A THEOREM ON APPROXIMATION OF IRRATIONAL NUMBERS BY SIMPLE CONTINUED FRACTIONS

by JINGCHENG TONG

(Received 16th April 1986)

1. Introduction

Let ξ be an irrational number with simple continued fraction expansion $\xi=$ $\left[a_{0} ; a_{1}, a_{2}, \ldots\right], p_{n} / q_{n}$ be its nth convergent, $\left|\xi-p_{n} / q_{n}\right|=1 /\left(M_{n} q_{n}^{2}\right)$. The following two theorems were proved by Müller [9] and rediscovered by Bagemihl and McLaughlin [1]:

Theorem 1. For $n>1, \max \left(M_{n-1}, M_{n}, M_{n+1}\right)>\sqrt{a_{n+1}^{2}+4}$.
Theorem 2. For $n>1$, either $M_{n}>a_{n+1}+1 / a_{n+1}$ or $\min \left(M_{n-1}, M_{n+1}\right)>a_{n+1}+1 / a_{n+1}$. If $a_{n+1} \geqq 2$ in the above theorems, we have Fujiwara's theorems [4]. Since $a_{n+1} \geqq 1$, Theorem 1 implies Borel's theorem [2], and Vahlen's theorem [22] (that either M_{n} or M_{n+1} is greater than 2) follows from Theorem 2. For more information, cf. [3, 5, 7, 10, 12, 16, 17].

In this paper, we use the method of papers [20,21] to prove a theorem, which includes Theorems 1, 2 and provides a new inequality $\max \left(M_{n-1}, M_{n+1}\right)>4 a_{n+1}\left(a_{n+1}^{2}+1\right) /$ $\left(2 a_{n+1}^{2}+1\right)$. The proof is elementary. This theorem can be used to investigate asymmetric approximation.

2. Preliminaries

It is well known $[5,7]$ that if $M_{n}=\left[a_{n+1} ; a_{n+2}, \ldots\right]+\left[0 ; a_{n}, a_{n-1}, \ldots, a_{1}\right]$, then $\xi-p_{n} / q_{n}=$ $(-1)^{n} /\left(M_{n} q_{n}^{2}\right),\left|\xi-p_{n} / q_{n}\right|=1 /\left(M_{n} q_{n}^{2}\right)$.

Let $P=\left[a_{n+2} ; a_{n+3}, \ldots\right] ; Q=\left[a_{n} ; a_{n-1}, \ldots, a_{1}\right]$. Then we have the following relations:

$$
\begin{align*}
M_{n-1} & =\frac{1}{a_{n+1}+P^{-1}}+Q \tag{1}\\
M_{n} & =a_{n+1}+\frac{1}{P}+\frac{1}{Q} \tag{2}\\
M_{n+1} & =\frac{1}{a_{n+1}+Q^{-1}}+P . \tag{3}
\end{align*}
$$

We need the following two simple lemmas. They may be easily proved by evaluating the derivatives of the functions involved.

Lemma 1. Let $f(x)=1 /\left(a+x^{-1}\right)+1 /\left(r-a-x^{-1}\right)$ with $0<a<r$.
(i) The function $f(x)$ is decreasing on the interval $(1 /(r-a), 2 /(r-a))$. Thus, if $1 /(r-a)<x<2 /(r-a), f(x)>4 r /\left(r^{2}-a^{2}\right)$.
(ii) If $r \leqq 2 a$ then $f(x)$ is decreasing on the interval $(1 /(r-a), \infty)$, so that if $1 /(r-a)<x$, $f(x)>r /(a(r-a))$.

Lemma 2. If $r>0$ then the function $g(x)=1 /\left(r-x^{-1}\right)+x$ is increasing on the interval $(2 / r, \infty)$. In particular, if $0<a<r$ and $x>2 /(r-a)$ then $g(x)>4 r /\left(r^{2}-a^{2}\right)$.

3. Main results

Theorem 3.

