T > 0 be a constant and an+l>f1. Then either A/n>N/l +4T/T or
max(Mn_1,Mn + 1)>N/l+4T.

Proof. If an+l^y/l+4r/T, then Mn>J\+Ax/x by (2). If an + l < v / l +4T/T, let r =
V T + 4 7 / T , then by Theorem 3(i), we have either

( 1 + 4 T ) / T 2 - T " 2 :

We give another application of Theorem 3. Kurosu [6, p. 253] proved that if an+l ^ 2 ,
then either Mn>8/3 or max(Mn_1,Mn + i)> 10/3 = 3.3333. We improve 10/3 to be 24/7 =
3.4285 without the restriction a n + 1 _2 .
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Corollary 3. Either MB>8/3 or max(Mn_1,Mn+1)>24/7.

Proof. From formula (2), we know that if an+1_-3, then Mn>3>8/3. Therefore we
need only consider the case aB + 1 ̂ 2 . Let r = 8/3. By Theorem 3(i), we have either

Mn>8/3 or max(Mn_1,Mn+1)> ^ / 3 ) =24/7.

5

4. Applications to asymmetric approximation

Segre [18] proved a theorem on asymmetric approximation, which was investigated
in [11, 13, 14, 15, 19]. A version of LeVeque's statement [8] of Segre's theorem is the
following result.

Theorem 4. Let x be a fixed positive number. Then in the five consecutive convergents
Pi/qJ(i = n — 2, n — 1, n, n + 1 , n + 2) of an irrational number £, at least one of them satisfies
the following inequality:

' ? J W (1.)

LeVeque [8] pointed out that in the above theorem, five convergents cannot be
replaced by three. A natural question arises: when is Theorem 4 true if five is replaced
by three? Using Theorem 3, we obtain some results in this connection. We first prove
the following theorem, which was obtained in [8] by using Farey's series.

Theorem 5. / / n is an odd positive integer, then in three consecutive convergents
i/ii (i = n — l,n, n + 1) of an irrational number £, at least one satisfies (11).

Proof. Since <^-pi/g, = ( — l)'/(M,qf), kjs_easily seen that inequality (11) is equivalent
to M,- > yJY+Ax if i is odd, and M , - > > / 1 + 4T/T if i is even.

If an + i ^ N / l + 4 r , then Mn>v/l+4t by formula (2); Han+i< J\+Ax, let r = N / 1 + 4 T ,
by Theorem 3(i) we have either

or max(Mn_!,Mn+i)> ^ I 2

Theorem 5 is not correct for even n. But for some special value of x we have an
affirmative result.

Theorem 6. / / 1 ^ t < 2 + y/5, then at least one of the three consecutive convergents
(i = n — l,n,n+ 1) of an irrational number £ satisfies inequality (11).
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Proof. We need only prove the theorem for even n.
Since 1 ^ T < 2 + V / 5 , we know that 1 + 4 T - T 2 > 0 and 4 T / ( 1 + 4 T - T 2 ) ^ 1 . If an+1^

, / 1 + 4 T / T , we have M F 1 > V /1+4T/T by formula (2); if a ( ,+ 1<>/l + 4T/T, let r=s/\+Ax/x,
by Theorem 3(i), we have either

MB > N/1+4T/T or max (Mn _,, MB
4 . / H - 4 T / T 4T,V1+4T

( 1 + 4 T ) / T 2 - 1 + 4 T - T 2 = '

Remark 3. Letting T = 1 in Theorem 6, we obtain Borel's theorem again. But if T= 1
in Theorem 4, we cannot obtain Borel's theorem.

Two real numbers f and £,' are said to be equivalent if there are integers a, b, c, d such
that £'=(al; + b)/(cZ + d) and ad-bc=±i. If S is not equivalent to (N/5 + l)/2 =
[1; 1,1,...], then for certain values of T, inequality (11) can be sharpened.

Theorem 7. / / t; is an irrational number not equivalent to (N/5 + l)/2, and 7 / 4 < T <
(5 + 2N/5)/4, then there are infinitely many convergents pjqn satisfying the following
inequality:

6^/5-10
5

v/T+47^2
(12)

Proof. Since £ is not equivalent to (N/5 + l)/2 = [l; 1,1,...], there are infinitely many

Let n be odd. If a , + 1 ^ x / l + 4 t , then M B > V / 1 + 4 T by formula (2); if aB + 1<>/l+4T,
let r = V / 1 + 4 T , by Theorem 3(i) either

or max(MB_1,Mn+1)>
( 1 + 4 T ) - 2 2 T - 3 / 4 '

Let « be even. Since 7 / 4 < T < ( 5 + 2N/5)/4, we know that - 1 6 T 2 + 4 0 T - 5 > 0 and
4(4T-3) / ( -1 6T2 + 4 0 T - 5 ) ^ 1 . If a . + x ^ x / l + 4 T / ( T - 3 / 4 ) , then Mn>v/ l+4r / ( t -3/4) by
formula (2); if qn+, <^/ l + 4 T / ( T - 3 / 4 ) , let r = J\ + 4T/(T-3/4), by Theorem 3(i), we have
either Mn>y/\ + 4 T / ( T - 3 / 4 ) or

max(Mn_1,M(1+1)>

It is easily seen that

4r 4 ( 4 T - 3 X / 1 + 4 T

-y-_6x/5-10

N/5)/4/" 5
T.

Therefore inequality (12) is correct.
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Another theorem of asymmetric approximation was given by Robinson [14]. We state
it as Theorem 8.

Theorem 8. Given any irrational number £ and any positive number e, there are
infinitely many rational numbers p/q satisfying the following inequality:

03)

For certain values of £ we can show that one of any three consecutive convergents of
£ satisfies inequality (13). In fact we have the following theorem.

Theorem 9. / / (20 —1̂ /5)15 < e < x / 5 —1, then one of any three consecutive convergents
of t, satisfies inequality (13).

Proof. Let n be odd. Since e<y/5 — 1, we have 4—2^/52+ £2>0; since

e> (20-7y5)/5 = 0.8695 > (3 + ̂ 5 Vl0 + 2V5)/(y5 + l) = 0.4425,

we have

4 -

If an+l^s/5-e, then Mn>y/5~e by formula (2); if an + l<^/5-e, let r = s/5-e, by
Theorem 3(i), we have either Mn > y/5 — e or

max(Mn_1,Mn+1)>

Let n be even. Since e > (20 -1^/1)1$, we have 4(^/5 + l)/(5 + 2jS) >y/5-e. If
a^y-Z^Jl+X, then M n > y 5 + 1 by formula (2); if a n + 1 < v /5 + l, let r^^fl+l, by
Theorem 3(i), we have either

M n > x / 5 + l or

Therefore Theorem 9 is true.

Now two problems arise naturally.

Problem 1. Find all the values of T such that for any irrational number £, at least
one of any three consecutive convergents satisfies inequality (11).
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Problem 2. Find all the values of e such that for any irrational number £, at least
one of any three consecutive convergents satisfies inequality (13).

Acknowledgement. The author thanks the referee sincerely for his valuable sugges-
tions to improve this paper.
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