Entire functions mapping countable dense subsets of the reals onto each other monotonically # Daihachiro Sato and Stuart Rankin It is shown that for arbitrary countable dense subsets A and B of the real line, there exists a transcendental entire function whose restriction to the real line is a real-valued strictly monotone increasing surjection taking A onto B. The technique used is a modification of the procedure Maurer used to show that for countable dense subsets A and B of the plane, there exists a transcendental entire function whose restriction to A is a bijection from A to B. ### 1. Introduction The following problem was posed by Erdös [2; p. 297, Problem 24] in 1957: Does there exist an entire function f not of the form $a_0 + a_1 z$, such that the number f(x) is rational or irrational according as x is rational or irrational? More generally, if A and B are two denumerable dense sets, does there exist an entire function which maps A onto B? A solution to the first part of the problem is to be found in Neumann and Rado [4], while if one interprets the second part of the problem to mean countable dense subsets A and B of the plane, then a solution to this part is given by Maurer [3], who establishes the existence of a transcendental entire function whose restriction to A is a bijection from A to B. In fact, the authors [5] have shown that such a function can be constructed so that each of its derivatives has this property as well. On the other hand, if A and B are considered to be countable dense subsets of the real line, then the following theorem, due to Barth and Schneider [1], solves the problem: THEOREM. Let A and B be two countable dense subsets of the real line. Then there exists an entire transcendental function f such that $f(z) \in B$ iff $z \in A$. It is still unresolved whether such a statement holds if A and B are countable dense subsets of the plane. By the Picard Theorem, the function Maurer constructs cannot possible satisfy this condition. The purpose of this paper is to show that a modification of Maurer's technique gives a straightforward proof of the theorem that Barth and Schneider actually proved. ## 2. Monotone generalized interpolation THEOREM 1. Let A and B be countable dense subsets of the real line. Then there exists a transcendental entire function f such that f restricted to the real line is a real homeomorphism, and f(A) = B. Proof. Suppose that we have both A and B enumerated. Choose the first element in the enumeration of A and of B, say a_1 and b_1 respectively. Define $f_0(z)=(z-a_1)+b_1$, and $A_0=\{a_1\}$, $B_0=\{b_1\}$. Suppose at the nth stage we have sets $A_{n-1}=\{a_1,\,a_2,\,\ldots,\,a_{2n-1}\}\subset A$ and $B_{n-1}=\{b_1,\,b_2,\,\ldots,\,b_{2n-1}\}\subset B$ and a monotone increasing polynomial f_{n-1} such that $f_{n-1}(a_i)=b_i$ for $i=1,\,2,\,\ldots,\,2n-1$. Construct A_n , B_n and f_n as follows: (i) Let $h_n(z)=\prod_{i=1}^{2n-1}\left(z-a_i\right)$ and choose the first element remaining in the enumeration of A after A_{n-1} is removed. Denote this element by a_{2n} . Let C_{2n} be the intersection of all closed intervals containing $A_{n-1} \cup \{a_{2n}\}$. There exists a real $\delta > 0$ such that for each real k satisfying $0 < k < \delta$, the polynomial $f_{n-1}(x) + kh_n(x)$ is monotone increasing on C_{2n} , and hence on the whole line. Since $B \sim B_{n-1}$ is dense, we may choose such a k, say k_n , as small as we like so that $f_{n-1}(a_{2n}) + k_n h_n(a_{2n}) = b_{2n} \in B \sim B_{n-1}$. Let $g_n(z) = f_{n-1}(z) + k_n h_n(z)$. (ii) Now choose the first element remaining in the enumeration of B after $B_{n-1} \cup \{b_{2n}\}$ is removed. Denote this element by b_{2n+1} . Let C_{2n+1} be the intersection of all closed intervals containing $C_{2n} \cup \left[g_n^{-1}(b_{2n+1}) - \frac{1}{2}, \ g_n^{-1}(b_{2n+1}) + \frac{1}{2}\right]$. Let $F(z,w) = g_n(z) + w(z-a_{2n})^2h_n(z) - b_{2n+1}$. Since the restriction of g_n to the reals is a surjective real-valued function, there is a real x_0 such that $g_n(x_0) = b_{2n+1}$. Thus $F(x_0,0) = 0$, while $\frac{\partial f}{\partial w}(x_0,0) \neq 0$, and so the implicit function theorem asserts that for arbitrarily small $\varepsilon > 0$, there exists a real l_n , satisfying $0 < l_n < \varepsilon$, and $a_{2n+1} \in A \cap (A_{n-1} \cup \{a_{2n}\})$ with $F(a_{2n+1}, l_n) = 0$. Define $f_n(z) = f_{n-1}(z) + k_nh(z) + l_n(z-a_{2n})^2h(x)$, $A_n = A_{n-1} \cup \{a_{2n}, a_{2n+1}\}$ and $B_n = B_{n-1} \cup \{b_{2n}, b_{2n+1}\}$. Then $f_n|A_n$ is a bijection from A_n to B_n . As in case (i), f_n can be made monotone increasing on C_{2n+1} by choosing l_n sufficiently small and thus f_n can be made monotone increasing on the whole line. Moreover, at each stage we need only consider a finite number $f(z) = \sum_{n=1}^{\infty} f_n(z)$ converges to a transcendental entire function. By the construction of each f_n , the restriction of f to the reals is a monotone increasing surjective real-valued function taking A onto B. of conditions to obtain an upper bound for k_n and l_n so that ### References - [1] K.F. Barth and W.J. Schneider, "Entire functions mapping countable dense subsets of the reals onto each other monotonically", J. London Math. Soc. (2) 2 (1970), 620-626. - [2] Paul Erdös, "Some unsolved problems", Michigan Math. J. 4 (1957), 291-300. - [3] W.D. Maurer, "Conformal equivalence of countable dense sets", Proc. Amer. Math. Soc. 18 (1967), 269-270. - [4] B.H. Neumann and R. Rado, "Monotone functions mapping the set of rational numbers onto itself", J. Austral. Math. Soc. 3 (1963), 282-287. - [5] Dalhachiro Sato and Stuart Rankin, "Highly conformal equivalence of countable dense sets", submitted. Department of Mathematics, University of Saskatchewan, Regina Campus, Regina, Saskatchewan, Canada; Department of Mathematics, University of Western Ontario, London, Ontario, Canada.