(i) Let $r>a_{n+1}$ be a constant. If $M_{n}<r$, then $\max \left(M_{n-1}, M_{n+1}\right)>4 r /\left(r^{2}-a_{n+1}^{2}\right)$.
(ii) Let r be a constant such that $a_{n+1}<r<2 a_{n+1}$. If $M_{n}<r$, then $\min \left(M_{n-1}, M_{n+1}\right)>$ $r /\left(a_{n+1}\left(r-a_{n+1}\right)\right)$.

Proof. Since $M_{n}<r$, by (2) we have $1 / P+1 / Q=M_{n}-a_{n+1}<r-a_{n+1}$. Hence

$$
\begin{align*}
& P>\frac{1}{r-a_{n+1}-Q^{-1}}>0 \tag{4}\\
& Q>\frac{1}{r-a_{n+1}-P^{-1}}>0 \tag{5}
\end{align*}
$$

It is easily seen that the following inequalities hold:

$$
\begin{gather*}
M_{n+1}=\frac{1}{a_{n+1}+Q^{-1}}+P>\frac{1}{a_{n+1}+Q^{-1}}+\frac{1}{r-a_{n+1}-Q^{-1}} \tag{6}\\
M_{n-1}=\frac{1}{a_{n+1}+P^{-1}}+Q>\frac{1}{r-Q^{-1}}+Q \tag{7}
\end{gather*}
$$

From (4), (5), we know

$$
\begin{align*}
& P>\frac{1}{r-a_{n+1}} \tag{8}\\
& Q>\frac{1}{r-a_{n+1}} \tag{9}
\end{align*}
$$

If $Q \leqq 2 /\left(r-a_{n+1}\right)$, by Lemma 1 (i), (8) and (6) we have $M_{n+1}>4 r /\left(r^{2}-a_{n+1}^{2}\right)$.

If $Q>2 /\left(r-a_{n+1}\right)$, by Lemma 2 and (7) we have $M_{n-1}>4 r /\left(r^{2}-a_{n+1}^{2}\right)$.
Therefore $\max \left(M_{n-1}, M_{n+1}\right)>4 r /\left(r^{2}-a_{n+1}^{2}\right)$.
To prove (ii), we notice that by (5)

$$
\begin{equation*}
M_{n-1}=\frac{1}{a_{n+1}+P^{-1}}+Q>\frac{1}{a_{n+1}+P^{-1}}+\frac{1}{r-a_{n+1}-P^{-1}} . \tag{10}
\end{equation*}
$$

Since $a_{n+1}<r<2 a_{n+1}$, by Lemma 1(ii), (9), (8), (6) and (10), we have $\min \left(M_{n-1}, M_{n+1}\right)>$ $r /\left(a_{n+1}\left(r-a_{n+1}\right)\right)$.

Remark 0. If $M_{n}=r$ and $Q \neq 2 /\left(r-a_{n+1}\right)$, we still have $\max \left(M_{n-1}, M_{n+1}\right)>$ $4 r /\left(r^{2}-a_{n+1}^{2}\right)$ by the proof of Theorem 3(i).

If $M_{n}=r$ and $Q=2 /\left(r-a_{n+1}\right)$, then by (2) we have $P=2 /\left(r-a_{n+1}\right)=Q$. It is impossible because Q is rational but P is irrational. Therefore Theorem 3(i) can be strengthened as follows:

Theorem 3(i'), If $M_{n} \leqq r$, then $\max \left(M_{n-1}, M_{n+1}\right)>4 r\left(r^{2}-a_{n+1}^{2}\right)$.
Remark 1. Letting $r=a_{n+1}^{2}+4$ in Theorem 3(i) we have Theorem 1.
Letting $r=a_{n+1}+1 / a_{n+1}$ in Theorem 3(ii) gives Theorem 2 and also the result that either $M_{n}>a_{n+1}+1 / a_{n+1}$ or $\max \left(M_{n-1}, M_{n+1}\right)>4 a_{n+1}\left(a_{n+1}^{2}+1\right) /\left(2 a_{n+1}^{2}+1\right)$.

The following result is a generalization of Theorem 2.
Corollary 1. For $n>1$ and $k>0$, either $M_{n}>a_{n+1}+1 /\left(k a_{n+1}\right)$ or $\min \left(M_{n-1}, M_{n+1}\right)>$ $k a_{n+1}+1 / a_{n+1}$.

Proof. This is a special case of Theorem 3(ii) for $r=a_{n+1}+1 /\left(k a_{n+1}\right)$.
Remark 2. If k is sufficiently large, comparing Theorem 2 and Corollary 1 , we have an interesting conclusion: if M_{n} loses a little, both M_{n-1} and M_{n+1} will gain a lot.

The following result, which is a corollary of Theorem 3, was obtained by Szüsz [19, Theorem 2.1].

Corollary 2. Let $\tau>0$ be a constant and $a_{n+1}>\bar{\tau}^{1}$. Then either $M_{n}>\sqrt{1+4 \tau} / \tau$ or $\max \left(M_{n-1}, M_{n+1}\right)>\sqrt{1+4 \tau}$.

Proof. If $a_{n+1} \geqq \sqrt{1+4 \tau} / \tau$, then $M_{n}>\sqrt{1+4 \tau} / \tau$ by (2). If $a_{n+1}<\sqrt{1+4 \tau} / \tau$, let $r=$ $\sqrt{1+4 \tau} / \tau$, then by Theorem 3(i), we have either

$$
M_{n}>\sqrt{1+4 \tau / \tau} \quad \text { or } \quad \max \left(M_{n-1}, M_{n+1}\right)>\frac{4 \sqrt{1+4 \tau} / \tau}{(1+4 \tau) / \tau^{2}-\tau^{-2}}=\sqrt{1+4 \tau}
$$

We give another application of Theorem 3. Kurosu [6, p. 253] proved that if $a_{n+1} \geqq 2$, then either $M_{n}>8 / 3$ or $\max \left(M_{n-1}, M_{n+1}\right)>10 / 3=3.3333$. We improve $10 / 3$ to be $24 / 7=$ 3.4285 without the restriction $a_{n+1} \geqq 2$.

Corollary 3. Either $M_{n}>8 / 3$ or $\max \left(M_{n-1}, M_{n+1}\right)>24 / 7$.
Proof. From formula (2), we know that if $a_{n+1} \geqq 3$, then $M_{n}>3>8 / 3$. Therefore we need only consider the case $a_{n+1} \leqq 2$. Let $r=8 / 3$. By Theorem 3(i), we have either

$$
M_{n}>8 / 3 \text { or } \max \left(M_{n-1}, M_{n+1}\right)>\frac{4(8 / 3)}{\left(\frac{8}{3}\right)^{2}-2^{2}}=24 / 7
$$

4. Applications to asymmetric approximation

Segre [18] proved a theorem on asymmetric approximation, which was investigated in [11, 13, 14, 15, 19]. A version of LeVeque's statement [8] of Segre's theorem is the following result.

Theorem 4. Let τ be a fixed positive number. Then in the five consecutive convergents $p_{i} / q_{i}(i=n-2, n-1, n, n+1, n+2)$ of an irrational number ξ, at least one of them satisfies the following inequality:

$$
\begin{equation*}
-\frac{1}{\sqrt{1+4 \tau} q_{i}^{2}}<\xi-\frac{p_{i}}{q_{i}}<\frac{\tau}{\sqrt{1+4 \tau} q_{i}^{2}} \tag{11}
\end{equation*}
$$

LeVeque [8] pointed out that in the above theorem, five convergents cannot be replaced by three. A natural question arises: when is Theorem 4 true if five is replaced by three? Using Theorem 3, we obtain some results in this connection. We first prove the following theorem, which was obtained in [8] by using Farey's series.

Theorem 5. If n is an odd positive integer, then in three consecutive convergents $p_{i} / q_{i}(i=n-1, n, n+1)$ of an irrational number ξ, at least one satisfies (11).

Proof. Since $\xi-p_{i} / q_{i}=(-1)^{i} /\left(M_{i} q_{i}^{2}\right)$, it is easily seen that inequality (11) is equivalent to $M_{i}>\sqrt{1+4 \tau}$ if i is odd, and $M_{i}>\sqrt{1+4 \tau} / \tau$ if i is even.

If $a_{n+1} \geqq \sqrt{1+4 \tau}$, then $M_{n}>\sqrt{1+4 \tau}$ by formula (2); if $a_{n+1}<\sqrt{1+4 \tau}$, let $r=\sqrt{1+4 \tau}$, by Theorem 3(i) we have either

$$
M_{n}>\sqrt{1+4 \tau} \quad \text { or } \quad \max \left(M_{n-1}, M_{n+1}\right)>\frac{4 \sqrt{1+4 \tau}}{(1+4 \tau)-1^{2}}=\sqrt{1+4 \tau} / \tau
$$

Theorem 5 is not correct for even n. But for some special value of τ we have an affirmative result.

Theorem 6. If $1 \leqq t<2+\sqrt{5}$, then at least one of the three consecutive convergents $p_{i} / q_{i}(i=n-1, n, n+1)$ of an irrational number ξ satisfies inequality (11).

Proof. We need only prove the theorem for even n.
Since $1 \leqq \tau<2+\sqrt{5}$, we know that $1+4 \tau-\tau^{2}>0$ and $4 \tau /\left(1+4 \tau-\tau^{2}\right) \geqq 1$. If $a_{n+1} \geqq$ $\sqrt{1+4 \tau} / \tau$, we have $M_{n}>\sqrt{1+4 \tau} / \tau$ by formula (2); if $a_{n+1}<\sqrt{1+4 \tau} / \tau$, let $r=\sqrt{1+4 \tau} / \tau$, by Theorem 3(i), we have either

$$
M_{n}>\sqrt{1+4 \tau} / \tau \quad \text { or } \quad \max \left(M_{n-1}, M_{n+1}\right)>\frac{4 \sqrt{1+4 \tau} / \tau}{(1+4 \tau) / \tau^{2}-1^{2}}=\frac{4 \tau \sqrt{1+4 \tau}}{1+4 \tau-\tau^{2}} \geqq \sqrt{1+4 \tau}
$$

Remark 3. Letting $\tau=1$ in Theorem 6, we obtain Borel's theorem again. But if $\tau=1$ in Theorem 4, we cannot obtain Borel's theorem.

Two real numbers ξ and ξ^{\prime} are said to be equivalent if there are integers a, b, c, d such that $\xi^{\prime}=(a \xi+b) /(c \xi+d)$ and $a d-b c= \pm 1$. If ξ is not equivalent to $(\sqrt{5}+1) / 2=$ $[1,1,1, \ldots]$, then for certain values of τ, inequality (11) can be sharpened.

Theorem 7. If ξ is an irrational number not equivalent to $(\sqrt{5}+1) / 2$, and $7 / 4<\tau<$ $(5+2 \sqrt{5}) / 4$, then there are infinitely many convergents p_{n} / q_{n} satisfying the following inequality:

$$
\begin{equation*}
-\frac{1}{\sqrt{1+4 \tau} q_{n}^{2}}<\xi-\frac{p_{n}}{q_{n}}<\frac{\tau-3 / 4}{\sqrt{1+4 \tau} q_{n}^{2}}<\frac{\frac{6 \sqrt{5}-10}{5}}{\sqrt{1+4 \tau} q_{n}^{2}} \tag{12}
\end{equation*}
$$

Proof. Since ξ is not equivalent to $(\sqrt{5}+1) / 2=[1 ; 1,1, \ldots]$, there are infinitely many $a_{n+1} \geqq 2$.

Let n be odd. If $a_{n+1} \geqq \sqrt{1+4 \tau}$, then $M_{n}>\sqrt{1+4 \tau}$ by formula (2); if $a_{n+1}<\sqrt{1+4 \tau}$, let $r=\sqrt{1+4 \tau}$, by Theorem 3(i) either

$$
M_{n}>\sqrt{1+} \overline{4 \tau} \quad \text { or } \quad \max \left(M_{n-1}, M_{n+1}\right)>\frac{4 \sqrt{1+4 \tau}}{(1+4 \tau)-2^{2}}=\frac{\sqrt{1+4 \tau}}{\tau-3 / 4}
$$

Let n be even. Since $7 / 4<\tau<(5+2 \sqrt{5}) / 4$, we know that $-16 \tau^{2}+40 \tau-5>0$ and $4(4 \tau-3) /\left(-16 \tau^{2}+40 \tau-5\right) \geqq 1$. If $a_{n+1} \geqq \sqrt{1+4 \tau} /(\tau-3 / 4)$, then $M_{n}>\sqrt{1+4 \tau} /(\tau-3 / 4)$ by formula (2); if $a_{n+1}<\sqrt{1+4 \tau} /(\tau-3 / 4)$, let $r=\sqrt{1+4 \tau} /(\tau-3 / 4)$, by Theorem 3(i), we have either $M_{n}>\sqrt{1+4 \tau} /(\tau-3 / 4)$ or

$$
\max \left(M_{n-1}, M_{n+1}\right)>\frac{4 r}{r^{2}-2^{2}}=\frac{4(4 \tau-3) \sqrt{1+4 \tau}}{-16 \tau^{2}+40 \tau-5} \geqq \sqrt{1+4 \tau}
$$

It is easily seen that

$$
\tau-3 / 4=\left(1-\frac{3}{4 \tau}\right) \tau<\left(1-\frac{3}{4(5+2 \sqrt{5}) / 4}\right) \tau=\frac{6 \sqrt{5}-10}{5} \tau .
$$

Therefore inequality (12) is correct.

Another theorem of asymmetric approximation was given by Robinson [14]. We state it as Theorem 8.

Theorem 8. Given any irrational number ξ and any positive number ε, there are infinitely many rational numbers p / q satisfying the following inequality:

$$
\begin{equation*}
-\frac{1}{(\sqrt{5}-\varepsilon) q^{2}}<\xi-\frac{p}{q}<\frac{1}{(\sqrt{5}+1) q^{2}} \tag{13}
\end{equation*}
$$

For certain values of ε we can show that one of any three consecutive convergents of ξ satisfies inequality (13). In fact we have the following theorem.

Theorem 9. If $(20-7 \sqrt{5}) / 5<\varepsilon<\sqrt{5}-1$, then one of any three consecutive convergents of ξ satisfies inequality (13).

Proof. Let n be odd. Since $\varepsilon<\sqrt{5}-1$, we have $4-2 \sqrt{5} \varepsilon+\varepsilon^{2}>0$; since

$$
\varepsilon>(20-7 \sqrt{5}) / 5=0.8695>(3+\sqrt{5} \quad \sqrt{10}+2 \sqrt{5}) /(\sqrt{5}+1)=0.4425,
$$

we have

$$
\frac{4(\sqrt{5}-\varepsilon)}{4-2 \sqrt{5} \varepsilon+\varepsilon^{2}}>\sqrt{5}+1
$$

If $a_{n+1} \geqq \sqrt{5}-\varepsilon$, then $M_{n}>\sqrt{5}-\varepsilon$ by formula (2); if $a_{n+1}<\sqrt{5}-\varepsilon$, let $r=\sqrt{5}-\varepsilon$, by Theorem 3(i), we have either $M_{n}>\sqrt{5}-\varepsilon$ or

$$
\max \left(M_{n-1}, M_{n+1}\right)>\frac{4(\sqrt{5}-\varepsilon)}{(\sqrt{5}-\varepsilon)^{2}-1^{2}}=\frac{4(\sqrt{5}-\varepsilon)}{4-2 \sqrt{5} \varepsilon+\varepsilon^{2}}>\sqrt{5}+1
$$

Let n be even. Since $\varepsilon>(20-7 \sqrt{5}) / 5$, we have $4(\sqrt{5}+1) /(5+2 \sqrt{5})>\sqrt{5}-\varepsilon$. If $a_{n+1} \geqq \sqrt{5}+1$, then $M_{n}>\sqrt{5}+1$ by formula (2); if $a_{n+1}<\sqrt{5}+1$, let $r=\sqrt{5}+1$, by Theorem 3(i), we have either

$$
M_{n}>\sqrt{5}+1 \quad \text { or } \quad \max \left(M_{n-1}, M_{n+1}\right)>\frac{4(\sqrt{5}+1)}{(\sqrt{5}+1)^{2}-1^{2}}=\frac{4(\sqrt{5}+1)}{5+2 \sqrt{5}}>\sqrt{5}-\varepsilon .
$$

Therefore Theorem 9 is true.
Now two problems arise naturally.
Problem 1. Find all the values of τ such that for any irrational number ξ, at least one of any three consecutive convergents satisfies inequality (11).

Problem 2. Find all the values of ε such that for any irrational number ξ, at least one of any three consecutive convergents satisfies inequality (13).

Acknowledgement. The author thanks the referee sincerely for his valuable suggestions to improve this paper.

REFERENCES

1. F. Bagemihl and J. R. McLaughlin, Generalization of some classical theorems concerning triples of consecutive convergents to simple continued fractions, J. Reine Angew. Math. 221 (1966), 146-149.
2. E. Borel, Contribution à l'analyse arithmetique du continu, J. Math. Pures Appl. 9 (1903), 329-375.
3. J. H. E. Cohn, Hurwitz' theorem, Proc. Amer. Math. Soc. 38 (1973), 436.
4. M. Fuiwara, Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen, Tohoku Math. J. 14 (1918), 109-115.
5. J. F. Koкsma, Diophantische Approximationen (Chelsea, New York, 1936).
6. K. Kurosu, Note on the theory of approximation of irrational numbers by rational numbers, Tohoku Math. J. 21 (1922), 247-260.
7. S. Lang, Introduction to Diophantine Approximations, (Addison-Wesley Publ. Co., 1966).
8. W. J. LeVeque, On asymmetric approximations, Michigan Math. J. 2 (1953), 1-6.
9. M. Müller, Über die Approximation reeler Zahlen durch die Näherungsbruche ihres regelmässigen Kettenbruches, Arch. Math. 6 (1955), 253-258.
10. M. B. Nathanson, Approximation by continued fractions, Proc. Amer. Math. Soc. 45 (1974), 323-324.
11. I. Niven, On asymmetric Diophantine approximations, Michigan Math. J. 9 (1962), 121123.
12. I. Niven, Diophantine Approximations (Interscience Publishers, 1963).
13. C. D. Olds, Note on an asymmetric Diophantine approximation, Bull. Amer. Math. Soc. 52 (1946), 261-263.
14. R. M. Robinson, Unsymmetric approximation of irrational numbers, Bull. Amer. Math. Soc. 53 (1947), 351-361.
15. R. M. Robinson, The critical numbers for unsymmetric approximation, Bull. Amer. Math. Soc. 54 (1948), 693-705.
16. A. L. Schmidt, Approximation theorems of Borel and Fujiwara, Math. Scand. 14 (1964), 35-38.
17. W. Schmidt, Diophantine Approximation (Lecture Notes in Math. 785, Springer-Verlag, 1980).
18. B. Segre, Lattice points in infinite domains and asymmetric Diophantine approximation, Duke J. Math. 12 (1945), 337-365.
19. P. Szusz, On a theorem of Segre, Acta Arith. 23 (1973), 371-377.
20. J. Tong, A generalization of the Borel theorem on Diophantine approximation, Riv. Math. Univ. Parma 9 (1983), 121-124.
21. J. Tong, The conjugate property of the Borel theorem on Diophantine approximation, Math. Z. 184 (1983), 151-153.
22. K. T. Vahlen, Über Näherungswerte und Kettenbruche, J. Reine Angew. Math. 115 (1895), 221-233.

Department of Mathematical Sciences University of North Florida Jacksonville, FL 32216 U.S.A.

Institute of Applied Mathematics
Academia Sinica
Peking
China

